725
Views
24
CrossRef citations to date
0
Altmetric
Review

Amyloid-β as a biomarker for Alzheimer’s disease: quantification methods in body fluids

, &

References

  • Prince M, Prina M, Guerchet M. The World Alzheimer Report in the Global Voice on Dementia 2013
  • Anoop A, Singh PK, Jacob RS, Maji SK. CSF Biomarkers for Alzheimer’s disease diagnosis. Int J Alzheimers Di 2010;2010
  • Cavallucci V, D’Amelio M, Cecconi F. Aβ toxicity in Alzheimer’s disease. Mol Neurobio 2012;45(2):366-78
  • Kar S, Wei Z, MacTavish D, et al. Amyloid β-peptide and central cholinergic neurons: Involvement in normal brain function and Alzheimer’s disease pathology. Amyl Int J Experimen Clin Investig 2007;159-78
  • Schu MC, Sherva R, Farrer LA, Green RC. The genetics of Alzheimer’s disease. in: Alzheimer’s disease - modernizing concept, biological diagnosis and therapy - Karger publishers. 2012;15-29
  • Querfurth HW, LaFerla FM. Alzheimer’s disease. N Engl J Me 2010;362(4):329-44
  • Hebert LE, Scherr PA, Bienias JL, et al. State-specific projections through 2025 of Alzheimer disease prevalence. Neurology 2004;62:1645
  • Villemagne VL, Cappai R, Barnham KJ, et al. The aβcentric pathway of Alzheimer’s disease. Abeta Pept Alzheimer’s Dis Celebr a Century Res 2007;5-36
  • Khachaturian ZS. Diagnosis of Alzheimer’s disease. Arch Neuro 1985;42(11):1097-105
  • Christensen DD. Alzheimer’s disease: progress in the development of anti-amyloid disease-modifying therapies. CNS Spect 2007;12(02):113-23
  • Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science 1992;6:184-5
  • Reinhard C, Hébert SS, De Strooper B. The amyloid-beta precursor protein: integrating structure with biological function. EMBO J 2005;24(23):3996-4006
  • Blennow K, Hampel H, Weiner M, Zetterberg H. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat. Rev. Neurol 2010;6(3):131-44
  • LaFerla FM, Green KN, Oddo S. Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci 2007;8(7):499-509
  • Jarrett JT, Berger EP, Lansbury PT. The carboxy terminus of the ß amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease. Biochemistry 1993;32(18):4693-7
  • Blennow K, de Leon MJ, Zetterberg H. Alzheimer’s disease. Lancet 2006;368(9533):387-403
  • Grundke-Iqbal I, Iqbal K, Tung YC, et al. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 1986;83(13):4913-17
  • Sun L, Liu S, Zhou X, et al. Inhibition of protein phosphatase 2A- and protein phosphatase 1-induced tau hyperphosphorylation and impairment of spatial memory retention in rats. Neuroscience 2003;118(4):1175-82
  • Morris JC, Roe CM, Grant EA, et al. Pittsburgh compound b imaging and prediction of progression from cognitive normality to symptomatic Alzheimer disease. Arch Neurol 2009;66(12):1469-75
  • Brys M, Glodzik L, Mosconi L, et al. Magnetic resonance imaging improves cerebrospinal fluid biomarkers in the early detection of Alzheimer’s disease. J Alzheimer’s Dis 2009;16:351-62
  • Schipper HM. Biological markers for Alzheimer disease. Int J Alzheimers Dis 2010;2010:387-92
  • Thies B, Truschke E, Morrison-Bogorad M, Hodes RJ. Consensus report of the working group on: “molecular and biochemical markers of Alzheimer’s disease”. Neurobiol Aging 1998;19(2):109-16
  • Jack CR, Albert MS, Knopman DS, et al. Introduction to the recommendations from the national institute on aging and the Alzheimer’s association workgroup on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement 2011;7(3):257-62
