1,846
Views
109
CrossRef citations to date
0
Altmetric
Reviews

Recent advances in mass spectrometry: data independent analysis and hyper reaction monitoring

&
Pages 551-566 | Published online: 09 Jan 2014

References

  • Jørgensen C, Locard-Paulet M. Analysing signalling networks by mass spectrometry. Amino. Acids 43(3), 1061–1074 (2012).
  • Frese CK, Altelaar AFM, Hennrich ML et al. Improved peptide identification by targeted fragmentation using CID, HCD and ETD on an LTQ-Orbitrap Velos. J. Proteome Res. 10(5), 2377–2388 (2011).
  • Steen H, Küster B, Fernandez M, Pandey A, Mann M. Detection of tyrosine phosphorylated peptides by precursor ion scanning quadrupole TOF mass spectrometry in positive ion mode. Anal. Chem. 73(7), 1440–1448 (2001).
  • McLachlin DT, Chait BT. Analysis of phosphorylated proteins and peptides by mass spectrometry. Curr. Opin. Chem. Biol. 5(5), 591–602 (2001).
  • Borchers C, Parker CE, Deterding LJ, Tomer KB. Preliminary comparison of precursor scans and liquid chromatography–tandem mass spectrometry on a hybrid quadrupole time-of-flight mass spectrometer. J. Chromatogr. A 854(1–2), 119–130 (1999).
  • Colangelo CM, Chung L, Bruce C, Cheung K-H. Review of software tools for design and analysis of large scale MRM proteomic datasets. Methods 61(3), 287–298 (2013).
  • Cox DM, Zhong F, Du M, Duchoslav E, Sakuma T, McDermott JC. Multiple reaction monitoring as a method for identifying protein posttranslational modifications. J. Biomol. Tech. 16(2), 83–90 (2005).
  • Unwin RD, Griffiths JR, Leverentz MK, Grallert A, Hagan IM, Whetton AD. Multiple reaction monitoring to identify sites of protein phosphorylation with high sensitivity. Mol. Cell Proteomics 4(8), 1134–1144 (2005).
  • Wenner BR, Lynn BC. Factors that affect ion trap data-dependent MS/MS in proteomics. J. Am. Soc. Mass Spectrom. 15(2), 150–157 (2004).
  • Wolf-Yadlin A, Hautaniemi S, Lauffenburger DA, White FM. Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks. Proc. Natl Acad. Sci. USA. 104(14), 5860–5865 (2007).
  • Wu L, Han DK. Overcoming the dynamic range problem in mass spectrometry-based shotgun proteomics. Expert Rev. Proteomics 3(6), 611–619 (2006).
  • Houel S, Abernathy R, Renganathan K, Meyer-Arendt K, Ahn NG, Old WM. Quantifying the impact of chimera MS/MS spectra on peptide identification in large-scale proteomics studies. J. Proteome Res. 9(8), 4152–4160 (2010).
  • Luethy R, Kessner DE, Katz JE et al. Precursor-ion mass re-estimation improves peptide identification on hybrid instruments. J. Proteome Res. 7(9), 4031–4039 (2008).
  • Michalski A, Cox J, Mann M. More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC–MS/MS. J. Proteome Res. 10(4), 1785–1793 (2011).
  • Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc. Natl Acad. Sci. USA. 100(12), 6940–6945 (2003).
  • Ciccimaro E, Blair IA. Stable-isotope dilution LC–MS for quantitative biomarker analysis. Bioanalysis 2(2), 311–341 (2010).
  • Kiyonami R, Schoen A, Prakash A et al. Increased selectivity, analytical precision, and throughput in targeted proteomics. Mol. Cell Proteomics 10(2), M110.002931 (2011).
  • Mörtstedt H, Kåredal MH, Jönsson BAG, Lindh CH. Screening method using selected reaction monitoring for targeted proteomics studies of nasal lavage fluid. J. Proteome Res. 12(1), 234–247 (2012).
  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotech. 17(10), 994–999 (1999).
  • Griffin TJ, Sherman J, Aebersold R. Quantitative Proteomics (ICAT™). In: eLS. John Wiley & Sons Ltd., NJ, USA (2001).
  • Ross PL, Huang YN, Marchese JN et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell Proteomics 3(12), 1154–1169 (2004).
  • Zieske LR. A perspective on the use of iTRAQ™ reagent technology for protein complex and profiling studies. J. Exp. Bot. 57(7), 1501–1508 (2006).
  • Ye H, Sun L, Huang X, Zhang P, Zhao X. A proteomic approach for plasma biomarker discovery with 8-plex iTRAQ labeling and SCX-LC-MS/MS. Mol. Cell Biochem. 343(1–2), 91–99 (2010).
  • Thompson A, Schäfer J, Kuhn K et al. Tandem Mass Tags: A novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal. Chem. 75(18), 4942–4942 (2003).
