1,258
Views
115
CrossRef citations to date
0
Altmetric
Reviews

Applications of sensory feedback in motorized upper extremity prosthesis: a review

, , &

References

  • Ziegler-Graham K, MacKenzie EJ, Ephraim PL, et al. Estimating the prevalence of limb loss in the united states: 2005 to 2050. Arch Phys Med Rehabil 2008;3:89(3):422-9
  • Lake C, Dodson R. Progressive upper limb prosthetics. Phys Med Rehabil Clin N Am 2006;17(1):49-72
  • Agur Anne MR, Dalley AF. Grant’s atlas of anatomy. 10th edition. Lippincott Williams and Wilkins; PA, USA: 1999
  • Belter JT, Segil JL, Dollar AM, Weir RF. Mechanical design and performance specifications of anthropomorphic prosthetic hands: a review. J Rehabil Res Dev 2013;50(5):599-618
  • Cloutier A, Yang J. Design, control, and sensory feedback of externally powered hand prostheses: a literature review. Crit Rev Biomed Eng 2013;41(2):161-81
  • Lundborg G, Rosén B. Sensory substitution in prosthetics. Hand Clin 2001;17(3):481-8
  • Kim K, Colgate JE, Santos-Munné JJ, et al. On the design of miniature haptic devices for upper extremity prosthetics. IEEE/ASME Trans Mechatronics 2010;15(1):27-39
  • Vallbo AB, Johansson RS. Properties of cutaneous mechanoreceptors in the human hand related to touch sensation. Hum Neurobiol 1984;3(1):3-14
  • Johansson RS. Sensory and memory information in the control of dexterous manipulation. In: Lacquaniti F, Viviani P, editors. Neural basis of motor behaviour. Kluwer Academic Publishers; The Netherlands: 1996
  • Biddiss E, Chau T. Upper limb prosthesis use and abandonment: a survey of the last 25 years. Prosthet Orthot Int 2007;31(3):236-57
  • Wright TW, Hagen AD, Wood MB. Prosthetic usage in major upper extremity amputations. J Hand Surg 1995;20(4):619-22
  • Biddiss E, Beaton D, Chau T. Consumer design priorities for upper limb prosthetics. Disabil Rehabil Assist Technol 2007;2(6):346-57
  • Panarese A, Edin BB, Vecchi F, et al. Humans can integrate force feedback to toes in their sensorimotor control of a robotic hand. IEEE Trans Neural Syst Rehabil Eng 2009;17(6):560-7
  • Gonzalez J, Soma H, Sekine M, Yu W. Psycho-physiological assessment of a prosthetic hand sensory feedback system based on an auditory display: a preliminary study. J Neuroeng Rehabil 2012;9(1):33
  • Antfolk C, D’alonzo M, Rosén B, et al. Sensory feedback in upper limb prosthetics. Expert Rev Med Devices 2013;10(1):45-54
  • Bach-y-Rita P. Tactile sensory substitution studies. Ann N Y Acad Sci 2004;1013:83-91
  • Cipriani C, Dalonzo M, Carrozza MC. A miniature vibrotactile sensory substitution device for multifingered hand prosthetics. IEEE Trans Biomed Eng 2012;59(2):400-8
  • Jones LA, Sarter NB. Tactile displays: guidance for their design and application. Hum Factors 2008;50(1):90-111
  • Pylatiuk C, Kargov A, Schulz S. Design and evaluation of a low-cost force feedback system for myoelectric prosthetic hands. J Prosthet Orthot 2006;18(2):57-61
  • Chatterjee A, Chaubey P, Martin J, Thakor N. Testing a prosthetic haptic feedback simulator with an interactive force matching task. J Prosthet Orthot 2008;20(2):27-34
  • Stepp CE, Matsuoka Y. Vibrotactile sensory substitution for object manipulation: amplitude versus pulse train frequency modulation. IEEE Trans Neural Syst Rehabil Eng 2012;20(1):31-7
  • Saunders I, Vijayakumar S. The role of feed-forward and feedback processes for closed-loop prosthesis control. J Neuroeng Rehabil 2011;8(1):1-12