  • Lehmann S, Delaby C, Touchon J, et al. Biomarkers of Alzheimer’s disease: the present and the future. Rev Neurol (Paris) 2013;169(10):719-23
  • Patel S, Shah RJ, Coleman P, Sabbagh M. Potential peripheral biomarkers for the diagnosis of Alzheimer’s disease. Int J Alzheimers Dis 2011;2011:572495
  • McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement 2011;7(3):263-9
  • Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the national institute on aging and the Alzheimer’s association workgroup. Alzheimer’s Dement 2011;7:280-92
  • Albert MS, DeKosky ST, Dickson D, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the national institute on aging and Alzheimer’s association workgroup. Alzheimer’s Dement 2011;7:270-9
  • Leung R, Proitsi P, Simmons A, et al. Inflammatory proteins in plasma are associated with severity of Alzheimer’s disease. PLoS One 2013;8:6
  • Kroksveen a C, Opsahl JA, Aye TT, et al. Proteomics of human cerebrospinal fluid: discovery and verification of biomarker candidates in neurodegenerative diseases using quantitative proteomics. J Proteomics 2011;74(4):371-88
  • Mollenhauer B, El-Agnaf OM, Marcus K, et al. Quantification of α-synuclein in cerebrospinal fluid as a biomarker candidate: review of the literature and considerations for future studies. Biomark Med 2010;4:683-99
  • Roche S, Gabelle A, Lehmann S. Clinical proteomics of the cerebrospinal fluid: towards the discovery of new biomarkers. Proteomics Clin Appl 2008;2:428-36
  • Barkovits K, Helling S, Marcus K. MS-based methods for biomarkers of Parkinson’s disease: what is the future? Bioanalysis 2015;7(2):149-51
  • Haass C, Schlossmacher MG, Hung AY, et al. Amyloid ß-peptide is produced by cultured cells during normal metabolism. Nature 1992;359(6393):322-5
  • Masters CL, Simms G, Weinman NA, et al. Amyloid plaque core protein in Alzheimer disease and down syndrome. Proc Natl Acad Sci USA 1985;82:4245-9
  • Motter R, Kholodenko D, Barbour R, et al. Reduction of β-amyloid peptide 42, in the cerebrospinal fluid of patients with Alzheimer’s disease. Ann Neurol 1995;38(4):643-8
  • Roher AE, Esh CL, Kokjohn TA, et al. Amyloid beta peptides in human plasma and tissues and their significance for Alzheimer’s disease. Alzheimer’s Dement 2009;5(1):18-29
  • Kozin SA, Cheglakov IB, Ovsepyan a A, et al. Peripherally applied synthetic peptide isoAsp7-Aβ(1-42) triggers cerebral β-amyloidosis. Neurotox Res 2013;24(3):370-6
  • Indeykina MI, Popov IA, Kozin SA, et al. Capabilities of MS for analytical quantitative determination of the ratio of α- and βAsp7 isoforms of the amyloid-β peptide in binary mixtures. Anal Chem 2011;83(8):3205-10
  • Kulikova AA, Tsvetkov PO, Indeykina MI, et al. Phosphorylation of ser8 promotes zinc-induced dimerization of the amyloid-β metal-binding domain. Mol Biosyst 2014;10(10):2590
  • Skoog I, Davidsson P, Aevarsson Ó, et al. Cerebrospinal fluid beta-amyloid 42 is reduced before the onset of sporadic dementia: a population-based study in 85-year-olds. Dement Geriatr Cogn Disord 2003;15:169-76
  • Gustafson DR, Skoog I, Rosengren L, et al. Cerebrospinal fluid beta-amyloid 1-42 concentration may predict cognitive decline in older women. J Neurol Neurosurg Psychiatry 2007;78:461-4
  • Stomrud E, Hansson O, Blennow K, et al. Cerebrospinal fluid biomarkers predict decline in subjective cognitive function over 3 years in healthy elderly. Dement Geriatr Cogn Disord 2007;24:118-24
