1,253
Views
33
CrossRef citations to date
0
Altmetric
Reviews

Methods for analyzing and quantifying protein–protein interaction

, , &

References

  • Stein LD. Human genome: end of the beginning. Nature 2004;431(7011):915-16
  • Clamp M, Fry B, Kamal M, et al. Distinguishing protein-coding and noncoding genes in the human genome. Proc Natl Acad Sci USA 2007;104(49):19428-33
  • Plotkin JB, Kudla G. Synonymous but not the same: the causes and consequences of codon bias. Nat Rev Genet 2011;12(1):32-42
  • Shabalina SA, Spiridonov AN, Spiridonov NA, Koonin EV. Connections between alternative transcription and alternative splicing in mammals. Genome Biol Evol 2010;2:791-9
  • Sultan M, Schulz MH, Richard H, et al. A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science 2008;321(5891):956-60
  • Venkatesan K, Rual JF, Vazquez A, et al. An empirical framework for binary interactome mapping. Nat Methods 2009;6(1):83-90
  • Bandyopadhyay S, Chiang CY, Srivastava J, et al. A human MAP kinase interactome. Nat Methods 2010;7(10):801-5
  • Garma L, Mukherjee S, Mitra P, Zhang Y. How many protein-protein interactions types exist in nature? PLoS ONE 2012;7(6):13
  • De Las Rivas J, Prieto C. Protein interactions: mapping interactome networks to support drug target discovery and selection. Methods Mol Biol 2012;910:279-96
  • Nooren IM, Thornton JM. Diversity of protein-protein interactions. EMBO J 2003;22(14):3486-92
  • Reichmann D, Rahat O, Cohen M, et al. The molecular architecture of protein-protein binding sites. Curr Opin Struct Biol 2007;17(1):67-76
  • Valadares NF, de Oliveira-Silva R, Cavini IA, et al. X-ray crystallography and NMR studies of domain-swapped canecystatin-1. FEBS J 2013;280(4):1028-38
  • Chu LH, Chen BS. Construction of a cancer-perturbed protein-protein interaction network for discovery of apoptosis drug targets. BMC Syst Biol 2008;2:56
  • Ramani AK, Bunescu RC, Mooney RJ, Marcotte EM. Consolidating the set of known human protein-protein interactions in preparation for large-scale mapping of the human interactome. Genome Biol 2005;6(5):R40
  • Rual JF, Venkatesan K, Hao T, et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature 2005;437(7062):1173-8
  • Wu G, Feng X, Stein L. A human functional protein interaction network and its application to cancer data analysis. Genome Biol 2010;11(5):R53
  • Perozzo R, Folkers G, Scapozza L. Thermodynamics of protein-ligand interactions: history, presence, and future aspects. J Recept Signal Transduct Res 2004;24(1-2):1-52
  • Chavez JD, Liu NL, Bruce JE. Quantification of protein-protein interactions with chemical cross-linking and mass spectrometry. J Proteome Res 2011;10(4):1528-37
  • Hwang S, Schmitt AA, Luteran AE, et al. Thermodynamic characterization of the binding interaction between the histone demethylase LSD1/KDM1 and CoREST. Biochemistry 2011;50(4):546-57
  • Bornhop DJ, Latham JC, Kussrow A, et al. Free-solution, label-free molecular interactions studied by back-scattering interferometry. Science 2007;317(5845):1732-6
  • Hubner NC, Mann M. Extracting gene function from protein-protein interactions using Quantitative BAC InteraCtomics (QUBIC). Methods 2011;53(4):453-9
  • Gavin AC, Maeda K, Kuhner S. Recent advances in charting protein-protein interaction: mass spectrometry-based approaches. Curr Opin Biotechnol 2011;22(1):42-9
  • Geetha T, Langlais P, Luo M, et al. Label-free proteomic identification of endogenous, insulin-stimulated interaction partners of insulin receptor substrate-1. J Am Soc Mass Spectrom 2011;22(3):457-66
  • Lazarides E, Weber K. Actin antibody: the specific visualization of actin filaments in non-muscle cells. Proc Natl Acad Sci USA 1974;71(6):2268-72
  • Fields S, Song O. A novel genetic system to detect protein-protein interactions. Nature 1989;340(6230):245-6
  • Caufield JH, Sakhawalkar N, Uetz P. A comparison and optimization of yeast two-hybrid systems. Methods 2012;58(4):317-24
  • Snider J, Hanif A, Lee ME, et al. Mapping the functional yeast ABC transporter interactome. Nat Chem Biol 2013;9(9):565-72
  • Deane CM, Salwinski L, Xenarios I, Eisenberg D. Protein interactions: two methods for assessment of the reliability of high throughput observations. Mol Cell Proteomics 2002;1(5):349-56
