85
Views
15
CrossRef citations to date
0
Altmetric
Review

Immune cells and molecules in pregnancy: friends or foes to the fetus?

Pages 457-470 | Published online: 10 Jan 2014

References

  • Billingham RE, Medawar PD. “Actively required tolerance” of foreign cells. Nature172, 603–606 (1953).
  • Thellin O, Coumans B, Zorzi W, Igout A, Heinen E. Tolerance to the feto-placental “graft”: ten ways to support a child for nine months. Curr. Opin. Immunol.12(6), 731–737 (2000).
  • Tafuri A, Alferink J, Moller P, Hammerling GJ, Arnold B. T-cell awareness of paternal alloantigens during pregnancy. Science270,630–633 (1995).
  • Aluvihare, VR, Kallikourdis M, Betz AG. Regulatory T cells mediate maternal tolerance to the fetus. Nat. Immunol.5, 266–271 (2004).
  • Tanaka TS, Jaradat SA, Lim KM et al. Genome-wide expression profiling of mid gestation placenta ens embryo using a 15,000 mouse developmental sDNA microarray. Proc. Natl Acad. Sci. USA97, 9127–9132 (2000).
  • Bianchi DW, Zickwolf GK, Weil GJ, Sylvester S, DeMaria MA. Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc. Natl Acad. Sci. USA93, 705–708 (1996).
  • Szekeres-Bartho J. Immunological relationship between the mother and the fetus. Intern. Rev. Immunol.21, 471–495 (2002).
  • Murphy SP, Choi JC, Holtz R. Regulation of major histocompatibility complex class II gene expression in trophoblast cells. Reprod. Biol. Endocrinol.2(52), 1–8 (2004).
  • Moffett-King A. Natural killer cells and pregnancy. Nat. Rev. Immunol.2(9), 656–663 (2002).
  • Hiby SE, Walker JJ, O´Shaughnessy KM et al. Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success.J. Exp. Med200(8), 957–965 (2004).
  • Boyson JE, Rybalov B, Koopman L et al. CD1d and invariant NKT cells at the human maternal–fetal interface. Proc. Natl Acad. Sci. USA99(21), 13741–13746 (2002).
  • Bauer S, Groh V, Wu J et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science285, 727–729 (1999).
  • Bahram S. MIC genes: from genetics to biology. Adv. Immunol.76, 1–60 (2000).
  • Groh V, Rhinehart R, Secrist H, Bauer S, Grabstein K, Spies T. Broad tumor-associated expression and recognition by tumor-derived γδT cells of MICA and MICB. Proc. Natl Acad. Sci USA96, 6879–6884 (1999).
  • Groh V, Rhinehart R, Randolph-Habecker J et al. Costimulation of CD8 αβT cells by NKG2D via engagement by MIC induced on virus-infected cells. Nat. Immunol.2, 255–260 (2001).
  • Tieng V, Le Bouguenec C, du Merle L et al. Binding of Escherichia coli adhesin AfaE to CD55 triggers cell-surface expression of the MHC class I-related molecule MICA. Proc. Natl. Acad. Sci. USA99, 2977–2982 (2002).
  • Groh V, Wu J, Yee C, Spies T. Tumor-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature419, 734–738 (2002).
  • Salih HR, Rammensee HG, Steinle A. Cutting edge: down-regulation of MICA on human tumors by proteolytic shedding. J. Immunol.169, 4098–4102 (2002).
  • Mincheva-Nilsson L, Nagaeva O, Chen T et al. Placenta-derived soluble MHC class I chain-related molecules downregulate NKG2D receptor on PBMC during human pregnancy: a possible novel immune escape mechanism for fetal survival. J. Immunol.176, 3585–3592 (2006).
  • Raghupathy R. 2001. Pregnancy: success and failure within the Th1/Th2/Th3 paradigm. Semin. Immunol.13, 219–227 (2001).
  • Chaouat G, Assal Meliani A, Martal J et al. IL-10 prevents naturally occurring fetal loss in the CBAxDBA/2 mating combination, and local defect in IL-10 production in this abortion-prone combination is corrected by in vitro injection of IFN-τ. J. Immunol.154, 4261–4268 (1995).