  • Hansson O, Stomrud E, Vanmechelen E, et al. Evaluation of plasma Aβ as predictor of Alzheimer’s disease in older individuals without dementia: a population-based study. J Alzheimers Dis 2012;28:231-8
  • Snyder HM, Carrillo MC, Grodstein F, et al. Developing novel blood-based biomarkers for Alzheimer’s disease. Alzheimer’s Dement 2014;10(1):109-14
  • Kuo Y, Emmerling MR, Lampert HC, et al. High levels of circulating aβ 42 are sequestered by plasma proteins in Alzheimer’s disease. Biochem Biophys Res Commun 1999;791:787-91
  • Mayeux R, Schupf N. Blood-based biomarkers for Alzheimer’s disease: Plasma Aβ40 and Aβ42, and genetic variants. Neurobiol Aging 2011;32:S10-19
  • Bibl M, Welge V, Esselmann H, Wiltfang J. Stability of amyloid-β peptides in plasma and serum. Electrophoresis 2012;33(3):445-50
  • Wormwood KL, Aslebagh R, Channaveerappa D, et al. Salivary proteomics and biomarkers in neurology and psychiatryroteomics - clinical applications. PROTEOMICS – Clin Appl 2015;315:1-30
  • Ghiso J, Calero M, Matsubara E, et al. Alzheimer’s soluble amyloid β is a normal component of human urine. FEBS Lett 1997;408:105-8
  • Shi M, Sui Y, Peskind ER, et al. Salivary tau species are potential biomarkers of Alzheimer’s disease. J Alzheimers Dis 2011;27:299-305
  • Bermejo-Pareja F, Antequera D, Vargas T, et al. Saliva levels of Abeta1-42 as potential biomarker of Alzheimer’s disease: a pilot study. BMC Neurol 2010;10(1):108
  • Seubert P, Vigo-Pelfrey C, Esch F, et al. Isolation and quantitation of soluble Alzheimer’s β-peptide from biological fluids. Nature 1992;356:133-5
  • Hulstaert F, Blennow K, Ivanoiu A, et al. Improved discrimination of AD patients using β-amyloid (1-42) and tau levels in CSF. Neurology 1999;52:1555-76
  • Mehta PD, Pirttila T, Patrick BA, et al. Amyloid β protein 1 ± 40 and 1 ± 42 levels in matched cerebrospinal fluid and plasma from patients with Alzheimer disease. Neuroscidence Lett 2001;304:102-6
  • Andreasen N, Minthon L, Vanmechelen E, et al. Cerebrospinal fluid tau and A b 42 as predictors of development of Alzheimer’s disease in patients with mild cognitive impairment. Neurosci Lett 1999;273:5-8
  • Riemenschneider M, Schmolke M, Lautenschlager N, Guder WG. Cerebrospinal beta-amyloid (1-42) in early Alzheimer’s disease: association with apolipoprotein e genotype and cognitive decline. 2000;284:85-8
  • Clark CM, Xie S, Chittams J, et al. Cerebrospinal fluid tau and ß-amyloid. Arch Neurol 2003;60:1696-702
  • Giedraitis V, Sundelöf J, Irizarry MC, et al. The normal equilibrium between CSF and plasma amyloid beta levels is disrupted in Alzheimer’s disease. Neurosci Lett 2007;427(3):127-31
  • Fukuyama R, Mizuno T, Mori S, et al. Age-dependent change in the levels of abeta40 and abeta42 in cerebrospinal fluid from control subjects, and a decrease in the ratio of Abeta42 to Abeta40 level in cerebrospinal fluid from Alzheimer’s disease patients. Eur Neurol 2000;43(3):155-60
  • Andreasen N, Minthon L, Davidsson P, et al. Evaluation of CSF-tau and CSF-Abeta42 as diagnostic markers for Alzheimer disease in clinical practice. Arch Neurol 2001;58(3):373-9
  • Hansson O, Zetterberg H, Buchhave P, et al. Prediction of Alzheimer’s disease using the CSF Abeta42/Abeta40 ratio in patients with mild cognitive impairment. Dement Geriatr Cogn Disord 2007;23:316-20