  • Bruckner A, Polge C, Lentze N, et al. Yeast two-hybrid, a powerful tool for systems biology. Int J Mol Sci 2009;10(6):2763-88
  • Schweitzer B, Predki P, Snyder M. Microarrays to characterize protein interactions on a whole-proteome scale. Proteomics 2003;3(11):2190-9
  • Berrade L, Garcia AE, Camarero JA. Protein microarrays: novel developments and applications. Pharm Res 2011;28(7):1480-99
  • MacBeath G, Schreiber SL. Printing proteins as microarrays for high-throughput function determination. Science 2000;289(5485):1760-3
  • He M, Stoevesandt O, Palmer EA, et al. Printing protein arrays from DNA arrays. Nat Methods 2008;5(2):175-7
  • Ramachandran N, Raphael JV, Hainsworth E, et al. Next-generation high-density self-assembling functional protein arrays. Nat Methods 2008;5(6):535-8
  • Angenendt P, Kreutzberger J, Glokler J, Hoheisel JD. Generation of high density protein microarrays by cell-free in situ expression of unpurified PCR products. Mol Cell Proteomics 2006;5(9):1658-66
  • Jackson AM, Boutell J, Cooley N, He M. Cell-free protein synthesis for proteomics. Brief Funct Genomic Proteomic 2004;2(4):308-19
  • Shimizu Y, Kuruma Y, Ying BW, et al. Cell-free translation systems for protein engineering. FEBS J 2006;273(18):4133-40
  • Whittaker JW. Cell-free protein synthesis: the state of the art. Biotechnol Lett 2013;35(2):143-52
  • Kaushansky A, Allen JE, Gordus A, et al. Quantifying protein-protein interactions in high throughput using protein domain microarrays. Nat Protoc 2010;5(4):773-90
  • Hoheisel JD, Alhamdani MS, Schroder C. Affinity-based microarrays for proteomic analysis of cancer tissues. Proteomics Clin Appl 2013;7(1-2):8-15
  • Schmidt R, Jacak J, Schirwitz C, et al. Single-molecule detection on a protein-array assay platform for the exposure of a tuberculosis antigen. J Proteome Res 2011;10(3):1316-22
  • Gaster RS, Xu L, Han SJ, et al. Quantification of protein interactions and solution transport using high-density GMR sensor arrays. Nat Nanotechnol 2011;6(5):314-20
  • Kerppola TK. Bimolecular fluorescence complementation: visualization of molecular interactions in living cells. Methods Cell Biol 2008;85:431-70
  • Padilla-Parra S, Tramier M. FRET microscopy in the living cell: different approaches, strengths and weaknesses. Bioessays 2012;34(5):369-76
  • Lakowicz JR. Principles of fluorescence spectroscopy. Springer; NY, USA: 2010
  • Soderberg O, Gullberg M, Jarvius M, et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods 2006;3(12):995-1000
  • Lowder MA, Appelbaum JS, Hobert EM, Schepartz A. Visualizing protein partnerships in living cells and organisms. Curr Opin Chem Biol 2011;15(6):781-8
  • Song Y, Madahar V, Liao J. Development of FRET assay into quantitative and high-throughput screening technology platforms for protein-protein interactions. Ann Biomed Eng 2011;39(4):1224-34
  • Bill A, Blockus H, Stumpfe D, et al. A homogeneous fluorescence resonance energy transfer system for monitoring the activation of a protein switch in real time. J Am Chem Soc 2011;133(21):8372-9
  • Liu Q, Leber B, Andrews DW. Interactions of pro-apoptotic BH3 proteins with anti-apoptotic Bcl-2 family proteins measured in live MCF-7 cells using FLIM FRET. Cell Cycle 2012;11(19):3536-42
  • Schaferling M, Nagl S. Forster resonance energy transfer methods for quantification of protein-protein interactions on microarrays. Methods Mol Biol 2011;723:303-20
  • Kodama Y, Hu CD. Bimolecular fluorescence complementation (BiFC): a 5-year update and future perspectives. Biotechniques 2012;53(5):285-98
  • Shekhawat SS, Ghosh I. Split-protein systems: beyond binary protein-protein interactions. Curr Opin Chem Biol 2011;15(6):789-97
  • Kodama Y, Hu CD. Bimolecular fluorescence complementation (BiFC) analysis of protein-protein interaction: how to calculate signal-to-noise ratio. Methods Cell Biol 2013;113:107-21
  • Ohashi K, Kiuchi T, Shoji K, et al. Visualization of cofilin-actin and Ras-Raf interactions by bimolecular fluorescence complementation assays using a new pair of split Venus fragments. Biotechniques 2012;52(1):45-50
  • Langowski J. Protein-protein interactions determined by fluorescence correlation spectroscopy. Methods Cell Biol 2008;85:471-84