  • Veenstra van NieuwenhovenAL, Bouman A, Moes H et al. Cytokine production in natural killer cells and lymphocytes in pregnant women compared with women in the follicular phase of the ovarian cycle. Fertil. Steril.77, 1032–1037 (2002).
  • Ekerfelt C, Mattiesen L, Ernerudh J. Paternal leukocytes selectively increase secretion of IL-4 in peripheral blood during normal pregnancies: demonstrated by a novel one-way MLC measuring cytokine secretion. Am. J. Reprod. Immunol.38(5), 320–326 (1997).
  • Raghupathy R, Makhseed M, Azizieh F, Omu A, Gupta M, Fahrat R. Cytokine production by maternal lymphocytes during normal human pregnancy and in unexplained recurrent spontaneous abortion. Hum. Reprod.16, 949–955 (2000).
  • Svensson L, Arvola M, Sällström MA, Holmdahl R, Mattsson R. The cytokines IL-4 and IL-10 are not crucial for the completion of allogeneic pregnancy in mice. J. Reprod. Immunol.51(1), 3–7 (2001).
  • Murphy SP, Fast LD, Hanna NN, Sharma S. Uterine NK cells mediate inflammation-induced fetal demise in IL-10-null mice. J. Immunol.15(6), 4084–4090 (2005).
  • Westendorp R, van Dunne FM, Kirkwood TB, Helmerhorst FM, Huizinga TW. Optimizing human fertility and survival. Nat. Med.7, 873 (2001).
  • Piccinni MP. T-cell cytokines in pregnancy. Am. J. Reprod. Immunol.47, 289–294 (2002).
  • Chaouat G, Zourbas S, Ostojic S et al. A brief review of recent data on some cytokine expression at the materno-foetal interface which might challenge the classical Th1/Th2 dichotomy. J. Reprod. Immunol.53, 241–256 (2002).
  • Nagaeva O, Jonsson L, Mincheva-Nilsson L. Dominant IL-10 and TGF-β mRNA expression in γδT cells of human early pregnancy decidua suggests immunoregulatory potential. Am. J. Reprod. Immunol.48, 9–17 (2002).
  • Plevyak M, Hanna N, Mayer S et al. Deficiency of decidual IL-10 in first trimester missed abortion: a lack of correlation with the decidual immune cell profile.Am. J. Reprod. Immunol.47, 242–250 (2002).
  • Matthiesen L, Berg G, Ernerudh J, Hakansson L. Lymphocyte subsets and mitogen stimulation of blood lymphocytes in normal pregnancy. Am. J. Reprod. Immunol.46, 318–322 (1999).
  • Matthiesen LS. Immune changes in pregnancy. Linköping University Medical Dissertations No 563. Faculty of Health Sciences, Sweden, 12–14 (1998).
  • Mincheva-Nilsson L, Hammarström S, Hammarström ML. Human decidual leukocytes from early pregnancy contain high numbers of γδ+ cells and show selective down-regulation of alloreactivity.J. Immunol.149, 2203–2211 (1992).
  • Jiang SP, Vacchio MS. Multiple mechanisms of peripheral T cell tolerance to the fetal “allograft”. J. Immunol.160, 3086–3090 (1998).
  • Baban B, Chandler P, McCool D, Marshall B, Munn DH, Mellor AL. Indoleamine 2,3,-dioxygenase expression is restricted to fetal trophoblast giant cells during mutine gestation and is maternal genome specific. J. Reprod. Immunol.61(2), 63–65 (2004).
  • Clark DA, Blois S, Kandil J, Handjiski B, Manuel J, Arck P. Reduced uterine indoleamine 2,3-dioxygenase versus increased Th1/Th2 cytokine ratios as a basis for occult and clinical pregnancy failure in mice and humans. Am. J. Reprod. Immunol.54, 203–216 (2005)
  • Miwa N, Hayakawa S, Miazaki S et al. IDO expression on decidual and peripheral blood dendritic cells and monocytes/macrophages after treatment with CTLA-4 or interferon-γ increase in normal pregnancy but decrease in spontaneous abortion. Mol. Hum. Reprod.11(12), 865–870 (2005).