  • Wiltfang J, Esselmann H, Smirnov A, et al. Beta-amyloid peptides in cerebrospinal fluid of patients with Creutzfeldt-Jakob disease. Ann Neurol 2003;54:263-7
  • Mollenhauer B, Cepek L, Bibl M, et al. Tau protein, Abeta42 and S-100B protein in cerebrospinal fluid of patients with dementia with Lewy bodies. Dement Geriatr Cogn Disord 2005;19:164-70
  • Sauvée M, DidierLaurent G, Latarche C, et al. Additional use of aβ42/aβ40 ratio with cerebrospinal fluid biomarkers p-tau and aβ42 increases the level of evidence of Alzheimer’s disease pathophysiological process in routine practice. J Alzheimers Dis 2014;41:377-86
  • Tapiola T, Alafuzoff I, Herukka S-K, et al. Cerebrospinal fluid β-amyloid 42 and tau proteins as biomarkers of Alzheimer-type pathologic changes in the brain. Arch Neurol 2009;66(3):382-9
  • Buerger K, Ewers M, Pirttilä T, et al. CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer’s disease. Brain 2006;129:3035-41
  • Adlard PA, Tran BA, Finkelstein DI, et al. A review of β-amyloid neuroimaging in Alzheimer’s disease. Front Neurosci 2014;8:1-23
  • Bloudek LM, Spackman DE, Blankenburg M, Sullivan SD. Review and meta-analysis of biomarkers and diagnostic imaging in Alzheimer’s disease. J Alzheimer’s Dis 2011;26:627-45
  • Diniz BSO, Pinto Júnior JA, Forlenza OV. Do CSF total tau, phosphorylated tau, and beta-amyloid 42 help to predict progression of mild cognitive impairment to Alzheimer’s disease? a systematic review and meta-analysis of the literature. world J. Biol Psychiatry 2008;9:172-82
  • Mitchell a J. CSF phosphorylated tau in the diagnosis and prognosis of mild cognitive impairment and Alzheimer’s disease: a meta-analysis of 51 studies. J Neurol Neurosurg Psychiatry 2009;80:966-75
  • Monge-Argiles JA, Sanchez-Paya J, Munoz-Ruiz C, et al. Biomarkers in the cerebrospinal fluid of patients with mild cognitive impairment: a meta-analysis of their predictive capacity for the diagnosis of Alzheimer’s disease. Rev Neurol 2010;50(4):193-200
  • Schmand B, Huizenga HM, van Gool WA. Meta-analysis of CSF and MRI biomarkers for detecting preclinical Alzheimer’s disease. Psychol Med 2010;40(1):135-45
  • Sunderland T, Linker G, Mirza N, et al. Decreased beta-amyloid1-42 and increased tau levels in cerebrospinal fluid of patients with Alzheimer disease. JAMA 2003;289(16):2094-103
  • Van Harten AC, Kester MI, Visser PJ, et al. Tau and p-tau as CSF biomarkers in dementia: a meta-analysis. Clin Chem Lab Med 2011;49(3):353-66
  • Ferreira D, Perestelo-Pérez L, Westman E, et al. Meta-review of CSF core biomarkers in Alzheimer’s disease: The state-of-the-art after the new revised diagnostic criteria. Front Aging Neurosci 2014;6:1-24
  • Toledo JB, Brettschneider J, Grossman M, et al. CSF biomarkers cutoffs: The importance of coincident neuropathological diseases. Acta Neuropathol 2012;124:23-35
  • Liu Y, Mattila J, Ruiz MÁM, et al. Predicting ad conversion: comparison between prodromal ad guidelines and computer assisted predictad tool. PLoS One 2013;8:2
  • Ida N, Hartmann T, Pantel J. Analysis of heterogeneous beta a4 peptides in human cerebrospinal fluid and blood by a newly developed sensitive western blot assay. J Biol Chem 1996;271(37):22908-14
  • Tamaoka A, Fukushima T, Sawamura N, et al. Amyloid beta protein in plasma from patients with sporadic Alzheimer’s disease. J Neurol Sci 1996;151:65-8