  • Tejeiro C, Stepp CE. Comparison of remote pressure and vibrotactile feedback for prosthetic hand control. Proceedings of the IEEE RAS and EMBS international conference on biomedical robotics and biomechatronics; Rome, Italy; 2012. p. 521-5
  • Cipriani C, Zaccone F, Micera S, Carrozza MC. On the shared control of an EMG-controlled prosthetic hand: analysis of user-prosthesis interaction. IEEE Trans Robotics 2008;24(1):170-84
  • Shannon GF. A comparison of alternative means of providing sensory feedback on upper limb prostheses. Med Biol Eng 1976;14(3):289-94
  • Antfolk C, D’Alonzo M, Controzzi M, et al. Artificial redirection of sensation from prosthetic fingers to the phantom hand map on transradial amputees: vibrotactile versus mechanotactile sensory feedback. IEEE Trans Neural Syst Rehabil Eng 2013;21(1):112-20
  • Patterson PE, Katz JA. Design and evaluation of a sensory feedback system that provides grasping pressure in a myoelectric hand. J Rehabil Res Dev 1992;29(1):1-8
  • Brown JD, Paek A, Syed M, et al. Understanding the role of haptic feedback in a teleoperated/prosthetic grasp and lift task. Proceedings of the 2013 World Haptics Conference; Daejeon, South Korea; 2013. p. 271-6
  • Lundborg G, Rosen B, Lindstrom K, Lindberg S. Artificial sensibility based on the use of piezoresistive sensors. J Hand Surg 1998;23B(5):620-6
  • Guangzhi W, Zhang X, Zhang R, et al. Gripping force sensory feedback for a myoelectrically controlled forearm prosthesis. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics; Vancouver, Canada; 1995. p. 501-4
  • Tupper CN, Gerhard GC. Improved prosthesis control via high resolution electro-tactile feedback. Bioengineering Proceedings of the Northeast Conference; Boston, MA; USA; 1989. p. 39-40
  • Shannon GF. A myoelectrically-controlled prosthesis with sensory feedback. Med Biol Eng Comput 1979;17(1):73-80
  • Rohland TA. Sensory feedback for powered limb prostheses. Med Biol Eng 1975;13(2):300-1
  • Kaczmarek KA, Webster JG, Bach-y-Rita P, Tompkins WJ. Electrotactile and vibrotactile displays for sensory substitution systems. IEEE Trans Biomed Eng 1991;38(1):1-16
  • Zafar M, Van Doren CL. Effectiveness of supplemental grasp-force feedback in the presence of vision. Med Biol Eng Comput 2000;38(3):267-74
  • Buma DG, Buitenweg JR, Veltink PH. Intermittent stimulation delays adaptation to electrocutaneous sensory feedback. IEEE Trans Neural Syst Rehabil Eng 2007;15(1):435-41
  • Lundborg G, Rosén B, Lindberg S. Hearing as substitution for sensation: A new principle for artificial sensibility. J Hand Surg 1999;24(2):219-24
  • Gonzalez J, Soma H, Sekine M, Yu W. Auditory display as a prosthetic hand biofeedback. J Med Imaging Health 2011;1(4):325-33
  • González J, Yu W. Multichannel audio aided dynamical perception for prosthetic hand biofeedback. Proceedings of the 2009 IEEE International Conference on Rehabilitation Robotics; Kyoto International Conference Center, Japan, 2009. p. 240-5
  • Gillespie RB, Contreras-Vidal JL, Shewokis PA, et al. Toward improved sensorimotor integration and learning using upper-limb prosthetic devices. Proceeding of the 2010 annual international conference of the IEEE engineering in medicine and biology society; Buenos Aires, Argentina; 2010. p. 5077-80
  • Wheeler J, Bark K, Savall J, Cutkosky M. Investigation of rotational skin stretch for proprioceptive feedback with application to myoelectric systems. IEEE Trans Neural Syst Rehabil Eng 2010;18(1):58-66
  • Childress DS. Closed-loop control in prosthetic systems: historical perspective. Ann Biomed Eng 1980;8(4-6):293-303