  • Pichler P, Koöcher T, Holzmann J et al. Peptide labeling with isobaric tags yields higher identification rates using iTRAQ 4-plex compared to TMT 6-plex and iTRAQ 8-plex on LTQ Orbitrap. Anal. Chem. 82(15), 6549–6558 (2010).
  • Schmidt A, Kellermann J, Lottspeich F. A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics 5(1), 4–15 (2005).
  • Lottspeich F, Kellermann J. ICPL Labeling strategies for proteome research. In: Gel-Free Proteomics. Gevaert, K, Vandekerckhove, J (Eds). Humana Press, NY, USA 55–64 (2011).
  • Ong S-E, Blagoev B, Kratchmarova I et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell Proteomics 1(5), 376–386 (2002).
  • Ong S-E, Mann M. A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat. Protocols 1(6), 2650–2660 (2007).
  • Hewel J, Schutkowski M, Liu J, White C, Emili A. FAIMS/MS/MS: development of high-throughput targeted peptide monitoring for the detection of low abundant protein markers. In: The 18th IMSC. Bremen, Germany (2009).
  • Fortin T, Salvador A, Charrier JP et al. Multiple reaction monitoring cubed for protein quantification at the low nanogram/milliliter level in nondepleted human serum. Anal. Chem. 81(22), 9343–9352 (2009).
  • Shi T, Su D, Liu T et al. Advancing the sensitivity of selected reaction monitoring-based targeted quantitative proteomics. Proteomics 12(8), 1074–1092 (2012).
  • Picotti P, Aebersold R. Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat. Meth. 9(6), 555–566 (2012).
  • Mirzaei H, McBee JK, Watts J, Aebersold R. Comparative evaluation of current peptide production platforms used in absolute quantification in proteomics. Mol. Cell Proteomics 7(4), 813–823 (2008).
  • Picotti P, Rinner O, Stallmach R et al. High-throughput generation of selected reaction-monitoring assays for proteins and proteomes. Nat. Meth. 7(1), 43–46 (2010).
  • Schiess R, Wollscheid B, Aebersold R. Targeted proteomic strategy for clinical biomarker discovery. Mol. Oncol. 3(1), 33–44 (2009).
  • Whiteaker JR, Lin C, Kennedy J et al. A targeted proteomics-based pipeline for verification of biomarkers in plasma. Nat. Biotechnol. 29(7), 625–634 (2011).
  • Bateman RH, Carruthers R, Hoyes JB et al. A novel precursor ion discovery method on a hybrid quadrupole orthogonal acceleration time-of-flight (Q-TOF) mass spectrometer for studying protein phosphorylation. J. Am. Soc. Mass Spectrom. 13(7), 792–803 (2002).
  • Silva JC, Gorenstein MV, Li G-Z, Vissers JPC, Geromanos SJ. Absolute quantification of proteins by LCMSE : A virtue of parallel ms acquisition. Mol. Cell Proteomics 5(1), 144–156 (2006).
  • Silva JC, Denny R, Dorschel C et al. Simultaneous qualitative and quantitative analysis of the Escherichia coli proteome: A sweet tale. Mol. Cell Proteomics 5(4), 589–607 (2006).
  • Purvine S, Eppel J-T, Yi EC, Goodlett DR. Shotgun collision-induced dissociation of peptides using a time of flight mass analyzer. Proteomics 3(6), 847–850 (2003).
  • Niggeweg R, Köcher T, Gentzel M et al. A general precursor ion-like scanning mode on quadrupole-TOF instruments compatible with chromatographic separation. Proteomics 6(1), 41–53 (2006).
  • Geromanos SJ, Vissers JPC, Silva JC et al. The detection, correlation, and comparison of peptide precursor and product ions from data independent LC-MS with data dependant LC-MS/MS. Proteomics 9(6), 1683–1695 (2009).
  • Li G-Z, Vissers JPC, Silva JC, Golick D, Gorenstein MV, Geromanos SJ. Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures. Proteomics 9(6), 1696–1719 (2009).
  • Blackburn K, Mbeunkui F, Mitra SK, Mentzel T, Goshe MB. Improving protein and proteome coverage through data-independent multiplexed peptide fragmentation. J. Proteome Res. 9(7), 3621–3637 (2010).
  • Levin Y, Hradetzky E, Bahn S. Quantification of proteins using data-independent analysis (MSE) in simple and complex samples: A systematic evaluation. Proteomics 11(16), 3273–3287 (2011).
  • Patel VJ, Thalassinos K, Slade SE et al. A comparison of labeling and label-free mass spectrometry-based proteomics approaches. J. Proteome Res. 8(7), 3752–3759 (2009).
  • Kwon J, Park S, Park C, Kwon S-O, Choi J-S. Analysis of membrane proteome by data-dependent LC-MS/MS combined with data-independent LC-MSE technique. J. Anal. Sci. Technol. 1(1), 78–85 (2010).