  • Matsumoto Y, Yanase D, Noguchi-Shinohara M, et al. Blood-brain barrier permeability correlates with medial temporal lobe atrophy but not with amyloid-β protein transport across the blood-brain barrier in Alzheimer’s disease. Dement Geriatr Cogn Disord 2007;23:241-5
  • Van Oijen M, Hofman A, Soares HD, et al. Plasma abeta(1-40) and abeta(1-42) and the risk of dementia: a prospective case-cohort study. Lancet Neurol 2006;5(8):655-60
  • Lopez OL, Kuller LH, Mehta PD, et al. Plasma amyloid levels and the risk of ad in normal subjects in the cardiovascular health study. Neurology 2008;70:1664-71
  • Graff-Radford NR, Crook JE, Lucas J, et al. Association of low plasma Aβ42/Aβ40 Ratios with increased imminent risk for mild cognitive impairment and Alzheimer disease. Arch Neurol 2007;64:354-62
  • Mayeux R, Honig LS, Tang M-X, et al. Plasma Aβ 40 and Aβ 42 and Alzheimer’s disease: Relation to age, mortality, and risk. Neurology 2003;61(9):1185-90
  • Mehta PD, Pirttilä T, Mehta SP, et al. Plasma and cerebrospinal fluid levels of amyloid beta proteins 1-40 and 1-42 in Alzheimer disease. Arch Neurol 2000;57(1):100-5
  • Pesaresi M, Lovati C, Bertora P, et al. Plasma levels of beta-amyloid (1-42) in Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 2006;27(6):904-5
  • Schupf N, Tang MX, Fukuyama H, et al. Peripheral abeta subspecies as risk biomarkers of Alzheimer’s disease. Proc Natl Acad Sci USA 2008;105(37):14052-7
  • Hansson O, Zetterberg H, Vanmechelen E, et al. Evaluation of plasma Aβ40 and Aβ42 as predictors of conversion to Alzheimer’s disease in patients with mild cognitive impairment. Neurobiol Aging 2010;31(3):357-67
  • Mattsson N, Blennow K, Zetterberg H. Inter-laboratory variation in cerebrospinal fluid biomarkers for Alzheimer’s disease: united we stand, divided we fall. Clin Chem Lab Med 2010;48(5):603-7
  • Rissman RA, Trojanowski JQ, Shaw LM, Aisen PS. Longitudinal plasma amyloid beta as a biomarker of Alzheimer’s disease. J Neural Transm 2012;119:843-50
  • Mattsson N, Ingrid Z, Andreasson U, et al. Reference measurement procedures for Alzheimer’s disease cerebrospinal fluid biomarkers: definitions and approaches with focus on amyloid β42. Biomarkers med 2012;6(4):409-17
  • Mattsson N, Andreasson U, Persson S, et al. CSF biomarker variability in the Alzheimer’s association quality control program. Alzheimer’s Dement 2013;9:251-61
  • Le Bastard N, Coart E, Vanderstichele H, et al. Comparison of two analytical platforms for the clinical qualification of Alzheimer’s disease biomarkers in pathologically-confirmed dementia. J Alzheimer’s Dis 2013;33:117-31
  • Olsson A, Vanderstichele H, Andreasen N, et al. Simultaneous measurement of β-amyloid(1-42), total Tau, and phosphorylated Tau (Thr181) in cerebrospinal fluid by the xMAP technology. Clin Chem 2005;51(2):336-45
  • Welge V, Fiege O, Lewczuk P, et al. Combined CSF tau, p-tau181 and amyloid-beta 38/40/42 for diagnosing Alzheimer’s disease. J Neural Transm 2009;116(2):203-12
  • Portelius E, Mattsson N, Andreasson U, et al. Novel Aβ isoforms in Alzheimer’s disease - their role in diagnosis and treatment. Curr Pharm Des 2011;17(25):2594-602
  • Portelius E, Westman-brinkmalm A, Zetterberg H, Blennow K. Determination of -amyloid peptide signatures in cerebrospinal fluid using immunoprecipitation-mass spectrometry. J Proteome res 2006;1010-16
  • Bros P, Delatour V, Vialaret J, et al. Quantitative detection of amyloid-β peptides by mass spectrometry: state of the art and clinical applications. Clin Chem Lab Med 2015. [Epub ahead of print]
