189
Views
18
CrossRef citations to date
0
Altmetric
Review

Nickel alloys in the oral environment

, &
Pages 519-539 | Published online: 09 Jan 2014

References

  • Wataha JC, Shor K. Palladium alloys for biomedical devices. Expert Rev. Med. Devices 7(4), 489–501 (2010).
  • Wataha JC. Alloys for prosthodontic restorations. J. Prosthet. Dent. 87(4), 351–363 (2002).
  • Baran GR. The metallurgy of Ni-Cr alloys for fixed prosthodontics. J. Prosthet. Dent. 50(5), 639–650 (1983).
  • Council on Dental Materials, Instruments and Equipment. Revised ANSI/ADA specification No. 5 for dental casting alloys. J. Am. Dent. Assoc. 118, 379 (1989).
  • Council on Dental Materials, Instruments and Equipment. Classification system for cast alloys. J. Am. Dent. Assoc. 109, 766 (1984).
  • Herø H, Valderhaug J, Jørgensen RB. Corrosion in vivo and in vitro of a commercial NiCrBe alloy. Dent. Mater. 3(3), 125–130 (1987).
  • Powers JM, Wataha JC. Dental Materials, Properties and Manipulation (10th Edition). Elsevier, MO, USA, 153 (2013).
  • Wataha JC, Lockwood PE, Messer RL, Lewis JB, Mettenburg DJ. Brushing-induced surface roughness of nickel-, palladium-, and gold-based dental casting alloys. J. Prosthet. Dent. 99(6), 455–460 (2008).
  • Bumgardner JD, Lucas LC. Surface analysis of nickel-chromium dental alloys. Dent. Mater. 9(4), 252–259 (1993).
  • Geis-Gerstorfer J, Sauer KH, Pässler K. Ion release from Ni-Cr-Mo and Co-Cr-Mo casting alloys. Int. J. Prosthodont. 4(2), 152–158 (1991).
  • Geis-Gerstorfer J, Pässler K. Studies on the influence of Be content on the corrosion behavior and mechanical properties of Ni-25Cr-10Mo alloys. Dent. Mater. 9(3), 177–181 (1993).
  • Wylie CM, Shelton RM, Fleming GJ, Davenport AJ. Corrosion of nickel-based dental casting alloys. Dent. Mater. 23(6), 714–723 (2007).
  • Lin HY, Bowers B, Wolan JT, Cai Z, Bumgardner JD. Metallurgical, surface, and corrosion analysis of Ni-Cr dental casting alloys before and after porcelain firing. Dent. Mater. 24(3), 378–385 (2008).
  • Wataha JC, Lockwood PE, Khajotia SS, Turner R. Effect of pH on element release from dental casting alloys. J. Prosthet. Dent. 80(6), 691–698 (1998).
  • Wataha JC, Lockwood PE, Frazier KB, Khajotia SS. Effect of toothbrushing on elemental release from dental casting alloys. J. Prosthodont. 8(4), 245–251 (1999).
  • Manaranche C, Hornberger H. A proposal for the classification of dental alloys according to their resistance to corrosion. Dent. Mater. 23(11), 1428–1437 (2007).
  • Wataha JC, Lockwood PE. Release of elements from dental casting alloys into cell-culture medium over 10 months. Dent. Mater. 14(2), 158–163 (1998).
  • Covington JS, McBride MA, Slagle WF, Disney AL. Quantization of nickel and beryllium leakage from base metal casting alloys. J. Prosthet. Dent. 54(1), 127–136 (1985).
  • Ryhänen J, Niemi E, Serlo W et al. Biocompatibility of nickel-titanium shape memory metal and its corrosion behavior in human cell cultures. J. Biomed. Mater. Res. 35(4), 451–457 (1997).
  • Johansson BI, Lemons JE, Hao SQ. Corrosion of dental copper, nickel, and gold alloys in artificial saliva and saline solutions. Dent. Mater. 5(5), 324–328 (1989).
  • Muller AW, Maessen FJ, Davidson CL. Determination of the corrosion rates of six dental NiCrMo alloys in an artificial saliva by chemical analysis of the medium using ICP-AES. Dent. Mater. 6(1), 63–68 (1990).
  • Tai Y, De Long R, Goodkind RJ, Douglas WH. Leaching of nickel, chromium, and beryllium ions from base metal alloy in an artificial oral environment. J. Prosthet. Dent. 68(4), 692–697 (1992).
