34
Views
0
CrossRef citations to date
0
Altmetric
Review

Molecular determination of benign and malignant thyroid tumors

Pages 763-773 | Published online: 10 Jan 2014

References

  • Volzke H, Ludemann J, Robinson DM et al. The prevalence of undiagnosed thyroid disorders in a previously iodine-deficient area. Thyroid13, 803–810 (2003).
  • Reiners C, Wegscheider K, Schicha H et al. Prevalence of thyroid disorders in the working population of Germany: ultrasonography screening in 96,278 unselected employees. Thyroid14, 926–932 (2004).
  • Hegedus L, Bonnema SJ, Bennedbaek FN. Management of simple nodular goiter: current status and future perspectives. Endocr. Rev.24, 102–132 (2003).
  • Hegedus L. Clinical practice. The thyroid nodule. N. Engl. J. Med.351, 1764–1771 (2004).
  • Krohn K, Fuhrer D, Bayer Y et al. Molecular pathogenesis of euthyroid and toxic multinodular goiter. Endocr. Rev.26, 504–524 (2005).
  • DeLellis R, Lloyd RV, Heitz H, Eng C. World Health Organization Classification of Tumors. Pathology and genetics of tumors of endocrine organs. IARC Press, Lyon, France (2004).
  • Krohn K, Wohlgemuth S, Gerber H, Paschke R. Hot microscopic areas of iodine-deficient euthyroid goitres contain constitutively activating TSH receptor mutations. J. Pathol.192, 37–42 (2000).
  • Namba H, Matsuo K, Fagin JA. Clonal composition of benign and malignant human thyroid tumors. J. Clin. Invest.86, 120–125 (1990).
  • Aeschimann S, Kopp PA, Kimura ET et al. Morphological and functional polymorphism within clonal thyroid nodules. J. Clin. Endocrinol. Metab.77, 846–851 (1993).
  • Bond JA, Haughton MF, Rowson JM et al. Control of replicative life span in human cells: barriers to clonal expansion intermediate between M1 senescence and M2 crisis. Mol. Cell. Biol.19, 3103–3114 (1999).
  • Krohn K, Reske A, Ackermann F, Muller A, Paschke R. Ras mutations are rare in solitary cold and toxic thyroid nodules. Clin. Endocrinol. (Oxf.)55, 241–248 (2001).
  • Fagin JA. Minireview: branded from the start-distinct oncogenic initiating events may determine tumor fate in the thyroid. Mol. Endocrinol.16, 903–911 (2002).
  • Krohn K, Paschke R. Clinical review 133: progress in understanding the etiology of thyroid autonomy. J. Clin. Endocrinol. Metab.86, 3336–3345 (2001).
  • Fuhrer D, Krohn K, Paschke R. Toxic adenom and toxic multinodular goiter. In: Werner & Ingbar’s The Thyroid: A Fundamental And Clinical Text, Ninth Edition.Lippincott Williams & Wilkins, PA, USA (2005).
  • Parma J, Duprez L, Van Sande J et al. Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature365, 649–651 (1993).
  • Kimura T, Van Keymeulen A, Golstein J, Fusco A, Dumont JE, Roger PP. Regulation of thyroid cell proliferation by TSH and other factors: a critical evaluation of in vitro models. Endocr. Rev.22, 631–656 (2001).
  • Trulzsch B, Krohn K, Wonerow P et al. Detection of thyroid-stimulating hormone receptor and Gsα mutations: in 75 toxic thyroid nodules by denaturing gradient gel electrophoresis. J. Mol. Med.78, 684–691 (2001).
  • Parma J, Duprez L, Van Sande J et al. Diversity and prevalence of somatic mutations in the thyrotropin receptor and Gs α genes as a cause of toxic thyroid adenomas. J. Clin. Endocrinol. Metab.82, 2695–2701 (1997).
  • Fuhrer D, Lachmund P, Nebel IT, Paschke R. The thyrotropin receptor mutation database: update (2003). Thyroid13, 1123–1126 (2003).