  • Elliott MH, Smith DS, Parker CE, Borchers C. Current trends in quantitative proteomics. J Mass Spectrom 2009;44(12):1637-60
  • Kummer MP, Heneka MT. Truncated and modified amyloid-beta species. Alzheimers Res Ther 2014;6(3):28
  • Portelius E, Lashley T, Westerlund A. Brain amyloid-beta fragment signatures in pathological ageing and Alzheimer’s disease by hybrid immunoprecipitation mass spectrometry. Neurode-degenerative Dis 2015;15(1):50-7
  • Glenner GG, Wong CW. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 1984;120(3):885-90
  • Vigo-Pelfrey C, Lee D, Keim P, et al. Characterization of beta-amyloid peptide from human cerebrospinal fluid. J Neurochem 1993;61:1965-8
  • Davies H, Lomas L, Austen B. Profiling of amyloid beta peptide variants using SELDI protein chip arrays. Biotechniques 1999;27(6):1258-61
  • Picotti P, Aebersold R. Selected reaction monitoring–based proteomics: workflows, potential, pitfalls and future directions. Nat Methods 2012;9(6):555-66
  • Lange V, Picotti P, Domon B, Aebersold R. Selected reaction monitoring for quantitative proteomics: a tutorial. Mol Syst Biol 2008;4:222-222
  • Domanski D, Percy AJ, Yang J, et al. MRM-based multiplexed quantitation of 67 putative cardiovascular disease biomarkers in human plasma. Proteomics 2012;12(8):1222-43
  • Gallien S, Duriez E, Domon B. Selected reaction monitoring applied to proteomics. J Mass Spectrom 2011;46(3):298-312
  • Portelius E, Tran AJ, Andreasson U, et al. Characterization of Amyloid Peptides in Cerebrospinal Fluid by an Automated immunoprecipitation procedure followed by mass spectrometry research articles. J Proteome Res 2007;4433-9
  • Portelius E, Zetterberg H, Andreasson U, et al. An Alzheimer’s disease-specific beta-amyloid fragment signature in cerebrospinal fluid. Neurosci Lett 2006;409(3):215-19
  • Oe T, Ackermann BL, Inoue K, et al. Quantitative analysis of amyloid b peptides in cerebrospinal fluid of Alzheimer’s disease patients by immunoaffinity purification and stable isotope dilution liquid chromatography/ negative electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom 2006;20:3723-35
  • Lanz TA, Schachter JB. Solid-phase extraction enhances detection of beta-amyloid peptides in plasma and enables abeta quantification following passive immunization with Abeta antibodies. J Neurosci Methods 2008;169(1):16-22
  • Lame ME, Chambers EE, Blatnik M. Quantitation of amyloid beta peptides Aβ(1-38), Aβ(1-40), and Aβ(1-42) in human cerebrospinal fluid by ultra-performance liquid chromatography-tandem mass spectrometry. Anal Biochem 2011;419(2):133-9
  • Leinenbach A, Pannee J, Dülffer T, et al. Mass spectrometry-based candidate reference measurement procedure for quantification of amyloid-β in cerebrospinal fluid. Clin Chem 2014;60(7):987-94
  • Pannee J, Portelius E, Oppermann M, et al. A selected reaction monitoring (SRM)-based method for absolute quantification of Aβ38, Aβ40, and Aβ42 in cerebrospinal fluid of Alzheimer’s disease patients and healthy controls. J Alzheimers Dis 2013;33(4):1021-32
  • Korecka M, Waligorska T, Figurski M, et al. Qualification of a surrogate matrix-based absolute quantification method for amyloid-β 42 in human cerebrospinal fluid using 2D UPLC-tandem mass spectrometry. J Alzheimers Dis 2014;41:441-51
  • Mawuenyega KG, Kasten T, Sigurdson W, Bateman RJ. Amyloid-beta isoform metabolism quantitation by stable isotope-labeled kinetics. Anal Biochem 2013;440(1):56-62