  • Sarantopoulos DM, Beck KA, Holsen R, Berzins DW. Corrosion of CoCr and NiCr dental alloys alloyed with palladium. J. Prosthet. Dent. 105(1), 35–43 (2011).
  • Beck KA, Sarantopoulos DM, Kawashima I, Berzins DW. Elemental release from CoCr and NiCr alloys containing palladium. J. Prosthodont. 21(2), 88–93 (2012).
  • Nelson SK, Wataha JC, Neme AM, Cibirka RM, Lockwood PE. Cytotoxicity of dental casting alloys pretreated with biologic solutions. J. Prosthet. Dent. 81(5), 591–596 (1999).
  • McGinley EL, Moran GP, Fleming GJ. Base-metal dental casting alloy biocompatibility assessment using a human-derived three-dimensional oral mucosal model. Acta Biomater. 8(1), 432–438 (2012).
  • Bergman M, Bergman B, Söremark R. Tissue accumulation of nickel released due to electrochemical corrosion of non-precious dental casting alloys. J. Oral Rehabil. 7(4), 325–330 (1980).
  • Wataha JC, O’Dell NL, Singh BB, Ghazi M, Whitford GM, Lockwood PE. Relating nickel-induced tissue inflammation to nickel release in vivo. J. Biomed. Mater. Res. 58(5), 537–544 (2001).
  • Gjerdet NR, Erichsen ES, Remlo HE, Evjen G. Nickel and iron in saliva of patients with fixed orthodontic appliances. Acta Odontol. Scand. 49(2), 73–78 (1991).
  • Sunderman FW. Nickel in the human environment. Int. Agency Res Cancer 53, 3–485 (1984).
  • Taylor TD, Morton TH Jr. Ulcerative lesions of the palate associated with removable partial denture castings. J. Prosthet. Dent. 66(2), 213–221 (1991).
  • Wirz J, Wüst D, Schmidli F. [Oral durability of crown and bridge materials]. Quintessenz 42(4), 663–673 (1991).
  • Garhammer P, Schmalz G, Hiller KA, Reitinger T. Metal content of biopsies adjacent to dental cast alloys. Clin. Oral Investig. 7(2), 92–97 (2003).
  • Fors R, Persson M. Nickel in dental plaque and saliva in patients with and without orthodontic appliances. Eur. J. Orthod. 28(3), 292–297 (2006).
  • Lewis JB, Messer RL, Pitts L, Hsu SD, Hansen JM, Wataha JC. Ni(II) ions dysregulate cytokine secretion from human monocytes. J. Biomed. Mater. Res. Part B Appl. Biomater. 88(2), 358–365 (2009).
  • Kratzenstein B, Sauer KH, Weber H, Geis-Gerstorfer J. [In vivo corrosion studies of gold-containing alloys]. Dtsch. Zahnarztl. Z. 41(12), 1272–1276 (1986).
  • Brendlinger DL, Tarsitano JJ. Generalized dermatitis due to sensitivity to a chrome cobalt removable partial denture. J. Am. Dent. Assoc. 81(2), 392–394 (1970).
  • Grivet M, Morrier JJ, Benay G, Barsotti O. Effect of hydrophobicity on in vitro streptococcal adhesion to dental alloys. J. Mater. Sci. Mater. Med. 11(10), 637–642 (2000).
  • Geurtsen W, Marx R. [Use of titanium in conservative dentistry]. ZWR 99(12), 977–980 (1990).
  • Steinberg D, Sela MN, Klinger A, Kohavi D. Adhesion of periodontal bacteria to titanium, and titanium alloy powders. Clin. Oral Implants Res. 9(2), 67–72 (1998).
  • Yoshida K, Kamada K, Sato K, Hatada R, Baba K, Atsuta M. Thin sol-gel-derived silica coatings on dental pure titanium casting. J. Biomed. Mater. Res. 48(6), 778–785 (1999).
  • Yoshida K, Tanagawa M, Kamada K et al. Silica coatings formed on noble dental casting alloy by the sol-gel dipping process. J. Biomed. Mater. Res. 46(2), 221–227 (1999).
  • Geurtsen W. Biocompatibility of dental casting alloys. Crit. Rev. Oral Biol. Med. 13(1), 71–84 (2002).
  • Morris HF. Veterans Administration Cooperative Studies Project No. 147. Part VIII: Plaque accumulation on metal ceramic restorations cast from noble and nickel-based alloys. A five-year report. J. Prosthet. Dent. 61(5), 543–549 (1989).
  • Wataha JC. Biocompatibility of dental casting alloys: a review. J. Prosthet. Dent. 83(2), 223–234 (2000).