  • Duprez L, Hermans J, Van Sande J, Dumont JE, Vassart G, Parma J. Two autonomous nodules of a patient with multinodular goiter harbor different activating mutations of the thyrotropin receptor gene. J. Clin. Endocrinol. Metab.82, 306–308 (1997).
  • Holzapfel HP, Fuhrer D, Wonerow P, Weinland G, Scherbaum WA, Paschke R. Identification of constitutively activating somatic thyrotropin receptor mutations in a subset of toxic multinodular goiters. J. Clin. Endocrinol. Metab.82, 4229–4233 (1997).
  • Trulzsch B, Krohn K, Wonerow P. Detection of thyroid-stimulating hormone receptor and Gsα mutations: in 75 toxic thyroid nodules by denaturing gradient gel electrophoresis. J. Mol. Med.78, 684–691 (2001).
  • Vanvooren V, Uchino S, Duprez L et al. Oncogenic mutations in the thyrotropin receptor of autonomously functioning thyroid nodules in the Japanese population. Eur. J. Endocrinol.147, 287–291 (2002).
  • Krohn K, Fuhrer D, Holzapfel HP, Paschke R. Clonal origin of toxic thyroid nodules with constitutively activating thyrotropin receptor mutations. J. Clin. Endocrinol. Metab.83, 130–134 (1998).
  • Fuhrer D, Mix M, Willgerodt H et al. Autosomal dominant nonautoimmune hyperthyroidism. Clinical features-diagnosis-therapy. Exp. Clin. Endocrinol. Diabetes106(Suppl. 4), S10–S15 (1998).
  • Duprez L, Parma J, Van Sande J et al. Germline mutations in the thyrotropin receptor gene cause non-autoimmune autosomal dominant hyperthyroidism. Nat. Genet.7, 396–401 (1994).
  • Weinstein LS, Shenker A, Gejman PV, Merino MJ, Friedman E, Spiegel AM. Activating mutations of the stimulatory G protein in the McCune-Albright syndrome. N. Engl. J. Med.325, 1688–1695 (1991).
  • Feuillan PP, Shawker T, Rose SR, Jones J, Jeevanram RK, Nisula BC. Thyroid abnormalities in the McCune-Albright syndrome: ultrasonography and hormonal studies. J. Clin. Endocrinol. Metab.71, 1596–1601 (1990).
  • Zeiger MA, Saji M, Gusev Y et al. Thyroid-specific expression of cholera toxin A1 subunit causes thyroid hyperplasia and hyperthyroidism in transgenic mice. Endocrinology138, 3133–3140 (1997).
  • Ledent C, Coppee F, Dumont JE, Vassart G, Parmentier M. Transgenic models for proliferative and hyperfunctional thyroid diseases. Exp. Clin. Endocrinol. Diabetes104(Suppl. 3), 43–46 (1996).
  • Ledent C, Dumont JE, Vassart G, Parmentier M. Thyroid expression of an A2 adenosine receptor transgene induces thyroid hyperplasia and hyperthyroidism. EMBO J.11, 537–542 (1992).
  • Michiels FM, Caillou B, Talbot M et al. Oncogenic potential of guanine nucleotide stimulatory factor alpha subunit in thyroid glands of transgenic mice. Proc. Natl Acad. Sci. USA91, 10488–10492 (1994).
  • Fuhrer D, Lewis MD, Alkhafaji F et al. Biological activity of activating thyroid-stimulating hormone receptor mutants depends on the cellular context. Endocrinology144, 4018–4030 (2003).
  • Fusco A, Grieco M, Santoro M et al. A new oncogene in human thyroid papillary carcinomas and their lymph-nodal metastases. Nature328, 170–172 (1987).
  • Grieco M, Santoro M, Berlingieri MT et al. PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell60, 557–563 (1990).
  • Santoro M, Melillo RM, Carlomagno F, Vecchio G, Fusco A. Minireview: RET: normal and abnormal functions. Endocrinology145, 5448–5451 (2004).
  • Jhiang SM. The RET proto-oncogene in human cancers. Oncogene19, 5590–5597 (2000).
