208
Views
21
CrossRef citations to date
0
Altmetric
Reviews

Improved visualization of deep ocular structures in glaucoma using high penetration optical coherence tomography

, &
Pages 621-628 | Published online: 09 Jan 2014

References

  • Resnikoff S, Pascolini D, Etya'ale D et al. Global data on visual impairment in the year 2002. Bull. World Health Organ. 82(11), 844–851 (2004).
  • Weinreb RN, Khaw PT. Primary open-angle glaucoma. Lancet 363(9422), 1711–1720 (2004).
  • Quigley HA, Vitale S. Models of open-angle glaucoma prevalence and incidence in the United States. Invest. Ophthalmol. Vis. Sci. 38(1), 83–91 (1997).
  • Grytz R, Meschke G, Jonas JB. The collagen fibril architecture in the lamina cribrosa and peripapillary sclera predicted by a computational remodeling approach. Biomech. Model. Mechanobiol. 10(3), 371–382 (2011).
  • Radius RL. Regional specificity in anatomy at the lamina cribrosa. Arch. Ophthalmol. 99(3), 478–480 (1981).
  • Radius RL, Gonzales M. Anatomy of the lamina cribrosa in human eyes. Arch. Ophthalmol. 99(12), 2159–2162 (1981).
  • Tezel G, Trinkaus K, Wax MB. Alterations in the morphology of lamina cribrosa pores in glaucomatous eyes. Br. J. Ophthalmol. 88(2), 251–256 (2004).
  • Miller KM, Quigley HA. Comparison of optic disc features in low-tension and typical open-angle glaucoma. Ophthalmic. Surg. 18(12), 882–889 (1987).
  • Fontana L, Bhandari A, Fitzke FW, Hitchings RA. In vivo morphometry of the lamina cribrosa and its relation to visual field loss in glaucoma. Curr. Eye Res. 17(4), 363–369 (1998).
  • Quigley HA. Glaucoma. Lancet 377(9774), 1367–1377 (2011).
  • Burgoyne CF. A biomechanical paradigm for axonal insult within the optic nerve head in aging and glaucoma. Exp. Eye Res. 93(2), 120–132 (2011).
  • Downs JC, Roberts MD, Sigal IA. Glaucomatous cupping of the lamina cribrosa: a review of the evidence for active progressive remodeling as a mechanism. Exp. Eye Res. 93(2), 133–140 (2011).
  • Kiumehr S, Park SC, Dorairaj S et al. In vivo evaluation of focal lamina cribrosa defects in glaucoma. Arch. Ophthalmol. 130(5), 552–559. (2012).
  • Quigley HA, Hohman RM, Addicks EM, Massof RW, Green WR. Morphologic changes in the lamina cribrosa correlated with neural loss in open-angle glaucoma. Am. J. Ophthalmol. 95(5), 673–691 (1983).
  • Jonas JB, Berenshtein E, Holbach L. Lamina cribrosa thickness and spatial relationships between intraocular space and cerebrospinal fluid space in highly myopic eyes. Invest. Ophthalmol. Vis. Sci. 45(8), 2660–2665 (2004).
  • Downs JC, Yang H, Girkin C et al. Three-dimensional histomorphometry of the normal and early glaucomatous monkey optic nerve head: neural canal and subarachnoid space architecture. Invest. Ophthalmol. Vis. Sci. 48(7), 3195–3208 (2007).
  • Yang H, Downs JC, Bellezza A, Thompson H, Burgoyne CF. 3-D histomorphometry of the normal and early glaucomatous monkey optic nerve head: prelaminar neural tissues and cupping. Invest. Ophthalmol. Vis. Sci. 48(11), 5068–5084 (2007).
  • Quigley HA, Addicks EM, Green WR, Maumenee AE. Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch. Ophthalmol. 99(4), 635–649 (1981).
  • Quigley HA, Addicks EM. Regional differences in the structure of the lamina cribrosa and their relation to glaucomatous optic nerve damage. Arch. Ophthalmol. 99(1), 137–143 (1981).
  • Spaide RF. Age-related choroidal atrophy. Am. J. Ophthalmol. 147(5), 801–810 (2009).
  • Imamura Y, Fujiwara T, Margolis R, Spaide RF. Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina 29(10), 1469–1473 (2009).
  • Haefliger IO, Flammer J, Luscher TF. Heterogeneity of endothelium-dependent regulation in ophthalmic and ciliary arteries. Invest. Ophthalmol. Vis. Sci. 34(5), 1722–1730 (1993).
  • Hayreh SS. Blood supply of the optic nerve head and its role in optic atrophy, glaucoma, and oedema of the optic disc. Br. J. Ophthalmol. 53(11), 721–748 (1969).
  • Yin ZQ, Vaegan, Millar TJ, Beaumont P, Sarks S. Widespread choroidal insufficiency in primary open-angle glaucoma. J. Glaucoma. 6(1), 23–32 (1997).
