126
Views
42
CrossRef citations to date
0
Altmetric
Review

2D gel blood serum biomarkers reveal differential clinical proteomics of the neurodegenerative diseases

, &
Pages 45-62 | Published online: 09 Jan 2014

References

  • Margolis J, Kenrick KG. 2-dimensional resolution of plasma proteins by combination of polyacrylamide disc and gradient gel electrophoresis. Nature 221(185), 1056–1057 (1969).
  • Goldknopf IL, Taylor CW, Baum RM et al. Isolation and characterization of protein A24, a ‘histone-like’ non-histone chromosomal protein. J. Biol. Chem. 250(18), 7182–7187 (1975).
  • O’Farrell PH. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250(10), 4007–4021 (1975).
  • Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature 422(6928), 198–207 (2003).
  • Kuruma H, Egawa S, Oh-Ishi M, Kodera Y, Maeda T. Proteome analysis of prostate cancer. Prostate Cancer Prostatic Dis. 8(1), 14–21 (2005).
  • Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol. Cell. Proteomics 1(11), 845–867 (2002).
  • Rachakonda V, Pan TH, Le WD. Biomarkers of neurodegenerative disorders: how good are they? Cell Res. 14(5), 347–358 (2004).
  • White CN, Chan DW, Zhang Z. Bioinformatics strategies for proteomic profiling. Clin. Biochem. 37(7), 636–641 (2004).
  • Hebert LE, Beckett LA, Scherr PA, Evans DA. Annual incidence of Alzheimer’s disease in the United States projected to the years 2000 through 2050. Alzheimer Dis. Assoc. Disord. 15(4), 169–173 (2001).
  • Bertram L, Tanzi RE. The genetic epidemiology of neurodegenerative disease. J. Clin. Invest. 115(6), 1449–1457 (2005).
  • Mayeux R. Epidemiology of neurodegeneration. Ann. Rev. Neurosci. 26, 81–104 (2003).
  • St George-Hyslop PH. Molecular genetics of Alzheimer’s disease. Biol. Psychiatry 47(3), 183–199 (2000).
  • Le W, Appel SH. Mutant genes responsible for Parkinson’s disease. Curr. Opin. Pharmacol. 4(1), 79–84 (2004).
  • Polymeropoulos MH, Lavedan C, Leroy E et al. Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 276(5321), 2045–2047 (1997).
  • Kitada T, Asakawa S, Hattori N et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392(6676), 605–608 (1998).
  • Bonifati V, Rizzu P, van Baren MJ et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299(5604), 256–259 (2003).
  • Valente EM, Salvi S, Ialongo T et al. PINK1 mutations are associated with sporadic early-onset parkinsonism. Ann. Neurol. 56(3), 336–341 (2004).
  • Zimprich A, Biskup S, Leitner P et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44(4), 601–607 (2004).
  • Goldwurm S, Di Fonzo A, Simons EJ et al. The G6055A (G2019S) mutation in LRRK2 is frequent in both early and late onset Parkinson’s disease and originates from a common ancestor. J. Med. Genet. 42(11), e65 (2005).
  • Infante J, Rodriguez E, Combarros O et al. LRRK2 G2019S is a common mutation in Spanish patients with late-onset Parkinson’s disease. Neurosci. Lett. (2005) (In Press).
  • Farrer M, Maraganore DM, Lockhart P et al. α-synuclein gene haplotypes are associated with Parkinson’s disease. Hum. Mol. Genet. 10(17), 1847–1851 (2001).
  • Martinez M, Brice A, Vaughan JR et al. Apolipoprotein E4 is probably responsible for the chromosome 19 linkage peak for Parkinson’s disease. Am. J. Med. Genet. B Neuropsychiatr. Genet. 136(1), 72–74 (2005).
  • Huang X, Chen PC, Poole C. ApoE-[varepsilon]2 allele associated with higher prevalence of sporadic Parkinson’s disease. Neurology 62(12), 2198–2202 (2004).
  • Muller CM, de Vos RA, Maurage CA, Thal DR, Tolnay M, Braak H. Staging of sporadic Parkinson’s disease-related α-synuclein pathology: inter- and intra-rater reliability. J. Neuropathol. Exp. Neurol. 64(7), 623–628 (2005).
  • Mandel S, Grunblatt E, Riederer P et al. Gene expression profiling of sporadic Parkinson’s disease substantia nigra pars compacta reveals impairment of ubiquitin–proteasome subunits, SKP1A, aldehyde dehydrogenase, and chaperone HSC-70. Ann. NY Acad. Sci. 1053, 356–375 (2005).
