13
Views
1
CrossRef citations to date
0
Altmetric
Review

Antiviral immunotherapy: emerging approaches with relevance to cutaneous disease

&
Pages 619-627 | Published online: 10 Jan 2014

References

  • Pasare C, Medzhitov R. Toll-like receptors: linking innate and adaptive immunity. Adv. Exp. Med. Biol.560, 11–18 (2005).
  • Seth RB, Sun L, Chen ZJ. Antiviral innate immunity pathways. Cell Res.16(2), 141–147 (2006).
  • Paladino P, Cummings DT, Noyce RS, Mossman KL. The IFN-independent response to virus particle entry provides a first line of antiviral defense that is independent of TLRs and retinoic acid-inducible gene I. J. Immunol.177(11), 8008–8016 (2006).
  • Bowie AG. Translational mini-review series on Toll-like receptors: recent advances in understanding the role of Toll-like receptors in anti-viral immunity. Clin Exp Immunol.147(2), 217–226 (2007).
  • Flacher V, Bouschbacher M, Verronese E et al. Human Langerhans cells express a specific TLR profile and differentially respond to viruses and Gram-positive bacteria. J. Immunol.177(11), 7959–7967 (2006).
  • Renn CN, Sanchez DJ, Ochoa MT et al. TLR activation of Langerhans cell-like dendritic cells triggers an antiviral immune response. J. Immunol.177(1), 298–305 (2006).
  • Pivarcsi A. Toll-like receptor 9-independent suppression of skin inflammation by oligonucleotides. J. Invest. Dermatol.127(4), 746–748 (2007).
  • Lebre MC, van der Aar AM, van Baarsen L et al. Human keratinocytes express functional Toll-like receptor 3,4,5 and 9. J. Invest. Dermatol.127(2), 331–341 (2007).
  • Galiana-Arnoux D, Imler JL. Toll-like receptors and innate antiviral immunity. Tissue Antigens67(4), 267–276 (2006).
  • Zinkernagel RM, Doherty PC. Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature248(450), 701–702 (1974).
  • Barton GM. Viral recognition by Toll-like receptors. Semin. Immunol.19(1), 33–40 (2007).
  • Bieback K, Lien E, Klagge IM et al. Hemagglutinin protein of wild-type measles virus activates toll-like receptor 2 signaling. J. Virol.76(17), 8729–8736 (2002).
  • Jude BA, Pobezinskaya Y, Bishop J et al. Subversion of the innate immune system by a retrovirus. Nat. Immunol.4(6), 573–578 (2003).
  • Hasan UA, Bates E, Takeshita F et al. TLR9 expression and function is abolished by the cervical cancer-associated human papillomavirus type 16. J. Immunol.178(5), 3186–3197 (2007).
  • Harte MT, Haga IR, Maloney G et al. The poxvirus protein A52R targets Toll-like receptor signaling complexes to suppress host defense. J. Exp. Med.197(3), 343–351 (2003).
  • Balachandran S, Venkataraman T, Fisher PB, Barber GN. Fas-associated death domain-containing protein-mediated antiviral innate immune signaling involves the regulation of Irf7. J. Immunol.178(4), 2429–2439 (2007).
  • Yu Y, Wang SE, Hayward GS. The KSHV immediate-early transcription factor RTA encodes ubiquitin E3 ligase activity that targets IRF7 for proteosome-mediated degradation. Immunity22(1), 59–70 (2005).
  • Andrejeva J, Childs KS, Young DF et al. The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-β promoter. Proc. Natl Acad. Sci. USA101(49), 17264–17269 (2004).
  • Li K, Foy E, Ferreon JC et al. Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proc. Natl Acad. Sci. USA102(8), 2992–2997 (2005).
  • Foy E, Li K, Sumpter R Jr et al. Control of antiviral defenses through hepatitis C virus disruption of retinoic acid-inducible gene-I signaling. Proc. Natl Acad. Sci. USA102(8), 2986–2991 (2005).