  • Hung LF, Wallman J, Smith EL 3rd. Vision-dependent changes in the choroidal thickness of macaque monkeys. Invest. Ophthalmol. Vis. Sci. 41(6), 1259–1269 (2000).
  • Gloesmann M, Hermann B, Schubert C, Sattmann H, Ahnelt PK, Drexler W. Histologic correlation of pig retina radial stratification with ultrahigh-resolution optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 44(4), 1696–1703 (2003).
  • Park HY, Jeon SH, Park CK. Enhanced depth imaging detects lamina cribrosa thickness differences in normal tension glaucoma and primary open-angle glaucoma. Ophthalmology 119(1), 10–20 (2012).
  • Inoue R, Hangai M, Kotera Y et al. Three-dimensional high-speed optical coherence tomography imaging of lamina cribrosa in glaucoma. Ophthalmology 116(2), 214–222 (2009).
  • Kagemann L, Ishikawa H, Wollstein G et al. Ultrahigh-resolution spectral domain optical coherence tomography imaging of the lamina cribrosa. Ophthalmic. Surg. Lasers Imaging 39 (4 Suppl), S126–131 (2008).
  • Strouthidis NG, Grimm J, Williams GA, Cull GA, Wilson DJ, Burgoyne CF. A comparison of optic nerve head morphology viewed by spectral domain optical coherence tomography and by serial histology. Invest. Ophthalmol. Vis. Sci. 51(3), 1464–1474 (2010).
  • Sigal IA, Yang H, Roberts MD et al. IOP-induced lamina cribrosa deformation and scleral canal expansion: independent or related? Invest. Ophthalmol. Vis. Sci. 52(12), 9023–9032 (2011).
  • Spaide RF, Koizumi H, Pozzoni MC. Enhanced depth imaging spectral-domain optical coherence tomography. Am. J. Ophthalmol. 146(4), 496–500 (2008).
  • Yeoh J, Rahman W, Chen F et al. Choroidal imaging in inherited retinal disease using the technique of enhanced depth imaging optical coherence tomography. Graefes Arch. Clin. Exp. Ophthalmol. 248(12), 1719–1728 (2010).
  • Dell'Omo R, Costagliola C, Di Salvatore F, Cifariello F, Dell'Omo E. Enhanced depth imaging spectral-domain optical coherence tomography. Retina 30(2), 378–379 (2010).
  • Zlotnik A, Ben-Yaish S, Zalevsky Z. Extending the depth of focus for enhanced three-dimensional imaging and profilometry: an overview. Appl. Opt. 48(34), H105–112 (2009).
  • Fujiwara T, Imamura Y, Margolis R, Slakter JS, Spaide RF. Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes. Am. J. Ophthalmol. 148(3), 445–450 (2009).
  • Margolis R, Spaide RF. A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes. Am. J. Ophthalmol. 147(5), 811–815 (2009).
  • Spaide RF. Enhanced depth imaging optical coherence tomography of retinal pigment epithelial detachment in age-related macular degeneration. Am. J. Ophthalmol. 147(4), 644–652 (2009).
  • Jirarattanasopa P, Ooto S, Tsujikawa A et al. Assessment of Macular Choroidal Thickness by Optical Coherence Tomography and Angiographic Changes in Central Serous Chorioretinopathy. Ophthalmology 119(8), 1666–1678 (2012).
  • Usui S, Ikuno Y, Miki A, Matsushita K, Yasuno Y, Nishida K. Evaluation of the choroidal thickness using high-penetration optical coherence tomography with long wavelength in highly myopic normal-tension glaucoma. Am. J. Ophthalmol. 153(1), 10–16.e11 (2012).
  • Ikuno Y, Kawaguchi K, Nouchi T, Yasuno Y. Choroidal thickness in healthy Japanese subjects. Invest. Ophthalmol. Vis. Sci. 51(4), 2173–2176 (2010).
  • Park SC, De Moraes CG, Teng CC, Tello C, Liebmann JM, Ritch R. Enhanced depth imaging optical coherence tomography of deep optic nerve complex structures in glaucoma. Ophthalmology 119(1), 3–9 (2012).
  • Goldenberg D, Moisseiev E, Goldstein M, Loewenstein A, Barak A. Enhanced depth imaging optical coherence tomography: choroidal thickness and correlations with age, refractive error, and axial length. Ophthalmic. Surg. Lasers Imaging 1–6 (2012).
  • Rao RC, Choudhry N, Gragoudas ES. Enhanced depth imaging spectral-domain optical coherence tomography findings in sclerochoroidal calcification. Retina 32(6), 1226–1227 (2012).
  • Spaide RF, Akiba M, Ohno-Matsui K. Evaluation of peripapillary intrachoroidal cavitation with swept source and enhanced depth imaging optical coherence tomography. Retina 32(6), 1037–1044 (2012).