  • Samii A, Nutt JG, Ransom BR. Parkinson’s disease. Lancet 363(9423), 1783–1793 (2004).
  • Quinn NP. Parkinson’s disease: clinical features. Baillieres Clin. Neurol. 6(1), 1–13 (1997).
  • Haverkamp LJ, Appel V, Appel SH. Natural history of amyotrophic lateral sclerosis in a database population. Validation of a scoring system and a model for survival prediction. Brain 118(Pt 3), 707–719 (1995).
  • Rosen DR, Siddique T, Patterson D et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362(6415), 59–62 (1993).
  • Cluskey S, Ramsden DB. Mechanisms of neurodegeneration in amyotrophic lateral sclerosis. Mol. Pathol. 54(6), 386–392 (2001).
  • Orrell RW, Habgood JJ, Gardiner I et al. Clinical and functional investigation of 10 missense mutations and a novel frameshift insertion mutation of the gene for copper-zinc superoxide dismutase in UK families with amyotrophic lateral sclerosis. Neurology 48(3), 746–751 (1997).
  • Shaw CE, Enayat ZE, Chioza BA et al. Mutations in all five exons of SOD-1 may cause ALS. Ann. Neurol. 43(3), 390–394 (1998).
  • Rothstein JD, Van Kammen M, Levey AI, Martin LJ, Kuncl RW. Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann. Neurol. 38(1), 73–84 (1995).
  • Simpson EP, Yen AA, Appel SH. Oxidative stress: a common denominator in the pathogenesis of amyotrophic lateral sclerosis. Curr. Opin. Rheumatol. 15(6), 730–6 (2003).
  • Al-Chalabi A, Andersen PM, Nilsson P et al. Deletions of the heavy neurofilament subunit tail in amyotrophic lateral sclerosis. Hum. Mol. Genet. 8(2), 157–164 (1999).
  • Henkel JS, Engelhardt JI, Siklos L et al. Presence of dendritic cells, MCP-1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue. Ann. Neurol. 55(2), 221–235 (2004).
  • Bruijn LI, Miller TM, Cleveland DW. Unraveling the mechanisms involved in motor neurone degeneration in ALS. Ann. Rev. Neurosci. 27, 723–749 (2004).
  • Weisskopf MG, O’Reilly EJ, McCullough ML et al. Prospective study of military service and mortality from ALS. Neurology 64(1), 32–37 (2005).
  • Allam MF, Del Castillo AS, Navajas RF. Parkinson’s disease risk factors: genetic, environmental, or both? Neurol Res. 27(2), 206–208 (2005).
  • Qiu C, Winblad B, Fratiglioni L. The age-dependent relation of blood pressure to cognitive function and dementia. Lancet Neurol. 4(8), 487–499 (2005).
  • Loeffler DA, Camp DM, Schonberger MB, Singer DJ, LeWitt PA. Early complement activation increases in the brain in some aged normal subjects. Neurobiol. Aging 25(8), 1001–1007 (2004).
  • Rai AJ, Gelfand CA, Haywood BC et al. HUPO Plasma Proteome Project specimen collection and handling: towards the standardization of parameters for plasma proteome samples. Proteomics 5(13), 3262–3277 (2005).
  • Davidsson P, Westman-Brinkmalm A, Nilsson CL et al. Proteome analysis of cerebrospinal fluid proteins in Alzheimer patients. Neuroreport 13(5), 611–615 (2002).
  • Puchades M, Hansson SF, Nilsson CL, Andreasen N, Blennow K, Davidsson P. Proteomic studies of potential cerebrospinal fluid protein markers for Alzheimer’s disease. Brain Res. Mol Brain Res. 118(1–2), 140–146 (2003).
  • Merched A, Serot JM, Visvikis S, Aguillon D, Faure G, Siest G. Apolipoprotein E, transthyretin and actin in the CSF of Alzheimer’s patients: relation with the senile plaques and cytoskeleton biochemistry. FEBS Lett. 425(2), 225–228 (1998).
  • Wenner BR, Lovell MA, Lynn BC. Proteomic analysis of human ventricular cerebrospinal fluid from neurologically normal, elderly subjects using two-dimensional LC-MS/MS. J. Proteome Res. 3(1), 97–103 (2004).