  • Shliaha PV, Bond NJ, Gatto L, Lilley KS. Effects of traveling wave ion mobility separation on data independent acquisition in proteomics studies. J. Proteome Res. 12(6), 2323–2339 (2013).
  • Bond NJ, Shliaha PV, Lilley KS, Gatto L. Improving qualitative and quantitative performance for MSE-based label-free proteomics. J. Proteome Res. 12(6), 2340–2353 (2013).
  • Vissers JPC, Langridge JI, Aerts JMFG. Analysis and quantification of diagnostic serum markers and protein signatures for Gaucher disease. Mol. Cell Proteomics 6(5), 755–766 (2007).
  • Ma D, Chan MK, Lockstone HE et al. Antipsychotic treatment alters protein expression associated with presynaptic function and nervous system development in rat frontal cortex. J. Proteome Res. 8(7), 3284–3297 (2009).
  • Wang L, Lockstone HE, Guest PC et al. Expression profiling of fibroblasts identifies cell cycle abnormalities in Schizophrenia. J. Proteome Res. 9(1), 521–527 (2009).
  • Levin Y, Wang L, Schwarz E, Koethe D, Leweke FM, Bahn S. Global proteomic profiling reveals altered proteomic signature in schizophrenia serum. Mol. Psychiatry 15(11), 1088–1100 (2010).
  • Krishnamurthy D, Levin Y, Harris LW, Umrania Y, Bahn S, Guest PC. Analysis of the human pituitary proteome by data independent label-free liquid chromatography tandem mass spectrometry. Proteomics 11(3), 495–500 (2011).
  • Cheng F-y, Blackburn K, Lin Y-m, Goshe MB, Williamson JD. Absolute protein quantification by LC/MSE for global analysis of salicylic acid-induced plant protein secretion responses. J. Proteome Res. 8(1), 82–93 (2008).
  • Blackburn K, Cheng F-y, Williamson JD, Goshe MB. Data-independent liquid chromatography/mass spectrometry (LC/MSE) detection and quantification of the secreted Apium graveolens pathogen defense protein mannitol dehydrogenase. Rapid Comm. Mass Spectro. 24(7), 1009–1016 (2010).
  • Stobaugh JT, Fague KM, Jorgenson JW. Prefractionation of intact proteins by reversed-phase and anion-exchange chromatography for the differential proteomic analysis of Saccharomyces cerevisiae. J. Proteome Res. 12(2), 626–636 (2012).
  • Gonzalez-Fernandez R, Aloria K, Arizmendi JM, Jorrin-Novo JV. Application of label-free shotgun nUPLC–MSE and 2-DE approaches in the study of Botrytis cinerea Mycelium. J. Proteome Res. 12(6), 3042–3056 (2013).
  • Geiger T, Cox J, Mann M. Proteomics on an Orbitrap benchtop mass spectrometer using all-ion fragmentation. Mol. Cell Proteomics 9(10), 2252–2261 (2010).
  • Cox Jr, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M. Andromeda: A peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10(4), 1794–1805 (2011).
  • Weisbrod CR, Eng JK, Hoopmann MR, Baker T, Bruce JE. Accurate peptide fragment mass analysis: Multiplexed peptide identification and quantification. J. Proteome Res. 11(3), 1621–1632 (2012).
  • Andrews GL, Simons BL, Young JB, Hawkridge AM, Muddiman DC. Performance characteristics of a new hybrid quadrupole time-of-flight tandem mass spectrometer (TripleTOF 5600). Anal. Chem. 83(13), 5442–5446 (2011).
  • Liu Y, Hüttenhain R, Surinova S et al. Quantitative measurements of N-linked glycoproteins in human plasma by SWATH-MS. Proteomics 13(8), 1247–1256 (2013).
  • Held JM, Schilling B, D'Souza AK et al. Label-free quantitation and mapping of the ErbB2 tumor receptor by multiple protease digestion with data-dependent (MS1) and data-independent (MS2) acquisitions. Int. J. Proteomics 2013, Article ID 791985 (2013).
  • Gillet LC, Navarro P, Tate S et al. Targeted data extraction of the MS/MS spectra generated by data independent acquisition: a new concept for consistent and accurate proteome analysis. Mol. Cell Proteomics 11(6), O111.016717 (2012).
  • Sturm M, Bertsch A, Gropl C et al. OpenMS - An open-source software framework for mass spectrometry. BMC Bioinformatics 9(1), 163 (2008).
  • Bertsch A, Gröpl C, Reinert K, Kohlbacher O. OpenMS and TOPP: open source software for LC-MS data analysis. In: Data Mining in Proteomics. Hamacher, M, Eisenacher, M, Stephan, C (Eds). Humana Press, NY, USA 353–367 (2011).