  • Fagin JA. Challenging dogma in thyroid cancer molecular genetics – role of RET/PTC and BRAF in tumor initiation. J. Clin. Endocrinol. Metab.89, 4264–4266 (2004).
  • Jhiang SM, Sagartz JE, Tong Q et al. Targeted expression of the ret/PTC1 oncogene induces papillary thyroid carcinomas. Endocrinology137, 375–378 (1996).
  • Nikiforova MN, Stringer JR, Blough R, Medvedovic M, Fagin JA, Nikiforov YE. Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells. Science290, 138–141 (2000).
  • Caudill CM, Zhu Z, Ciampi R, Stringer JR, Nikiforov YE. Dose-dependent generation of RET/PTC in human thyroid cells after in vitro exposure to γ-radiation: a model of carcinogenic chromosomal rearrangement induced by ionizing radiation. J. Clin. Endocrinol. Metab.90, 2364–2369 (2005).
  • Powell DJ Jr, Russell J, Nibu K et al. The RET/PTC3 oncogene: metastatic solid-type papillary carcinomas in murine thyroids. Cancer Res.58, 5523–5528 (1998).
  • Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res.63, 1454–1457 (2003).
  • Nikiforova MN, Kimura ET, Gandhi M et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J. Clin. Endocrinol. Metab.88, 5399–5404 (2003).
  • Namba H, Nakashima M, Hayashi T et al. Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J. Clin. Endocrinol. Metab.88, 4393–4397 (2003).
  • Kumagai A, Namba H, Saenko VA et al. Low frequency of BRAFT1796A mutations in childhood thyroid carcinomas. J. Clin. Endocrinol. Metab.89, 4280–4284 (2004).
  • Giordano TJ, Kuick R, Thomas DG et al. Molecular classification of papillary thyroid carcinoma: distinct BRAF, RAS, and RET/PTC mutation-specific gene expression profiles discovered by DNA microarray analysis. Oncogene24(44), 6646–6656 (2005).
  • Melillo RM, Castellone MD, Guarino V et al. The RET/PTC-RAS-BRAF linear signaling cascade mediates the motile and mitogenic phenotype of thyroid cancer cells. J. Clin. Invest.115, 1068–1081 (2005).
  • Mitsutake N, Miyagishi M, Mitsutake S et al. BRAF mediates RET/PTC-induced MAPK activation in thyroid cells: functional support for requirement of the RET/PTC-RAS-BRAF pathway in papillary thyroid carcinogenesis. Endocrinology147(2), 1472–1049 (2006).
  • Wan PT, Garnett MJ, Roe SM et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell116, 855–867 (2004).
  • Nikiforova MN, Ciampi R, Salvatore G et al. Low prevalence of BRAF mutations in radiation-induced thyroid tumors in contrast to sporadic papillary carcinomas. Cancer Lett.209, 1–6 (2004).
  • Lima J, Trovisco V, Soares P et al. BRAF mutations are not a major event in post-Chernobyl childhood thyroid carcinomas. J. Clin. Endocrinol. Metab.89, 4267–4271 (2004).
  • Knauf JA, Ma X, Smith EP et al. Targeted expression of BRAFV600E in thyroid cells of transgenic mice results in papillary thyroid cancers that undergo dedifferentiation. Cancer Res.65, 4238–4245 (2005).
  • Ciampi R, Knauf JA, Kerler R et al. Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. J. Clin. Invest.115, 94–101 (2005).
  • Ciampi R, Nikiforov YE. RET/PTC rearrangements and BRAF mutations in thyroid tumorigenesis. Endocrinology (2006) (Epub ahead of print).
  • Frattini M, Ferrario C, Bressan P et al. Alternative mutations of BRAF, RET and NTRK1 are associated with similar but distinct gene expression patterns in papillary thyroid cancer. Oncogene23, 7436–7440 (2004).
  • Fagin JA. Perspective: lessons learned from molecular genetic studies of thyroid cancer – insights into pathogenesis and tumor-specific therapeutic targets. Endocrinology143, 2025–2028 (2002).