  • Runic R, Lockwood CG, Ma Y, Dipasquale B, Guller S. Expression of Fas ligand by human cytotrophoblasts: implications in placentation and fetal survival. J. Clin. Endocrinol. Metab.81, 3119–3122 (1996).
  • Abrahams VM, Straszewski-Chavez SL, Guller S, Mor G. First trimester trophoblast cells secrete Fas ligand which induces immune cell apoptosis. Mol. Hum. Reprod.10(1), 55–63 (2004).
  • Frängsmyr L, Baranov V, Nagaeva O, Stendahl U, Kjellberg L, Mincheva-Nilsson L. Cytoplasmic microvesicular form of Fas ligand in human early placenta: swithching the tissue immune privilege hypothesis from cellular to vesicular level. Mol. Hum. Reprod.11(1), 35–41 (2005).
  • Vacchio MS, Hodes RJ. Fetal expression of Fas ligand is necessary and sufficient for induction of CD8 T cell tolerance to the fetal antigen H-Y during pregnancy. J. Immunol.174(8), 4657–4661 (2005).
  • Szekeres-Bartho J, Barakonyi A, Miko E, Polgar B, Palkovics T. The role of γδT cells in the feto-maternal relationship. Semin. Immunol.13, 229–233 (2001).
  • Barakonyi A, Kovacs KT, Miko E, Szereday L, Varga P, Szekeres-Bartho J. Recognition of nonclassical HLA class I antigens by γδT cells during pregnancy.J. Immunol.168, 2683–268 (2002).
  • Ntrivalas EI, Kwak-Kim JY, Gilman-Sachs A et al. Status of peripheral blood natural killer cells in women with recurrent spontaneous abortions and infertility of unknown aetiology.Hum. Reprod.16, 855–861 (2001).
  • Ntrivalas EI, Bowser CR, Kwak-Kim J, Beaman KD, Gilman-Sachs A. Expression of killer immunoglobulin-like receptors on peripheral blood NK cell subsets of women with recurrent spontaneous abortions or implantation failures. Am. J. Reprod. Immunol.53(5), 215–221 (2005).
  • Moffett A, Regan L, Braude P. Natural killer cells, miscarriage and infertility. Br. Med. J.329(7477), 1283–1285 (2004).
  • Sachs GP, Sargent I, Redman C. An innate view of human pregnancy. Immunol. Today20, 114–118 (1999).
  • Sacks GP, Redman CW, Sargent I. Monocytes are primed to produce the Th1 type cytokine IL-12 in normal human pregnancy: an intracellular flow cytometric analysis of peripheral blood mononuclear cells. Clin. Exp. Immunol.131(3), 393–395 (2005).
  • Sacks GP, Studena K, Sargent IL, Redman CW. Normal pregnancy and preeclampsia both produce inflammatory changes in peripheral blood lymphocytes akin to those of sepsis. Am. J. Obstet. Gynecol.179, 80–86 (1998).
  • Richani K, Soto E, Romero R et al. Normal pregnancy is characterized by systemic activation of the complement system. J. Matern. Fetal Neonat. Med.17(4), 239–245 (2005).
  • Holmes CH, Simpson KL, Okada H et al. Complement regulatory proteins at the fetomaternal interface during human placental development: distribution of CD59 by comparison with membrane cofactor protein (CD46) and decay accelerating factor (CD55). Eur. J. Immunol.22, 1579–1585 (1992).
  • Xu C, Mao D, Holers VM, Palanca B, Cheng AM, Molina H. A critical role for murine complement regulator Crry in fetomaternal tolerance. Science287, 498–501 (2000).
  • Holmlund U, Cebers G, Dahlfors AR et al. Expression and regulation of the pattern recognition receptors Toll-like receptor-2 and Toll-like-receptor-4 in the human placenta. Immunology107(1), 145–151 (2002).
  • Mor G, Romero R, Aldo PB Abrahams VM. Is the trophoblast an immune regulator? The role of Toll-like receptors during pregnancy. Crit. Rev. Immunol.25(5) 357–388 (2005).