  • Setcos JC, Babaei-Mahani A, Silvio LD, Mjör IA, Wilson NH. The safety of nickel containing dental alloys. Dent. Mater. 22(12), 1163–1168 (2006).
  • Hanks CT, Wataha JC, Sun Z. In vitro models of biocompatibility: a review. Dent. Mater. 12(3), 186–193 (1996).
  • Wataha JC. Predicting clinical biological responses to dental materials. Dent. Mater. 28(1), 23–40 (2012).
  • Mjör IA. Minimum requirements for new dental materials. J. Oral Rehabil. 34(12), 907–912 (2007).
  • Craig RG, Hanks CT. Cytotoxicity of experimental casting alloys evaluated by cell culture tests. J. Dent. Res. 69(8), 1539–1542 (1990).
  • Bumgardner JD, Lucas LC. Cellular response to metallic ions released from nickel-chromium dental alloys. J. Dent. Res. 74(8), 1521–1527 (1995).
  • Shih CC, Lin SJ, Chen YL et al. The cytotoxicity of corrosion products of nitinol stent wire on cultured smooth muscle cells. J. Biomed. Mater. Res. 52(2), 395–403 (2000).
  • Wataha JC, Lockwood PE, Nelson SK, Rakich D. In vitro cytotoxicity of dental casting alloys over 8 months. J. Oral Rehabil. 26(5), 379–387 (1999).
  • Wataha JC, Lockwood PE, Nelson SK, Bouillaguet S. Long-term cytotoxicity of dental casting alloys. Int. J. Prosthodont. 12(3), 242–248 (1999).
  • Wataha JC, Lockwood PE, Noda M, Nelson SK, Mettenburg DJ. Effect of toothbrushing on the toxicity of casting alloys. J. Prosthet. Dent. 87(1), 94–98 (2002).
  • Imirzalioglu P, Alaaddinoglu E, Yilmaz Z, Oduncuoglu B, Yilmaz B, Rosenstiel S. Influence of recasting different types of dental alloys on gingival fibroblast cytotoxicity. J. Prosthet. Dent. 107(1), 24–33 (2012).
  • Wataha JC, Malcolm CT, Hanks CT. Correlation between cytotoxicity and the elements released by dental casting alloys. Int. J. Prosthodont. 8(1), 9–14 (1995).
  • Messer RL, Lucas LC. Cytotoxicity of nickel-chromium alloys: bulk alloys compared to multiple ion salt solutions. Dent. Mater. 16(3), 207–212 (2000).
  • Horak E, Sunderman FW Jr. Fecal nickel excretion by healthy adults. Clin. Chem. 19(4), 429–430 (1973).
  • Leblanc JC, Guérin T, Noël L, Calamassi-Tran G, Volatier JL, Verger P. Dietary exposure estimates of 18 elements from the 1st French Total Diet Study. Food Addit. Contam. 22(7), 624–641 (2005).
  • McGinley EL, Coleman DC, Moran GP, Fleming GJ. Effects of surface finishing conditions on the biocompatibility of a nickel-chromium dental casting alloy. Dent. Mater. 27(7), 637–650 (2011).
  • Wataha JC. Principles of biocompatibility for dental practitioners. J. Prosthet. Dent. 86(2), 203–209 (2001).
  • Yoshihisa Y, Shimizu T. Metal allergy and systemic contact dermatitis: an overview. Dermatol. Res. Pract. 2012, 749561 (2012).
  • Hildebrand HF, Veron C, Martin P. Nickel, chromium, cobalt dental alloys and allergic reactions: an overview. Biomaterials 10(8), 545–548 (1989).
  • Fernandez JP, Veron C, Hildebrand HF, Martin P. Nickel allergy to dental prostheses. Contact Derm. 14(5), 312 (1986).
  • Raap U, Stiesch M, Reh H, Kapp A, Werfel T. Investigation of contact allergy to dental metals in 206 patients. Contact Derm. 60(6), 339–343 (2009).
  • Noble J, Ahing SI, Karaiskos NE, Wiltshire WA. Nickel allergy and orthodontics, a review and report of two cases. Br. Dent. J. 204(6), 297–300 (2008).
  • Thyssen JP, Menné T. Metal allergy – a review on exposures, penetration, genetics, prevalence, and clinical implications. Chem. Res. Toxicol. 23(2), 309–318 (2010).
  • VanLoon LAJ, Elsas PW, Van Joost TH, Davidson CL. Contact stomatitis and dermatitis to nickel and palladium. Contact Dermatitis 11, 294–297 (1984).