  • Antfolk C, Björkman A, Frank S, et al. Sensory feedback from a prosthetic hand based on airmediated pressure from the hand to the forearm skin. J Rehabil Med 2012;44(8):702-7
  • Meek SG, Jacobsen SC, Goulding PP. Extended physiologic taction: design and evaluation of a proportional force feedback system. J Rehabil Res Dev 1989;26(3):53-62
  • Antfolk C, Cipriani C, Carrozza MC, et al. Transfer of tactile input from an artificial hand to the forearm: experiments in amputees and able-bodied volunteers. Disabil Rehabil Assist Technol 2013;8(3):249-54
  • Antfolk C, Balkenius C, Lundborg G, et al. A tactile display system for hand prostheses to discriminate pressure and individual finger localization. J Med Biol Eng 2010;30(6):355-60
  • Stepp CE, Matsuoka Y. Relative to direct haptic feedback, remote vibrotactile feedback improves but slows object manipulation. Conference Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Buenos Aires, Argentina; 2010. p. 2089-92
  • Armiger RS, Tenore FV, Katyal KD, et al. Enabling closed-loop control of the modular prosthetic limb through haptic feedback. Johns Hopkins APL Tech Dig 2013;31(4):345-53
  • Robotics research. HDT global. Available from: www.hdtglobal.com/services/robotics/Research/ [Last accessed 12 December 2013]
  • Kim K, Colgate JE, Peshkin MA, et al. A miniature tactor design for upper extremity prosthesis. Proceedings of the Frontiers in the Convergence of Bioscience and Information Technologies; Jeju City, South Korea; 2007. p. 537-42
  • Kim K, Colgate JE. Haptic feedback enhances grip force control of sEMG-controlled prosthetic hands in targeted reinnervation amputees. IEEE Trans Neural Syst Rehabil Eng 2012;20(6):798-805
  • Micera S, Carpaneto J, Raspopovic S. Control of hand prostheses using peripheral information. IEEE Rev Biomed Eng 2010;3:48-68
  • Clippinger FW, Avery R, Titus BR. A sensory feedback system for an upper-limb amputation prosthesis. Bull Prosthet Res 1974;10-22:247-58
  • Benvenuto A, Raspopovic S, Hoffmann KP, et al. Intrafascicular thin-film multichannel electrodes for sensory feedback: evidences on a human amputee. Proceedings of the 2010 annual international conference of the IEEE engineering in medicine and biology society; Buenos Aires, Argentina; 2010. p. 1800-3
  • Horch K, Meek S, Taylor TG, Hutchinson DT. Object discrimination with an artificial hand using electrical stimulation of peripheral tactile and proprioceptive pathways with intrafascicular electrodes. IEEE Trans Neural Syst Rehabil Eng 2011;19(5):483-9
  • Rossini PM, Micera S, Benvenuto A, et al. Double nerve intraneural interface implant on a human amputee for robotic hand control. Clin Neurophysiol 2010;121(5):777-83
  • Dhillon GS, Horch KW. Direct neural sensory feedback and control of a prosthetic arm. IEEE Trans Neural Syst Rehabil Eng 2005;13(4):468-72
  • Dhillon GS, Krüger TB, Sandhu JS, Horch KW. Effects of short-term training on sensory and motor function in severed nerves of long-term human amputees. J Neurophysiol 2005;93(5):2625-33
  • Riso RR. Strategies for providing upper extremity amputees with tactile and hand position feedback - moving closer to the bionic arm. Technol Health Care 1999;7(6):401-9
  • Anani A, Korner L. Discrimination of phantom hand sensations elicited by afferent electrical nerve stimulation in below-elbow amputees. Med Prog Technol 1979;6(3):131-5
  • Micera S, Citi L, Rigosa J, et al. Decoding information from neural signals recorded using intraneural electrodes: toward the development of a neurocontrolled hand prosthesis. Proc IEEE 2010;98(3):407-17