  • Creasy R, Resnik R (Eds). Maternal–Fetal Medicine (5th edition).Saunders Philadelphia, PA, USA (2004).
  • Ostensen M, Villiger PM. Immunology of pregnancy – pregnancy as remission-inducing agent in rheumatoid arthritis. Transpl. Immunol.9, 155–160 (2002).
  • Mincheva-Nilsson L, Baranov V, Yeung MM, Hammarström S, Hammarström ML. Immunomorphologic studies of human decidua-associated lymphoid cells in normal early pregnancy. J. Immunol.152, 2020–2032 (1994).
  • Parr EL, Young LH, Parr MB, Young JD. Granulated metrial gland cells of pregnant mouse uterus are natural killer cells that contain perforin and serine esterases. J. Immunol.145, 2365–2372 (1990).
  • Sharma R, Bulmer D, Peel S. Effects of exogenous progesterone following ovariectomy on the metrial glands of pregnant mice. J. Anat.144, 189–199 (1986).
  • Kopcow HD, Allan DS, Chen X et al. Human decidual NK cells form immature activating synapses and are not cytotoxic. Proc. Natl Acad. Sci. USA102(43), 15563–15568 (2005).
  • Saito S, Nishikawa K, Morii T et al. Cytokine production by CD16-CD56bright natural killer cells in human early pregnancy decidua. Int. Immunol.5, 559–563 (1993).
  • Croy BA, Esadeg S, Chantakru S et al. Update on pathways regulating the activation of uterine natural killer cells, their interactions with decidual spiral arteries and homing of their precursors to the uterus. J. Reprod. Immunol.59(2), 175–191 (2003).
  • Barber EM, Pollard JW. The uterine NK cell population requires IL-15 but these cells are not required for pregnancy nor the resolution of a Listeria monocytogenes infection.J. Immunol.171(1), 37–46 (2003).
  • Hanna J, Fitchett J, Rowe T et al. Proteomic analysis of human natural killer cells: insights on new potential NK immune functions. Mol. Immunol.42(4), 425–431 (2005).
  • Haller H, Radillo O, Rukavina D et al. An immunohistochemical study of leukocytes in human endometrium, first and third trimester basal decidua. J. Reprod. Immunol.23, 41–49 (1993).
  • Saito S, Nishikawa K, Morii T et al. Expression of activation antigens CD69, HLA-DR, interleukin-2 receptor-α (IL-2R α) and IL-2R β on T cells of human decidua at an early stage of pregnancy. Immunology75, 710–712 (1992).
  • Meeusen ENT, Bischof RJ, Lee C-S. Comparative T-cell responses during pregnancy in large animals and humans. Am. J. Reprod. Immunol.46, 169–179 (2001).
  • Mincheva-Nilsson L, Kling M, Hammarstrom S et al. γδ T cells of human early pregnancy decidua: evidence for local proliferation, phenotypic heterogeneity, and extrathymic differentiation. J. Immunol.159, 3266–3277 (1997).
  • Arck P, Dietl J, Clark D. From the decidual cell internet: trophoblast-recognizing T cells. Biol. Reprod.60, 227–233 (1999).
  • Hayday A, Tigelaar K. Immunoregulation in the tissues by γδT cells. Nat. Rev. Immunol.3, 233–242 (2003)
  • Mincheva-Nilsson L, Nagaeva O, Sundquist KG et al. γδ T cells of early pregnancy decidua: evidence for cytotoxic potency. Int. Immunol.12, 585–596 (2000).
  • Hayakawa S, Saito S, Nemoto N et al. Expression of recombinase-activating genes (RAG-1 and RAG-2) in human decidual mononuclear cells. J. Immunol.153, 4934–4939 (1994).
  • Fink PJ, McMahan CJ. Lymphocytes rearrange, edit and revise their antigen receptors to be useful yet safe. Immunol. Today21, 561–566 (2000).
  • Tibbetts TA, DeMayo F, Rich S et al. Progesterone receptor in the thymus are required for thymic involution during pregnancy and for normal fertility. Proc. Natl Acad. Sci. USA96, 12021–12026 (1999).