  • Assier E, Marin-Esteban V, Haziot A, Maggi E, Charron D, Mooney N. TLR7/8 agonists impair monocyte-derived dendritic cell differentiation and maturation. J. Leukoc. Biol.81(1), 221–228 (2007).
  • Kanzler H, Barrat FJ, Hessel EM, Coffman RL. Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nat. Med.13(5), 552–559 (2007).
  • Finberg RW, Wang JP, Kurt-Jones EA. Toll like receptors and viruses. Rev. Med. Virol.17(1), 35–43 (2007).
  • Samanta M, Iwakiri D, Kanda T, Imaizumi T, Takada K. EB virus-encoded RNAs are recognized by RIG-I and activate signaling to induce type I IFN. EMBO J.25(18), 4207–4214 (2006).
  • Alter G, Suscovich TJ, Teigen N et al. Single-stranded RNA derived from HIV-1 serves as a potent activator of NK cells. J. Immunol.178(12), 7658–7666 (2007).
  • Zhu J, Martinez J, Huang X, Yang Y. Innate immunity against vaccinia virus is mediated by TLR2 and requires TLR-independent production of IFN-β. Blood109(2), 619–625 (2007).
  • Stack J, Haga IR, Schroder M et al. Vaccinia virus protein A46R targets multiple Toll-like-interleukin-1 receptor adaptors and contributes to virulence. J. Exp. Med.201(6), 1007–1018 (2005).
  • Lenz P, Lowy DR, Schiller JT. Papillomavirus virus-like particles induce cytokines characteristic of innate immune responses in plasmacytoid dendritic cells. Eur. J. Immunol.35(5), 1548–1556 (2005).
  • Carter WA, Ventura D, Shapiro DE, Strayer DR, Gillespie DH, Hubbell HR. Mismatched double-stranded RNA, Ampligen (poly(I): poly(C12U), demonstrates antiviral and immunostimulatory activities in HIV disease. Int. J. Immunopharmacol.13(Suppl. 1), 69–76 (1991).
  • Padalko E, Nuyens D, De Palma A et al. The interferon inducer ampligen [poly(I)-poly(C12U)] markedly protects mice against coxsackie B3 virus-induced myocarditis. Antimicrob. Agents Chemother.48(1), 267–274 (2004).
  • Gowen BB, Wong MH, Jung KH et al. TLR3 is essential for the induction of protective immunity against Punta Toro Virus infection by the double-stranded RNA (dsRNA), poly(I:C12U), but not Poly(I:C): differential recognition of synthetic dsRNA molecules. J. Immunol.178(8), 5200–5208 (2007).
  • Ashkar AA, Yao XD, Gill N, Sajic D, Patrick AJ, Rosenthal KL. Toll-like receptor (TLR)-3, but not TLR4, agonist protects against genital herpes infection in the absence of inflammation seen with CpG DNA. J. Infect. Dis.190(10), 1841–1849 (2004).
  • Schulz O, Diebold SS, Chen M et al. Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature433(7028), 887–892 (2005).
  • Wang JP, Asher DR, Chan M, Kurt-Jones EA, Finberg RW. Cutting Edge: Antibody-mediated TLR7-dependent recognition of viral RNA. J. Immunol.178(6), 3363–3367 (2007).
  • Gorden KB, Gorski KS, Gibson SJ et al. Synthetic TLR agonists reveal functional differences between human TLR7 and TLR8. J. Immunol.174(3), 1259–1268 (2005).
  • Schon M, Schon MP. The antitumoral mode of action of imiquimod and other imidazoquinolines. Curr. Med. Chem.14(6), 681–687 (2007).
  • Hattermann K, Picard S, Borgeat M, Leclerc P, Pouliot M, Borgeat P. The Toll-like receptor 7/8-ligand resiquimod (R-848) primes human neutrophils for leukotriene B4, prostaglandin E2 and platelet-activating factor biosynthesis. FASEB J.21(7), 1575–1585 (2007).