  • Watanabe K, Ishikawa C, Kuwahara H, et al. A new methodology for simultaneous quantification of total-Aβ, Aβx-38, Aβx-40, and Aβx-42 by column-switching LC/MS/MS. Anal Bioanal Chem 2012;402(6):2033-42
  • Kim JS, Ahn H-S, Cho SM, et al. Detection and quantification of plasma amyloid-β by selected reaction monitoring mass spectrometry. Anal Chim Acta 2014;840:1-9
  • Hu S, Loo JA, Wong DT. Human body fluid proteome analysis. Proteomics 2006;6(23):6326-53
  • Huang Yafei, Potter Rachel, Sigurdson W. Beta-amyloid dynamics in human plasma. Arch Neurol 2014;69(12):1591-7
  • Pannee J, Törnqvist U, Westerlund A, et al. The amyloid-β degradation pattern in plasma–a possible tool for clinical trials in Alzheimer’s disease. Neurosci Lett 2014;573:7-12
  • Hampel H, Shen Y, Walsh DM, et al. Biological markers of amyloid β-related mechanisms in Alzheimer’s disease. Exp Neurol 2010;223(2):334-46
  • Turner NW, Jeans CW, Brain KR, et al. From 3D to 2D: a review of the molecular imprinting of proteins. Biotechnol Prog 2006;22:1474-89
  • Hansen DE. Recent developments in the molecular imprinting of proteins. Biomaterials 2007;28:4178-91
  • Chen J, Sudhirkumar S, Koch MH, et al. Low-bias phosphopeptide enrichment from scarce samples using plastic antibodies. Sci Rep 2015; In press
  • Lanz TA, Karmilowicz MJ, Wood KM, et al. Concentration-dependent modulation of amyloid-β in vivo and in vitro using the γ-secretase inhibitor. LY-450139 2006;319(2):924-33
  • Urraca JL, Aureliano CSA, Schillinger E, et al. Polymeric complements to the Alzheimer’s disease biomarker under denaturing conditions. J Am Chem Soc 2011;133:9220-3
  • Lanz TA, Schachter JB. Demonstration of a common artifact in immunosorbent assays of brain extracts: development of a solid-phase extraction protocol to enable measurement of amyloid-β from wild-type rodent brain. J Neurosci Methods 2006;157:71-81
  • Pike CJ, Overman MJ, Cotman CW. Amino-terminal deletions enhance aggregation of β-amyloid peptides in vitro. J Biol Chem 1995;270(41):23895-9
  • Bouter Y, Dietrich K, Wittnam JL, et al. N-truncated amyloid β (Aβ) 4-42 forms stable aggregates and induces acute and long-lasting behavioral deficits. Acta Neuropathol 2013;126(2):189-205
  • Portelius E, Dean RA, Andreasson U, et al. β -site amyloid precursor protein-cleaving enzyme 1 (BACE1) inhibitor treatment induces A β 5-X peptides through alternative amyloid precursor protein cleavage. Alzheimers Res Ther 2014;6:75-8
  • Addona TS, Abbatiello SE, Schilling B, et al. Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma. Nat Biotechnol 2009;27(7):633-41
  • Bjerke M, Portelius E, Minthon L, et al. Confounding factors influencing amyloid Beta concentration in cerebrospinal fluid. Int J Alzheimers Dis 2010;2010:1-12
  • Andreasson U, Portelius E, Pannee J, et al. Multiplexing and multivariate analysis in neurodegeneration. Methods 2012;56(4):464-70
  • Krastins B, Prakash A, Sarracino DA, et al. Rapid development of sensitive, high-throughput, quantitative and highly selective mass spectrometric targeted immunoassays for clinically important proteins in human plasma and serum. Clin Biochem 2013;46(6):399-410
  • Toledo JB, Vanderstichele H, Figurski M, et al. Factors affecting Aβ plasma levels and their utility as biomarkers in ADNI. Acta Neuropathol 2011;122(4):401-13

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.