  • Lachapelle MH, Miron P, Hemmings R et al. Endometrial T, B, and NK cells in patients with recurrent abortion. J. Immunol.156, 4027–4034 (1996).
  • Ito K, Karasawa M, Kawano T et al. Involvement of decidual Vα 14 NKT cells in abortion. Proc. Natl Acad. Sci. USA97, 740–744 (2000).
  • Dang Y, Heyborne KD. Cutting edge: regulation of uterine NKT cells by a fetal class I molecule other than CD1. J. Immunol.166, 3641–3644 (2001).
  • Tsuda H, Sakai M, Michimata T et al. Characterization of NKT cells in human peripheral blood and decidual lymphocytes. Am. J. Reprod. Immunol.45, 295–302 (2001).
  • Bluestone JA, Abbas AK. Natural versus adaptive regulatory T cells. Nat. Rev. Immunol.3, 253–257 (2003).
  • Hori S, Nomura T, Sakaguchi S. Control of regulatory T cells development by the transcription factor Foxp3. Science299, 1057–1061 (2003).
  • Zheng SG, Wang JH, Gray JD et al. Natural and induced CD4+CD25+ cells educate CD4+CD25- cells to develop suppressive activity: the role of IL-2, TGF-β, and IL-10. J. Immunol.172, 5213–5221 (2004).
  • Fallarino F, Grohmann U, Hwang KW et al. Modulation of tryptophan catabolism by regulatory T cells. Nat. Immunol.4, 1206–1212 (2003).
  • Shao J, Jacobs AR, Johnson VV, Mayer L. Activation of CD8+ regulatory T cells by human placental trophoblasts. J. Immunol.174(12), 7539–7547 (2005).
  • Sasaki Y, Sakai M, Miyazaki S et al. Decidual and peripheral blood CD4+CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases. Mol. Hum. Reprod.10, 347–353 (2004).
  • Zenclussen AC, Gerlof K, Zenclussen ML et al. Regulatory T cells induce a privileged tolerant microenvironment at the fetal-maternal interface. Eur. J. Immunol.36(1), 82–92 (2006).
  • Mincheva-Nilsson L. Pregnancy and γ/δ T cells: taking on the hard questions. Reprod. Biol. Endocrinol.120, 1–11 (2003).
  • Kammerer U, Eggert AO, Kapp M et al. Unique appearance of proliferating antigen-presenting cells expressing DC-SIGN (CD209) in the decidua of early human pregnancy. Am. J. Pathol.162(3), 887–896 (2003).
  • Mellor A, Munn HD. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat. Rev. Immunol.4, 762–774 (2004).
  • Heikkinen J, Mottonen M, Komi J, Alanen A, Lassila O. Phenotypic characterization of human decidual macrophages. Clin. Exp. Immunol.131(3), 498–505 (2003).
  • Lea RG, Clark DA. Macrophages and migratory cells in endometrium relevant to implantation. Baillieres Clin. Obstet. Gynecol.5, 25–29 (1991).
  • Mor G, Romero R, Abrahams VM. Macrophages and pregnancy. In: Immunology of Pregnancy (Chapter 6).Mor G (Ed.). Eurekah.com (2004).
  • Sotosek V, Laskarin G, Strbo N et al. Decidual macrophages are the population of adherent cells which regulate perforin expression in cytolytic cells. Am. J. Reprod. Immunol.42, 76–82 (1999).
  • Burk MR, Troeger C, Brinkhaus R, Holzgreve W, Hahn S. Severely reduced presence of tissue macrophages in the basal plate of pre-eclamptic placentae. Placenta22, 309–316 (2001).
  • Abraham S, Indrasigh I, Vettivel S, Ghandi G. Gross morphology and ultrastructure of dendritic cells in the normal human decidua. Clin. Anat.13, 177–180 (2000).
  • Kammerer U, Schoppet M, McLellan AD et al. Human decidua contains potent immunostimulatory CD83+ dendritic cells.Am. J. Pathol.157, 159–169 (2000).
  • Mincheva-Nilsson L, Baranov V. The nature and role of the decidual T cells. In: Immunology of Pregnancy. Mor G (Ed.). Eureka.com (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.