  • Tonge R, Shaw J, Middleton B, et al. Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics 2001;1(3):377-96
  • Pallotta V, D'Alessandro A, Rinalducci S, Zolla L. Native protein complexes in the cytoplasm of red blood cells. J Proteome Res 2013;12(7):3529-46
  • Kao FS, Ger W, Pan YR, et al. Chip based protein–protein interaction studied by atomic force microscopy. Biotechnol Bioeng 2012;109(10):2460-7
  • Boehr DD, Wright PE. Biochemistry. How do proteins interact? Science 2008;320(5882):1429-30
  • Elliott MH, Smith DS, Parker CE, Borchers C. Current trends in quantitative proteomics. J Mass Spectrom 2009;44(12):1637-60
  • Yadav SP, Bergqvist S, Doyle ML, et al. MIRG Survey 2011: snapshot of rapidly evolving label-free technologies used for characterizing molecular interactions. J Biomol Tech 2012;23(3):94-100
  • Kelly SM, Jess TJ, Price NC. How to study proteins by circular dichroism. Biochim Biophys Acta 2005;1751(2):119-39
  • Velazquez-Campoy A, Leavitt SA, Freire E. Characterization of protein-protein interactions by isothermal titration calorimetry. Methods Mol Biol 2004;261:35-54
  • Freyer MW, Lewis EA. Isothermal titration calorimetry: experimental design, data analysis, and probing macromolecule/ligand binding and kinetic interactions. Methods Cell Biol 2008;84:79-113
  • Ghai R, Falconer RJ, Collins BM. Applications of isothermal titration calorimetry in pure and applied research – survey of the literature from 2010. J Mol Recognit 2012;25(1):32-52
  • Latham JC, Stein RA, Bornhop DJ, McHaourab HS. Free-solution label-free detection of alpha-crystallin chaperone interactions by back-scattering interferometry. Anal Chem 2009;81(5):1865-71
  • Wallner J, Lhota G, Jeschek D, et al. Application of Bio-Layer Interferometry for the analysis of protein/liposome interactions. J Pharm Biomed Anal 2013;72:150-4
  • Gonzalez LC. Protein microarrays, biosensors, and cell-based methods for secretome-wide extracellular protein-protein interaction mapping. Methods 2012;57(4):448-58
  • Wartchow CA, Podlaski F, Li S, et al. Biosensor-based small molecule fragment screening with biolayer interferometry. J Comput Aided Mol Des 2011;25(7):669-76
  • Figuera-Losada M, LoGrasso PV. Enzyme kinetics and interaction studies for human JNK1beta1 and substrates activating transcription factor 2 (ATF2) and c-Jun N-terminal kinase (c-Jun). J Biol Chem 2012;287(16):13291-302
  • Greenfield NJ. Circular dichroism analysis for protein-protein interactions. Methods Mol Biol 2004;261:55-78
  • Anderson E, Cole JL. Domain stabilities in protein kinase R (PKR): evidence for weak interdomain interactions. Biochemistry 2008;47(17):4887-97
  • Brown CJ, Dastidar SG, Quah ST, et al. C-terminal substitution of MDM2 interacting peptides modulates binding affinity by distinctive mechanisms. PLoS ONE 2011;6(8):e24122
  • Stahelin RV. Surface plasmon resonance: a useful technique for cell biologists to characterize biomolecular interactions. Mol Biol Cell 2013;24(7):883-6
  • Ray S, Mehta G, Srivastava S. Label-free detection techniques for protein microarrays: prospects, merits and challenges. Proteomics 2010;10(4):731-48
  • Remy-Martin F, El Osta M, Lucchi G, et al. Surface plasmon resonance imaging in arrays coupled with mass spectrometry (SUPRA-MS): proof of concept of on-chip characterization of a potential breast cancer marker in human plasma. Anal Bioanal Chem 2012;404(2):423-32
  • Bodenhausen G, Ruben DJ. Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy. Chem Phys Lett 1980;69(1):185-9
  • Anderson W, Freeman R. Influence of a second radiofrequency field on high resolution nuclear magnetic resonance spectra. J Chem Phys 1962;37:85
  • Zuiderweg ER. Mapping protein-protein interactions in solution by NMR spectroscopy. Biochemistry 2002;41(1):1-7
  • Jerabek-Willemsen M, Wienken CJ, Braun D, et al. Molecular interaction studies using microscale thermophoresis. Assay Drug Dev Technol 2011;9(4):342-53
  • Wienken CJ, Baaske P, Rothbauer U, et al. Protein-binding assays in biological liquids using microscale thermophoresis. Nat Commun 2010;1:100
  • Seidel SA, Dijkman PM, Lea WA, et al. Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions. Methods 2013;59(3):301-15