  • Bernhardt OM, Selevsek N, Gillet LC et al. Spectronaut: a fast and efficient algorithm for MRM-like processing of data independent acquisition (SWATH-MS) data. In: 60th ASMS Conference on Mass Spectrometry and Allied Topics. Vancouver, Canada 20–24 May (2012)
  • Bruderer RM, Bernhardt OM, Gandhi TP et al. Comparison of DIA and shotgun quantitation on a Thermo Q Exactive. BIOGNOSYS Application Note, Zurich, Switzerland (2013).
  • MacLean B, Tomazela DM, Shulman N et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26(7), 966–968 (2010).
  • Bereman MS, MacLean B, Tomazela DM, Liebler DC, MacCoss MJ. The development of selected reaction monitoring methods for targeted proteomics via empirical refinement. Proteomics 12(8), 1134–1141 (2012).
  • Wang J, Perez-Santiago J, Katz JE, Mallick P, Bandeira N. Peptide identification from mixture tandem mass spectra. Mol. Cell Proteomics 9(7), 1476–1485 (2010).
  • Wang J, Bourne PE, Bandeira N. Peptide identification by database search of mixture tandem mass spectra. Mol. Cell Proteomics 10 (2011).
  • Zhang N, Li X-j, Ye M, Pan S, Schwikowski B, Aebersold R. ProbIDtree: An automated software program capable of identifying multiple peptides from a single collision-induced dissociation spectrum collected by a tandem mass spectrometer. Proteomics 5(16), 4096–4106 (2005).
  • Fu C, Di L, Han X et al. Aldehyde oxidase 1 in human liver cytosols: Quantitative characterization of AOX1 expression level and activity relationship. Drug Metab. Dispos. (2013).
  • Venable JD, Dong M-Q, Wohlschlegel J, Dillin A, Yates JR. Automated approach for quantitative analysis of complex peptide mixtures from tandem mass spectra. Nat. Meth. 1(1), 39–45 (2004).
  • Bern M, Finney G, Hoopmann MR, Merrihew G, Toth MJ, MacCoss MJ. Deconvolution of mixture spectra from ion-trap data-independent-acquisition tandem mass spectrometry. Anal. Chem. 82(3), 833–841 (2009).
  • Carvalho PC, Han X, Xu T et al. XDIA: Improving on the label-free data-independent analysis. Bioinformatics 26(6), 847–848 (2010).
  • Alves G, Ogurtsov A, Kwok S et al. Detection of co-eluted peptides using database search methods. Biol. Direct 3(1), 1–16 (2008).
  • Egertson JD, Kuehn A, Merrihew GE et al. Multiplexed MS/MS for improved data-independent acquisition. Nat. Meth. 10, 744–746 (2013).
  • Sherrod SD, Myers MV, Li M et al. Label-free quantitation of protein modifications by pseudo selected reaction monitoring with internal reference Peptides. J. Proteome Res. 11(6), 3467–3479 (2012).
  • Pak H, Carla Pasquarello, Scherl A. Label-free protein quantifcation on tandem mass spectra in an ion trapping device. J. Integr. OMICS 1(2), 211–215 (2011).
  • Peterson AC, Russell JD, Bailey DJ, Westphall MS, Coon JJ. Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol. Cell Proteomics 11(11), 1475–1488 (2012).
  • Gallien S, Duriez E, Crone C, Kellmann M, Moehring T, Domon B. Targeted proteomic quantification on quadrupole-orbitrap mass spectrometer. Mol. Cell Proteomics 11(12), 1709–1723 (2012).
  • Schmidt A, Gehlenborg N, Bodenmiller B et al. An integrated, directed mass spectrometric approach for in-depth characterization of complex peptide mixtures. Mol. Cell Proteomics 7(11), 2138–2150 (2008).
  • Gallien S, Duriez E, Demeure K, Domon B. Selectivity of LC-MS/MS analysis: Implication for proteomics experiments. J. Proteomics 81, 148–158 (2012).
  • Baek J-H, Kim H, Shin B, Yu M-H. Multiple products monitoring as a robust approach for peptide quantification. J. Proteome Res. 8(7), 3625–3632 (2009).
  • Hewel JA, Phanse S, Liu J, Bousette N, Gramolini A, Emili A. Targeted protein identification, quantification and reporting for high-resolution nanoflow targeted peptide monitoring. J. Proteomics 81(0), 159–172 (2013).
  • Tsuchiya H, Tanaka K, Saeki Y. The parallel reaction monitoring method contributes to a highly sensitive polyubiquitin chain quantification. Biochem. Biophys. Res. Commun. 436(2), 223–229 (2013).
  • Guevremont R. High-field asymmetric waveform ion mobility spectrometry: A new tool for mass spectrometry. J. Chromatogr. A 1058(1–2), 3–19 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.