  • Eszlinger M, Krohn K, Frenzel R, Kropf S, Tonjes A, Paschke R. Gene expression analysis reveals evidence for inactivation of the TGF-β signaling cascade in autonomously functioning thyroid nodules. Oncogene23, 795–804 (2004).
  • Castro P, Eknaes M, Teixeira MR et al. Adenomas and follicular carcinomas of the thyroid display two major patterns of chromosomal changes. J. Pathol.206, 305–311 (2005).
  • Sobrinho-Simoes M, Preto A, Rocha AS et al. Molecular pathology of well-differentiated thyroid carcinomas. Virchows Arch.447, 787–793 (2005).
  • Vasko V, Ferrand M, Di Cristofaro J, Carayon P, Henry JF, de Micco C. Specific pattern of RAS oncogene mutations in follicular thyroid tumors. J. Clin. Endocrinol. Metab.88, 2745–2752 (2003).
  • Rochefort P, Caillou B, Michiels FM et al. Thyroid pathologies in transgenic mice expressing a human activated Ras gene driven by a thyroglobulin promoter. Oncogene12, 111–118 (1996).
  • Santelli G, de Franciscis V, Portella G et al. Production of transgenic mice expressing the Ki-ras oncogene under the control of a thyroglobulin promoter. Cancer Res.53, 5523–5527 (1993).
  • Zhu Z, Gandhi M, Nikiforova MN, Fischer AH, Nikiforov YE. Molecular profile and clinical-pathologic features of the follicular variant of papillary thyroid carcinoma. An unusually high prevalence of ras mutations. Am. J. Clin. Pathol.120, 71–77 (2003).
  • Kroll TG, Sarraf P, Pecciarini L et al. PAX8–PPARgamma1 fusion oncogene in human thyroid carcinoma [corrected]. Science289, 1357–1360 (2000).
  • Gregory PJ, Wang X, Allard BL et al. The PAX8/PPARγ fusion oncoprotein transforms immortalized human thyrocytes through a mechanism probably involving wild-type PPARgamma inhibition. Oncogene23, 3634–3641 (2004).
  • Au AY, McBride C, Wilhelm KG, Jr. et al. PAX8-peroxisome proliferator-activated receptor γ (PPARγ) disrupts normal pax8 or pparγ transcriptional function and stimulates follicular thyroid cell growth. Endocrinology147, 367–376 (2006).
  • Cheung L, Messina M, Gill A et al. Detection of the PAX8–PPAR γ fusion oncogene in both follicular thyroid carcinomas and adenomas. J. Clin. Endocrinol. Metab.88, 354–357 (2003).
  • Marques AR, Espadinha C, Catarino AL et al. Expression of PAX8-PPAR γ 1 rearrangements in both follicular thyroid carcinomas and adenomas. J. Clin. Endocrinol. Metab.87, 3947–3952 (2002).
  • Nikiforova MN, Biddinger PW, Caudill CM, Kroll TG, Nikiforov YE. PAX8–PPARγ rearrangement in thyroid tumors: RT-PCR and immunohistochemical analyses. Am. J. Surg. Pathol.26, 1016–1023 (2002).
  • Nikiforova MN, Lynch RA, Biddinger PW et al. RAS point mutations and PAX8–PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J. Clin. Endocrinol. Metab.88, 2318–2326 (2003).
  • Xing M, Westra WH, Tufano RP et al. BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J. Clin. Endocrinol. Metab.90, 6373–6379 (2005).
  • Garcia-Rostan G, Costa AM, Pereira-Castro I et al. Mutation of the PIK3CA gene in anaplastic thyroid cancer. Cancer Res.65, 10199–10207 (2005).
  • Moretti F, Farsetti A, Soddu S et al. p53 re-expression inhibits proliferation and restores differentiation of human thyroid anaplastic carcinoma cells. Oncogene14, 729–740 (1997).
  • Fagin JA, Matsuo K, Karmakar A, Chen DL, Tang SH, Koeffler HP. High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas. J. Clin. Invest.91, 179–184 (1993).