  • Chhablani J, Barteselli G, Wang H et al. Repeatability and reproducibility of manual choroidal volume measurements using enhanced depth imaging optical coherence tomography. Invest. Ophthalmo. Vis. Sci. 53(4), 2274–2280 (2012).
  • Sogawa K, Nagaoka T, Takahashi A et al. Relationship between choroidal thickness and choroidal circulation in healthy young subjects. Am. J. Ophthalmol. 153(6), 1129–1132 e1121 (2012).
  • Branchini L, Regatieri CV, Flores-Moreno I, Baumann B, Fujimoto JG, Duker JS. Reproducibility of choroidal thickness measurements across three spectral domain optical coherence tomography systems. Ophthalmology 119(1), 119–123 (2012).
  • Rahman W, Chen FK, Yeoh J, Patel P, Tufail A, Da Cruz L. Repeatability of manual subfoveal choroidal thickness measurements in healthy subjects using the technique of enhanced depth imaging optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 52(5), 2267–2271 (2011).
  • Lee EJ, Kim TW, Weinreb RN et al. Three-dimensional evaluation of the lamina cribrosa using spectral-domain optical coherence tomography in glaucoma. Invest. Ophthalmol. Vis. Sci. 53(1), 198–204 (2012).
  • Unterhuber A, Povazay B, Hermann B, Sattmann H, Chavez-Pirson A, Drexler W. In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid. Opt. Express 13(9), 3252–3258 (2005).
  • Lee EC, de Boer JF, Mujat M, Lim H, Yun SH. In vivo optical frequency domain imaging of human retina and choroid. Opt. Express 14(10), 4403–4411 (2006).
  • Yasuno Y, Hong Y, Makita S et al. In vivo high-contrast imaging of deep posterior eye by 1-microm swept source optical coherence tomography and scattering optical coherence angiography. Opt. Express 15(10), 6121–6139 (2007).
  • Huber R, Adler DC, Srinivasan VJ, Fujimoto JG. Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second. Opt. Lett. 32(14), 2049–2051 (2007).
  • Srinivasan VJ, Adler DC, Chen Y et al. Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head. Invest. Ophthalmol. Vis. Sci. 49(11), 5103–5110 (2008).
  • de Bruin DM, Burnes DL, Loewenstein J et al. In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm. Invest. Ophthalmol. Vis. Sci. 49(10), 4545–4552 (2008).
  • Yasuno Y, Miura M, Kawana K et al. Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high-penetration optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 50(1), 405–413 (2009).
  • Chen Y, Burnes DL, de Bruin M, Mujat M, de Boer JF. Three-dimensional pointwise comparison of human retinal optical property at 845 and 1060 nm using optical frequency domain imaging. J. Biomed. Opt. 14(2), 024016 (2009).
  • Agawa T, Miura M, Ikuno Y et al. Choroidal thickness measurement in healthy Japanese subjects by three-dimensional high-penetration optical coherence tomography. Graefes Arch. Clin. Exp. Ophthalmol. 249(10), 1485–1492 (2011).
  • Ikuno Y, Maruko I, Yasuno Y et al. Reproducibility of retinal and choroidal thickness measurements in enhanced depth imaging and high-penetration optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 52(8), 5536–5540 (2011).
  • Mansouri K, Orguel S, Mermoud A et al. Quality of diurnal intraocular pressure control in primary open-angle patients treated with latanoprost compared with surgically treated glaucoma patients: a prospective trial. Br. J. Ophthalmol. 92(3), 332–336 (2008).
  • Hayreh SS. Blood supply of the optic nerve head. Ophthalmologica 210(5), 285–295 (1996).
  • Hayreh SS. Blood flow in the optic nerve head and factors that may influence it. Prog. Retin. Eye Res. 20(5), 595–624 (2001).
  • Ernest JT. Optic disc blood flow. Trans. Ophthalmol. Soc. UK 96(3), 348–351 (1976).
  • Lieberman MF, Maumenee AE, Green WR. Histologic studies of the vasculature of the anterior optic nerve. Am. J. Ophthalmol. 82(3), 405–423 (1976).
  • Onda E, Cioffi GA, Bacon DR, Van Buskirk EM. Microvasculature of the human optic nerve. Am. J. Ophthalmol. 120(1), 92–102 (1995).
  • Olver JM, Spalton DJ, McCartney AC. Quantitative morphology of human retrolaminar optic nerve vasculature. Invest. Ophthalmol. Vis. Sci. 35(11), 3858–3866 (1994).
  • Lee EJ, Kim TW, Weinreb RN. Reversal of lamina cribrosa displacement and thickness after trabeculectomy in glaucoma. Ophthalmology 119(7), 1359–1366 (2012).
  • Lee EJ, Kim TW, Weinreb RN. Improved reproducibility in measuring the laminar thickness on enhanced depth imaging SD-OCT images using maximum intensity projection. Invest. Ophthalmol. Vis. Sci. 53(12), 7576–7582 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.