  • Park SH, Raines RT. Fluorescence polarization assay to quantify protein-protein interactions. Methods Mol Biol 2004;261:161-6
  • Choi JW, Kang DK, Park H, et al. High-throughput analysis of protein-protein interactions in picoliter-volume droplets using fluorescence polarization. Anal Chem 2012;84(8):3849-54
  • Zhang Q, Lu H. Identification of small molecules affecting p53-MDM2/MDMX interaction by fluorescence polarization. Methods Mol Biol 2013;962:95-111
  • Yates JR, Ruse CI, Nakorchevsky A. Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng 2009;11:49-79
  • Fenn JB, Mann M, Meng CK, et al. Electrospray ionization for mass spectrometry of large biomolecules. Science 1989;246(4926):64-71
  • Tanaka K, Waki H, Ido Y, et al. Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 1988;2(8):151-3
  • Millioni R, Tolin S, Puricelli L, et al. High abundance proteins depletion vs low abundance proteins enrichment: comparison of methods to reduce the plasma proteome complexity. PLoS ONE 2011;6(5):e19603
  • Nakamura T, Oda Y. Mass spectrometry-based quantitative proteomics. Biotechnol Genet Eng Rev 2007;24:147-63
  • Lu Y, Bottari P, Aebersold R, et al. Absolute quantification of specific proteins in complex mixtures using visible isotope-coded affinity tags. In: Sechi S, editor. Quantitative proteomics by mass spectrometry. Humana Press; NJ, USA: 2007. p. 159-76
  • Harsha HC, Molina H, Pandey A. Quantitative proteomics using stable isotope labeling with amino acids in cell culture. Nat Protoc 2008;3(3):505-16
  • Kruger M, Moser M, Ussar S, et al. SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell 2008;134(2):353-64
  • Gygi SP, Rist B, Gerber SA, et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 1999;17(10):994-9
  • Bottari P, Aebersold R, Turecek F, Gelb MH. Design and synthesis of visible isotope-coded affinity tags for the absolute quantification of specific proteins in complex mixtures. Bioconjug Chem 2004;15(2):380-8
  • Wiese S, Reidegeld KA, Meyer HE, Warscheid B. Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research. Proteomics 2007;7(3):340-50
  • Bildl W, Haupt A, Muller CS, et al. Extending the dynamic range of label-free mass spectrometric quantification of affinity purifications. Mol Cell Proteomics 2012;11(2): M111.007955
  • Zhu W, Smith JW, Huang CM. Mass spectrometry-based label-free quantitative proteomics. J Biomed Biotechnol 2010;840518
  • Freund DM, Prenni JE. Improved detection of quantitative differences using a combination of spectral counting and MS/MS total ion current. J Proteome Res 2013;12(4):1996-2004
  • Picotti P, Aebersold R. Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat Methods 2012;9(6):555-66
  • Peterson AC, Russell JD, Bailey DJ, et al. Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol Cell Proteomics 2012;11(11):1475-88
  • Mallick P, Schirle M, Chen SS, et al. Computational prediction of proteotypic peptides for quantitative proteomics. Nat Biotechnol 2007;25(1):125-31
  • Webb-Robertson B-JM, Cannon WR, Oehmen CS, et al. A support vector machine model for the prediction of proteotypic peptides for accurate mass and time proteomics. Bioinformatics 2010;26(13):1677-83
  • Abu-Farha M, Elisma F, Figeys D. Identification of protein-protein interactions by mass spectrometry coupled techniques. Adv Biochem Eng Biotechnol 2008;110:67-80
  • Gingras AC, Gstaiger M, Raught B, Aebersold R. Analysis of protein complexes using mass spectrometry. Nat Rev Mol Cell Bio 2007;8(8):645-54
  • Gunaratne J, Goh MX, Swa HL, et al. Protein interactions of phosphatase and tensin homologue (PTEN) and its cancer-associated G20E mutant compared by using stable isotope labeling by amino acids in cell culture-based parallel affinity purification. J Biol Chem 2011;286(20):18093-103
  • Selbach M, Mann M. Protein interaction screening by quantitative immunoprecipitation combined with knockdown (QUICK). Nat Methods 2006;3(12):981-3
  • Tang X, Bruce JE. A new cross-linking strategy: protein interaction reporter (PIR) technology for protein-protein interaction studies. Mol Biosyst 2010;6(6):939-47

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.