  • Rao AS, Kremenevskaja N, von Wasielewski R et al. Wnt/β-catenin signalling mediates anti-neoplastic effects of Imatinib mesylate (Glivec) in anaplastic thyroid cancer. J. Clin. Endocrinol. Metab.91(1), 159–168 (2005).
  • Wynford-Thomas D, Jones CJ, Wyllie FS. The tumour suppressor gene p53 as a regulator of proliferative life-span and tumour progression. Biol. Signals5, 139–153 (1996).
  • Krohn K, Eszlinger M, Paschke R, Roeder I, Schuster E. Increased power of microarray analysis by use of an algorithm based on a multivariate procedure. Bioinformatics21, 3530–3534 (2005).
  • Eszlinger M, Wiench M, Jarzab B et al. Meta- and reanalysis of gene expression profiles of hot and cold thyroid nodules and papillary thyroid carcinoma for gene groups. J. Clin. Endocrinol. Metab.91(5), 1934–1942 (2006).
  • Jarzab B, Wiench M, Fujarewicz K et al. Gene expression profile of papillary thyroid cancer: sources of variability and diagnostic implications. Cancer Res.65, 1587–1597 (2005).
  • Huang Y, Prasad M, Lemon WJ et al. Gene expression in papillary thyroid carcinoma reveals highly consistent profiles. Proc. Natl Acad. Sci. USA98, 15044–15049 (2001).
  • Aldred MA, Huang Y, Liyanarachchi S et al. Papillary and follicular thyroid carcinomas show distinctly different microarray expression profiles and can be distinguished by a minimum of five genes. J. Clin. Oncol.22, 3531–3539 (2004).
  • Wreesmann VB, Ghossein RA, Hezel M et al. Follicular variant of papillary thyroid carcinoma: genome-wide appraisal of a controversial entity. Genes Chromosomes Cancer40, 355–364 (2004).
  • Giordano TJ, Au AY, Kuick R et al. Delineation, functional validation, and bioinformatic evaluation of gene expression in thyroid follicular carcinomas with the PAX8-PPARG translocation. Clin. Cancer Res.12, 1983–1993 (2006).
  • Lacroix L, Lazar V, Michiels S et al. Follicular thyroid tumors with the PAX8–PPARγ1 rearrangement display characteristic genetic alterations. Am. J. Pathol.167, 223–231 (2005).
  • Lui WO, Foukakis T, Liden J et al. Expression profiling reveals a distinct transcription signature in follicular thyroid carcinomas with a PAX8-PPAR(γ) fusion oncogene. Oncogene24, 1467–1476 (2005).
  • Aldred MA, Morrison C, Gimm O et al. Peroxisome proliferator-activated receptor γ is frequently downregulated in a diversity of sporadic nonmedullary thyroid carcinomas. Oncogene22, 3412–3416 (2003).
  • Eszlinger M, Krohn K, Berger K et al. Gene expression analysis reveals evidence for increased expression of cell cycle-associated genes and Gq-protein-protein kinase C signaling in cold thyroid nodules. J. Clin. Endocrinol. Metab.90, 1163–1170 (2005).
  • Eszlinger M, Krohn K, Paschke R. Complementary DNA expression array analysis suggests a lower expression of signal transduction proteins and receptors in cold and hot thyroid nodules. J. Clin. Endocrinol. Metab.86, 4834–4842 (2001).
  • Jarzab B, Wodak SJ, Lapi P et al. The distance between histotypes of differentiated thyroid cancer: gene expression profiling study. Thyroid, 13th International Thyroid Congress (Abstract). (2005).
  • Weber F, Shen L, Aldred MA et al. Genetic classification of benign and malignant thyroid follicular neoplasia based on a three-gene combination. J. Clin. Endocrinol. Metab.90, 2512–2521 (2005).
  • Baris O, Mirebeau-Prunier D, Savagner F et al. Gene profiling reveals specific oncogenic mechanisms and signaling pathways in oncocytic and papillary thyroid carcinoma. Oncogene24, 4155–4161 (2005).
  • Jacques C, Baris O, Prunier-Mirebeau D et al. Two-step differential expression analysis reveals a new set of genes involved in thyroid oncocytic tumors. J. Clin. Endocrinol. Metab.90, 2314–2320 (2005).