  • Hindsén M, Spirén A, Bruze M. Cross-reactivity between nickel and palladium demonstrated by systemic administration of nickel. Contact Derm. 53(1), 2–8 (2005).
  • Wataha JC, Hanks CT. Biological effects of palladium and risk of using palladium in dental casting alloys. J. Oral Rehabil. 23(5), 309–320 (1996).
  • Vreeburg KJ, de Groot K, von Blomberg M, Scheper RJ. Induction of immunological tolerance by oral administration of nickel and chromium. J. Dent. Res. 63(2), 124–128 (1984).
  • Picardo M, Zompetta C, De Luca C et al. Nickel–keratinocyte interaction: a possible role in sensitization. Br. J. Dermatol. 122(6), 729–735 (1990).
  • Santucci B, Cannistraci C, Cristaudo A, Picardo M. Multiple sensitivities to transition metals: the nickel palladium reactions. Contact Derm. 35(5), 283–286 (1996).
  • Schram SE, Warshaw EM. Genetics of nickel allergic contact dermatitis. Dermatitis 18(3), 125–133 (2007).
  • Schmidt M, Raghavan B, Müller V et al. Crucial role for human Toll-like receptor 4 in the development of contact allergy to nickel. Nat. Immunol. 11(9), 814–819 (2010).
  • Kasprzak KS, Sunderman FW Jr, Salnikow K. Nickel carcinogenesis. Mutat. Res. 533(1–2), 67–97 (2003).
  • Denkhaus E, Salnikow K. Nickel essentiality, toxicity, and carcinogenicity. Crit. Rev. Oncol. Hematol. 42(1), 35–56 (2002).
  • Chervona Y, Arita A, Costa M. Carcinogenic metals and the epigenome: understanding the effect of nickel, arsenic, and chromium. Metallomics 4(7), 619–627 (2012).
  • Yarita T, Nettesheim P. Carcinogenicity of nickel subsulfide for respiratory tract mucosa. Cancer Res. 38(10), 3140–3145 (1978).
  • Kasprzak KS, Gabryel P, Jarczewska K. Carcinogenicity of nickel(II)hydroxides and nickel(II)sulfate in Wistar rats and its relation to the in vitro dissolution rates. Carcinogenesis 4(3), 275–279 (1983).
  • Shibata M, Izumi K, Sano N, Akagi A, Otsuka H. Induction of soft tissue tumours in F344 rats by subcutaneous, intramuscular, intra-articular, and retroperitoneal injection of nickel sulphide (Ni3S2). J. Pathol. 157(3), 263–274 (1989).
  • Jasmin G, Solymoss B. The topical effects of nickel subsulfide on renal parenchyma. Adv. Exp. Med. Biol. 91, 69–83 (1977).
  • Sunderman FW Jr, Maenza RM, Alpass PR, Mitchell JM, Damjanov I, Goldblatt PJ. Carcinogenicity of nickel subsulfide in Fischer rats and Syrian hamsters after administration by various routes. Adv. Exp. Med. Biol. 91, 57–67 (1977).
  • Oller AR, Costa M, Oberdörster G. Carcinogenicity assessment of selected nickel compounds. Toxicol. Appl. Pharmacol. 143(1), 152–166 (1997).
  • Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature 429(6990), 457–463 (2004).
  • Rodenhiser D, Mann M. Epigenetics and human disease: translating basic biology into clinical applications. CMAJ 174(3), 341–348 (2006).
  • Sutherland JE, Costa M. Epigenetics and the environment. Ann. NY Acad. Sci. 983, 151–160 (2003).
  • Luch A. Nature and nurture – lessons from chemical carcinogenesis. Nat. Rev. Cancer 5(2), 113–125 (2005).
  • Ellen TP, Kluz T, Harder ME, Xiong J, Costa M. Heterochromatinization as a potential mechanism of nickel-induced carcinogenesis. Biochemistry 48(21), 4626–4632 (2009).
  • Broday L, Peng W, Kuo MH, Salnikow K, Zoroddu M, Costa M. Nickel compounds are novel inhibitors of histone H4 acetylation. Cancer Res. 60(2), 238–241 (2000).
  • Golebiowski F, Kasprzak KS. Inhibition of core histones acetylation by carcinogenic nickel(II). Mol. Cell. Biochem. 279(1–2), 133–139 (2005).
  • Kasprzak KS, Bal W, Karaczyn AA. The role of chromatin damage in nickel-induced carcinogenesis. A review of recent developments. J. Environ. Monit. 5(2), 183–187 (2003).