  • Kanninen K, Goldsteins G, Auriola S, Alafuzoff I, Koistinaho J. Glycosylation changes in Alzheimer’s disease as revealed by a proteomic approach. Neurosci. Lett. 367(2), 235–240 (2004).
  • Dalfo E, Portero-Otin M, Ayala V, Martinez A, Pamplona R, Ferrer I. Evidence of oxidative stress in the neocortex in incidental Lewy body disease. J. Neuropathol. Exp. Neurol. 64(9), 816–830 (2005).
  • Munch G, Luth HJ, Wong A et al. Crosslinking of α-synuclein by advanced glycation end products – an early pathophysiological step in Lewy body formation? J. Chem. Neuroanat. 20(3–4), 253–257 (2000).
  • Kikuchi S, Shinpo K, Ogata A et al. Detection of N ε-(carboxymethyl)lysine (CML) and non-CML advanced glycation end products in the anterior horn of amyotrophic lateral sclerosis spinal cord. Amyotroph. Lateral Scler. Other Motor Neuron Disord. 3(2), 63–68 (2002).
  • Takeuchi M, Kikuchi S, Sasaki N et al. Involvement of advanced glycation end products (AGEs) in Alzheimer’s disease. Curr. Alzheimer Res. 1(1), 39–46 (2004).
  • Yamagishi S, Nakamura K, Inoue H, Kikuchi S, Takeuchi M. Serum or cerebrospinal fluid levels of glyceraldehyde-derived advanced glycation end products (AGEs) may be a promising biomarker for early detection of Alzheimer’s disease. Med. Hypotheses. 64(6), 1205–1207 (2005).
  • Pamplona R, Dalfo E, Ayala V et al. Proteins in human brain cortex are modified by oxidation, glycoxidation, and lipoxidation. Effects of Alzheimer’s disease and identification of lipoxidation targets. J. Biol. Chem. 280(22), 21522–21530 (2005).
  • McGeer PL, McGeer EG. Inflammation and the degenerative diseases of aging. Ann. NY Acad. Sci. 1035(104–116 (2004).
  • Ono S, Hu J, Shimizu N, Imai T, Nakagawa H. Increased interleukin-6 of skin and serum in amyotrophic lateral sclerosis. J. Neurol. Sci. 187(1–2), 27–34 (2001).
  • Mogi M, Harada M, Kondo T, Narabayashi H, Riederer P, Nagatsu T. Transforming growth factor-β 1 levels are elevated in the striatum and in ventricular cerebrospinal fluid in Parkinson’s disease. Neurosci. Lett. 193(2), 129–132 (1995).
  • Nagatsu T, Sawada M. Inflammatory process in Parkinson’s disease: role for cytokines. Curr. Pharm. Des. 11(8), 999–1016 (2005).
  • Tooyama I, Kimura H, Akiyama H, McGeer PL. Reactive microglia express class I and class II major histocompatibility complex antigens in Alzheimer’s disease. Brain Res. 523(2), 273–280 (1990).
  • McGeer PL, Itagaki S, Boyes BE, McGeer EG. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38(8), 1285–1291 (1988).
  • Hall ED, Oostveen JA, Gurney ME. Relationship of microglial and astrocytic activation to disease onset and progression in a transgenic model of familial ALS. Glia 23(3), 249–256 (1998).
  • He BP, Wen W, Strong MJ. Activated microglia (BV-2) facilitation of TNF-α-mediated motor neurone death in vitro. J. Neuroimmunol. 128(1–2), 31–38 (2002).
  • Gasparini L, Ongini E, Wenk G. Non-steroidal anti-inflammatory drugs (NSAIDs) in Alzheimer’s disease: old and new mechanisms of action. J. Neurochem. 91(3), 521–536 (2004).
  • Bruunsgaard H, Pedersen M, Pedersen BK. Aging and pro-inflammatory cytokines. Curr. Opin. Hematol. 8(3), 131–136 (2001).
  • Forsberg PO, Martin SC, Nilsson B, Ekman P, Nilsson UR, Engstrom L. In vitro phosphorylation of human complement factor C3 by protein kinase A and protein kinase C. Effects on the classical and alternative pathways. J. Biol. Chem. 265(5), 2941–2946 (1990).
  • Ekdahl KN, Nilsson B. Phosphorylation of complement component C3 and C3 fragments by a human platelet protein kinase. Inhibition of factor I-mediated cleavage of C3b. J. Immunol. 154(12), 6502–6510 (1995).