  • Onda M, Emi M, Yoshida A et al. Comprehensive gene expression profiling of anaplastic thyroid cancers with cDNA microarray of 25 344 genes. Endocr. Relat. Cancer11, 843–854 (2004).
  • Yano Y, Uematsu N, Yashiro T et al. Gene expression profiling identifies platelet-derived growth factor as a diagnostic molecular marker for papillary thyroid carcinoma. Clin. Cancer Res.10, 2035–2043 (2004).
  • Aldred MA, Ginn-Pease ME, Morrison CD et al. Caveolin-1 and caveolin-2, together with three bone morphogenetic protein-related genes, may encode novel tumor suppressors down-regulated in sporadic follicular thyroid carcinogenesis. Cancer Res.63, 2864–2871 (2003).
  • Barden CB, Shister KW, Zhu B et al. Classification of follicular thyroid tumors by molecular signature: results of gene profiling. Clin. Cancer Res.9, 1792–1800 (2003).
  • Takano T, Miyauchi A, Yoshida H, Kuma K, Amino N. Decreased relative expression level of trefoil factor 3 mRNA to galectin-3 mRNA distinguishes thyroid follicular carcinoma from adenoma. Cancer Lett.219, 91–96 (2005).
  • Cerutti JM, Delcelo R, Amadei MJ et al. A preoperative diagnostic test that distinguishes benign from malignant thyroid carcinoma based on gene expression. J. Clin. Invest.113, 1234–1242 (2004).
  • Krause K, Eszlinger M, Gimm O et al. TFF3 based candidate gene discrimination of benign and malignant thyroid tumours in a region with borderline iodine deficiency (Submitted).
  • Nikiforov YE, Nikiforova MN, Gnepp DR, Fagin JA. Prevalence of mutations of ras and p53 in benign and malignant thyroid tumors from children exposed to radiation after the Chernobyl nuclear accident. Oncogene13, 687–693 (1996).
  • Santoro M, Carlomagno F, Melillo RM, Fusco A. Dysfunction of the RET receptor in human cancer. Cell. Mol. Life Sci.61, 2954–2964 (2004).
  • Brandi ML, Gagel RF, Angeli A et al. Guidelines for diagnosis and therapy of MEN type 1 and type 2. J. Clin. Endocrinol. Metab.86, 5658–5671 (2001).
  • Podtcheko A, Ohtsuru A, Tsuda S et al. The selective tyrosine kinase inhibitor, STI571, inhibits growth of anaplastic thyroid cancer cells. J. Clin. Endocrinol. Metab.88, 1889–1896 (2003).
  • Carlomagno F, Vitagliano D, Guida T et al. Efficient inhibition of RET/papillary thyroid carcinoma oncogenic kinases by 4-amino-5-(4-chloro-phenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2). J. Clin. Endocrinol. Metab.88, 1897–1902 (2003).
  • Park JW, Zarnegar R, Kanauchi H et al. Troglitazone, the peroxisome proliferator-activated receptor-γ agonist, induces antiproliferation and redifferentiation in human thyroid cancer cell lines. Thyroid15, 222–231 (2005).
  • Martelli ML, Iuliano R, Le P et al. Inhibitory effects of peroxisome poliferator-activated receptor γ on thyroid carcinoma cell growth. J. Clin. Endocrinol. Metab.87, 4728–4735 (2002).
  • Ouyang B, Knauf JA, Smith EP et al. Inhibitors of Raf kinase activity block growth of thyroid cancer cells with RET/PTC or BRAF mutations in vitro and in vivo. Clin. Cancer Res.12, 1785–1793 (2006).
  • Hundahl SA, Fleming ID, Fremgen AM, Menck HR. A National Cancer Data Base report on 53,856 cases of thyroid carcinoma treated in the U.S. 1985–1995 [see comments]. Cancer83, 2638–2648 (1998).

Website

  • TSH Receptor Mutation Database www.uni-leipzig.de/∼innere/tsh

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.