  • Arita A, Costa M. Epigenetics in metal carcinogenesis: nickel, arsenic, chromium and cadmium. Metallomics 1(3), 222–228 (2009).
  • Costa M, Davidson TL, Chen H et al. Nickel carcinogenesis: epigenetics and hypoxia signaling. Mutat. Res. 592(1–2), 79–88 (2005).
  • Salnikow K, Donald SP, Bruick RK, Zhitkovich A, Phang JM, Kasprzak KS. Depletion of intracellular ascorbate by the carcinogenic metals nickel and cobalt results in the induction of hypoxic stress. J. Biol. Chem. 279(39), 40337–40344 (2004).
  • Semenza GL. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 3(10), 721–732 (2003).
  • Bruick RK. Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc. Natl Acad. Sci. USA 97(16), 9082–9087 (2000).
  • Ho VT, Bunn HF. Effects of transition metals on the expression of the erythropoietin gene: further evidence that the oxygen sensor is a heme protein. Biochem. Biophys. Res. Commun. 223(1), 175–180 (1996).
  • Salnikow K, Blagosklonny MV, Ryan H, Johnson R, Costa M. Carcinogenic nickel induces genes involved with hypoxic stress. Cancer Res. 60(1), 38–41 (2000).
  • Horak E, Zygowicz ER, Tarabishy R, Mitchell JM, Sunderman FW Jr. Effects of nickel chloride and nickel carbonyl upon glucose metabolism in rats. Ann. Clin. Lab. Sci. 8(6), 476–482 (1978).
  • Graven KK, McDonald RJ, Farber HW. Hypoxic regulation of endothelial glyceraldehyde-3-phosphate dehydrogenase. Am. J. Physiol. 274(2 Pt 1), C347–C355 (1998).
  • Salnikow K, Davidson T, Costa M. The role of hypoxia-inducible signaling pathway in nickel carcinogenesis. Environ. Health Perspect. 110(Suppl. 5), 831–834 (2002).
  • Lewis JB, Messer RL, McCloud VV, Lockwood PE, Hsu SD, Wataha JC. Ni(II) activates the Nrf2 signaling pathway in human monocytic cells. Biomaterials 27(31), 5348–5356 (2006).
  • McNamara A, Williams DF. Scanning electron microscopy of the metal-tissue interface. II. Observations with lead, copper, nickel, aluminium, and cobalt. Biomaterials 3(3), 165–176 (1982).
  • Goebeler M, Meinardus-Hager G, Roth J, Goerdt S, Sorg C. Nickel chloride and cobalt chloride, two common contact sensitizers, directly induce expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and endothelial leukocyte adhesion molecule (ELAM-1) by endothelial cells. J. Invest. Dermatol. 100(6), 759–765 (1993).
  • Goebeler M, Roth J, Bröcker EB, Sorg C, Schulze-Osthoff K. Activation of nuclear factor-kappa B and gene expression in human endothelial cells by the common haptens nickel and cobalt. J. Immunol. 155(5), 2459–2467 (1995).
  • Viemann D, Schmidt M, Tenbrock K et al. The contact allergen nickel triggers a unique inflammatory and proangiogenic gene expression pattern via activation of NF-κB and hypoxia-inducible factor-1α. J. Immunol. 178(5), 3198–3207 (2007).
  • Lewis JB, Wataha JC, McCloud V, Lockwood PE, Messer RL, Tseng WY. Au(III), Pd(II), Ni(II), and Hg(II) alter NF κB signaling in THP1 monocytic cells. J. Biomed. Mater. Res. A 74(3), 474–481 (2005).
  • Li L, Wataha JC, Cate C, Zhang H, DiJulio D, Chung WO. Ni(II) alters the NFκB signaling pathway in monocytic cells. J. Biomed. Mater. Res. Part B Appl. Biomater. 100(4), 934–939 (2012).
  • Wataha JC, Lewis JB, Volkmann KR, Lockwood PE, Messer RL, Bouillaguet S. Sublethal concentrations of Au (III), Pd (II), and Ni(II) differentially alter inflammatory cytokine secretion from activated monocytes. J. Biomed. Mater. Res. Part B Appl. Biomater. 69(1), 11–17 (2004).
  • Cissé O, Savadogo O, Wu M, Yahia L. Effect of surface treatment of NiTi alloy on its corrosion behavior in Hanks’ solution. J. Biomed. Mater. Res. 61(3), 339–345 (2002).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.