  • Nilsson Ekdahl K, Nilsson B. Phosphorylation of complement component C3 after synthesis in U937 cells by a putative protein kinase, casein kinase 2, which is regulated by CD11b: evidence that membrane-bound proteases preferentially cleave phosphorylated C3. Biochem J. 328(Pt 2), 625–633 (1997).
  • Alexianu ME, Kozovska M, Appel SH. Immune reactivity in a mouse model of familial ALS correlates with disease progression. Neurology 57, 1282–1289 (2001).
  • He Y, Le WD, Appel SH. Role of Fcγ receptors in nigral cell injury induced by Parkinson’s disease immunoglobulin injection into mouse substantia nigra. Exp. Neurol. 176, 322–327 (2002).
  • Henkel JS, Engelhardt JI, Siklos L et al. Presence of dendritic cells, and activated microglia macrophages, in amylotrophic lateral sclerosis spinal cord tissue. Ann. Neurol. 55, 221–235 (2004).
  • Kawamata T, Akiyama H, Yamada T, McGeer PL. Immunologic reactions in amyotrophic lateral sclerosis brain and spinal cord tissue. Am. J. Pathol. 140(3), 691–707 (1992).
  • Schwab C, Steele JC, McGeer PL. Neurofibrillary tangles of Guam parkinson-dementia are associated with reactive microglia and complement proteins. Brain Res. 707(2), 196–205 (1996).
  • Yamada T, McGeer PL, McGeer EG. Lewy bodies in Parkinson’s disease are recognized by antibodies to complement proteins. Acta Neuropathol. (Berl.) 84(1), 100–104 (1992).
  • Finehout EJ, Franck Z, Lee KH. Complement protein isoforms in CSF as possible biomarkers for neurodegenerative disease. Dis. Markers 21(2), 93–101 (2005).
  • Hourcade DE, Mitchell L, Kuttner-Kondo LA, Atkinson JP, Medof ME. Decay-accelerating factor (DAF), complement receptor 1 (CR1), and factor H dissociate the complement AP C3 convertase (C3bBb) via sites on the type A domain of Bb. J. Biol. Chem. 277(2), 1107–1112 (2002).
  • Rus H, Niculescu F. The complement system in central nervous system diseases. Immunol. Res. 24(1), 79–86 (2001).
  • Veerhuis R, Van Breemen MJ, Hoozemans JM et al. Amyloid β plaque-associated proteins C1q and SAP enhance the Aβ1-42 peptide-induced cytokine secretion by adult human microglia in vitro. Acta Neuropathol. (Berl.) 105(2), 135–144 (2003).
  • Lippa SM, Lippa CF, Mori H. α-synuclein aggregation in pathological aging and Alzheimer’s disease: the impact of β-amyloid plaque level. Am. J. Alzheimers Dis. Other Demen. 20, 315–318 (2005).
  • Yagi H, Kusaka E, Kunihiro H, Mizobata T, Kawata Y. Amyloid fibril formation od α-synuclein is accelerated by amyloid seeds of other proteins. J. Biol. Chem. 280, 38609–38616 (2005).
  • de Frutos PG, Hardig Y, Dahlback B. Serum amyloid P component binding to C4b-binding protein. J. Biol. Chem. 45, 26950–26955 (1995).
  • Gee JR, Keller JN. Astrocytes: regulation of brain homeostasis via apolipoprotein E. Int. J. Biochem. Cell Biol. 37, 1145–1150 (2005).
  • Simpson EP, Henry YK, Henkel JS, Smith RG, Appel SH. Increased lipid peroxidation in sera of ALS patients: a potential biomarker of disease burden. Neurology 62, 1758–1765 (2004).
  • Hu JH, Zhang H, Wagey R, Krieger C, Pelech SL. Protein kinase and protein phosphatase expression in amyotrophic lateral sclerosis spinal cord. J. Neurochem. 85(2), 432–442 (2003).
  • Ranganathan S, Williams E, Ganchev P et al. Proteomic profiling of cerebrospinal fluid identifies biomarkers for amyotrophic lateral sclerosis. J. Neurochem. 95(5), 1461–1471 (2005).
  • Ramstrom M, Ivonin I, Johansson A et al. Cerebrospinal fluid protein patterns in neurodegenerative disease revealed by liquid chromatography-Fourier transform ion cyclotron resonance mass spectrometry. Proteomics 4(12), 4010–4018 (2004).
  • Ryberg H, Soderling AS, Davidsson P, Blennow K, Caidahl K, Persson LI. Cerebrospinal fluid levels of free 3-nitrotyrosine are not elevated in the majority of patients with amyotrophic lateral sclerosis or Alzheimer’s disease. Neurochem. Int. 45(1), 57–62 (2004).