  • Alles DS. Information transmission by phantom sensations. IEEE Trans Man-Mach Syst 1970;11(1):85-91
  • Kooijman CM, Dijkstra PU, Geertzen JHB, et al. Phantom pain and phantom sensations in upper limb amputees: an epidemiological study. Pain 2000;87(1):33-41
  • Kuiken TA, Dumanian GA, Lipschutz RD, et al. The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthet Orthot Int 2004;28(3):245-53
  • Hijjawi JB, Kuiken TA, Lipschutz RD, et al. Improved myoelectric prosthesis control accomplished using multiple nerve transfers. Plast Reconstr Surg 2006;118(7):1573-8
  • Hebert JS, Olson JL, Morhart MJ, et al. Novel targeted sensory reinnervation technique to restore functional hand sensation after transhumeral amputation. IEEE Trans Neural Syst Rehabil Eng 2013. [Epub ahead of print]
  • Kuiken TA, Marasco PD, Lock BA, et al. Redirection of cutaneous sensation from the hand to the chest skin of human amputees with targeted reinnervation. Proc Natl Acad Sci USA 2007;104(50):20061-6
  • Kuiken TA, Miller LA, Lipschutz RD, et al. Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: a case study. Lancet 2007;369(9559):371-80
  • Hebert JS, Elzinga K, Chan KM, et al. Updates in targeted sensory reinnervation for upper limb amputation. Curr Surg Rep 2014;2(45):1-9
  • Sensinger JW, Schultz AE, Kuiken TA. Examination of force discrimination in human upper limb amputees with reinnervated limb sensation following peripheral nerve transfer. IEEE Trans Neural Syst Rehabil Eng 2009;17(5):438-44
  • Dawson MR, Fahimi F, Carey JP. The development of a myoelectric training tool for above-elbow amputees. Open Biomed Eng J 2012;6(1):5-15
  • Kung TA, Bueno RA, Alkhalefah GK, et al. Innovations in prosthetic interfaces for the upper extremity. Plast Reconstr Surg 2013;132(6):1515-23
  • Johansson RS, Westling G. Signals in tactile afferents from the fingers eliciting adaptive motor responses during precision grip. Exp Brain Res 1987;66(1):141-54
  • Westling G, Johansson RS. Responses in glabrous skin mechanoreceptors during precision grip in humans. Exp Brain Res 1987;66(1):128-40
  • Hernandez-Arieta A, Dermitzakis K, Damian D, et al. Sensory-motor coupling in rehabilitation robotics. In: Takahashi Y, editor. Service robot applications. InTech Europe; Rijeka, Croatial: 2008
  • Mann RW, Reimers SD. Kinesthetic sensing for the EMG controlled “Boston arm”. IEEE Trans Man-Mach Syst 1970;11(1):110-15
  • Goodwin GM, McCloskey DI, Matthews PBC. The contribution of muscle afferents kinaesthesia shown by vibration induced illusions of movement and by the effects of paralyzing joint afferents. J Physiol (Lond) 1972;536:635-47
  • Eklund G. Position sense and state of contraction: the effects of vibration. J Neurol Neurosurg Psychiatr 1972;35:606-11
  • Proske U, Gandevia SC. The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol Rev 2012;92(4):1651-97
  • Lake C. The evolution of upper limb prosthetic socket design. J Prosthet Orthot 2008;20(3):85-92
  • Daly W. Upper extremity socket design options. Phys Med Rehabil Clin N Am 2000;11(3):627-38
  • Moran CW. Revolutionizing prosthetics 2009 modular prosthetic limb-body interface: Overview of the prosthetic socket development. Johns Hopkins APL Technical Digest 2011;30(3):240-9
  • Hargrove L, Englehart K, Hudgins B. A training strategy to reduce classification degradation due to electrode displacements in pattern recognition based myoelectric control. Biomed Signal Process Control 2008;3(2):175-80

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.