  • Zhang J, Goodlett DR, Quinn JF et al. Quantitative proteomics of cerebrospinal fluid from patients with Alzheimer’s disease. J. Alzheimers Dis. 7(2), 125–133; discussion 173–180 (2005).
  • Zhang R, Barker L, Pinchev D et al. Mining biomarkers in human sera using proteomic tools. Proteomics 4(1), 244–256 (2004).
  • Castegna A, Thongboonkerd V, Klein JB, Lynn B, Markesbery WR, Butterfield DA. Proteomic identification of nitrated proteins in Alzheimer’s disease brain. J. Neurochem. 85(6), 1394–1401 (2003).
  • Krapfenbauer K, Engidawork E, Cairns N, Fountoulakis M, Lubec G. Aberrant expression of peroxiredoxin subtypes in neurodegenerative disorders. Brain Res. 967(1–2), 152–160 (2003).
  • Shiozaki A, Tsuji T, Kohno R et al. Proteome analysis of brain proteins in Alzheimer’s disease: subproteomics following sequentially extracted protein preparation. J. Alzheimers Dis. 6(3), 257–268 (2004).
  • Korolainen MA, Goldsteins G, Alafuzoff I, Koistinaho J, Pirttila T. Proteomic analysis of protein oxidation in Alzheimer’s disease brain. Electrophoresis 23(19), 3428–3433 (2002).
  • Castegna A, Aksenov M, Thongboonkerd V et al. Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part II: dihydropyrimidinase-related protein 2, α-enolase and heat shock cognate 71. J. Neurochem. 82(6), 1524–1532 (2002).
  • Castegna A, Aksenov M, Aksenova M et al. Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic. Biol. Med. 33(4), 562–571 (2002).
  • Choe LH, Dutt MJ, Relkin N, Lee KH. Studies of potential cerebrospinal fluid molecular markers for Alzheimer’s disease. Electrophoresis 23(14), 2247–2251 (2002).
  • Hesse C, Nilsson CL, Blennow K, Davidsson P. Identification of the apolipoprotein E4 isoform in cerebrospinal fluid with preparative two-dimensional electrophoresis and matrix assisted laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis 22(9), 1834–1837 (2001).
  • Ueno I, Sakai T, Yamaoka M, Yoshida R, Tsugita A. Analysis of blood plasma proteins in patients with Alzheimer’s disease by two-dimensional electrophoresis, sequence homology and immunodetection. Electrophoresis 21(9), 1832–1845 (2000).
  • Wittke S, Mischak H, Walden M, Kolch W, Radler T, Wiedemann K. Discovery of biomarkers in human urine and cerebrospinal fluid by capillary electrophoresis coupled to mass spectrometry: towards new diagnostic and therapeutic approaches. Electrophoresis 26(7–8), 1476–1487 (2005).
  • Carrette O, Demalte I, Scherl A et al. A panel of cerebrospinal fluid potential biomarkers for the diagnosis of Alzheimer’s disease. Proteomics 3(8), 1486–1494 (2003).
  • Tribl F, Gerlach M, Marcus K et al. ‘Subcellular proteomics’ of neuromelanin granules isolated from the human brain. Mol. Cell. Proteomics 4(7), 945–957 (2005).
  • Basso M, Giraudo S, Corpillo D, Bergamasco B, Lopiano L, Fasano M. Proteome analysis of human substantia nigra in Parkinson’s disease. Proteomics 4(12), 3943–3952 (2004).

Websites

  • BioPortfolio Bulletin www.bioportfolio.co.uk/bulletin_59.htm
  • Clinical Consult: Alzheimer’s Disease: Pathogenesis and Pharmacotherapy http://64.233.187.104/search?q=cache:DmwdSQH7S_EJ:www.ascp.com/public/pubs/cc/2000/Supp5_Alzheimers.pdf+ALS+annual+cost+per+patient+is+%24174,000&hl=en&client=firefox-a
  • Northwest Parkinson’s Foundation: What is Parkinson's disease? www.nwpf.org/aboutpark.asp#pdstats
  • eMedicine.com, Inc.: Parkinson Disease in Young Adults www.emedicine.com/neuro/topic635.htm
  • Oregon Health Trends: Center for Health Statistics: Health Statistics www.oregon.gov/DHS/ph/chs/data/newsltr/oht53/trends53.shtml

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.