  • Camateros P, Tamaoka M, Hassan M et al. Chronic asthma induced airway remodeling is prevented by the Toll-like receptor 7/8 ligand S28463. Am. J. Respir. Crit. Care Med.175(12), 1241–1249 (2007).
  • Vidal D. Topical imiquimod: mechanism of action and clinical applications. Mini Rev. Med. Chem.6(5), 499–503 (2006).
  • Theos AU, Cummins R, Silverberg NB, Paller AS. Effectiveness of imiquimod cream 5% for treating childhood molluscum contagiosum in a double-blind, randomized pilot trial. Cutis74(2), 134–142 (2004).
  • Schacker TW, Conant M, Thoming C, Stanczak T, Wang Z, Smith M. Imiquimod 5-percent cream does not alter the natural history of recurrent herpes genitalis: a Phase II, randomized, double-blind, placebo-controlled study. Antimicrob. Agents Chemother.46(10), 3243–3248 (2002).
  • Spruance SL, Tyring SK, Smith MH, Meng TC. Application of a topical immune response modifier, resiquimod gel, to modify the recurrence rate of recurrent genital herpes: a pilot study. J. Infect. Dis.184(2), 196–200 (2001).
  • Krieg AM. Therapeutic potential of Toll-like receptor 9 activation. Nat. Rev. Drug Discov.5(6), 471–484 (2006).
  • Kerkmann M, Lochmann D, Weyermann J et al. Immunostimulatory properties of CpG-oligonucleotides are enhanced by the use of protamine nanoparticles. Oligonucleotides16(4), 313–322 (2006).
  • De Clercq E. Antiviral drugs in current clinical use. J. Clin. Virol.30(2), 115–133 (2004).
  • Agrawal S, Martin RR. Was induction of HIV-1 through TLR9? J. Immunol.171(4), 1621 (2003).
  • Schlaepfer E, Audige A, von Beust B et al. CpG oligodeoxynucleotides block human immunodeficiency virus type 1 replication in human lymphoid tissue infected ex vivo. J. Virol.78(22), 12344–12354 (2004).
  • McCluskie MJ, Cartier JL, Patrick AJ et al. Treatment of intravaginal HSV-2 infection in mice: a comparison of CpG oligodeoxynucleotides and resiquimod (R-848). Antiviral Res.69(2), 77–85 (2006).
  • Dorn A, Ludwig RJ, Bock A et al. Oligonucleotides suppress IL-8 in skin keratinocytes in vitro and offer anti-inflammatory properties in vivo. J. Invest. Dermatol.127(4), 846–854 (2007).
  • Vabulas RM, Ahmad-Nejad P, da Costa C et al. Endocytosed Hsp60s use Toll-like receptor 2 (TLR2) and TLR4 to activate the Toll/interleukin-1 receptor signaling pathway in innate immune cells. J. Biol. Chem.276(33), 31332–31339 (2001).
  • Kol A, Lichtman AH, Finberg RW, Libby P, Kurt-Jones EA. Cutting edge: heat shock protein (Hsp) 60 activates the innate immune response: CD14 is an essential receptor for Hsp60 activation of mononuclear cells. J. Immunol.164(1), 13–17 (2001).
  • Becker T, Hartl FU, Wieland F. CD40, an extracellular receptor for binding and uptake of Hsp70-peptide complexes. J. Cell Biol.158(7), 1277–1285 (2002).
  • Binder RJ, Han DK, Srivastava PK. CD91: a receptor for heat shock protein gp96. Nat. Immunol.1(2), 151–155 (2000).
  • Delneste Y, Magistrelli G, Gauchat J et al. Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity17(3), 353–362 (2002).
  • Udono H, Levey DL, Srivastava PK. Cellular requirements for tumor-specific immunity elicited by heat shock proteins: tumor rejection antigen gp96 primes CD8+ T cells in vivo. Proc. Natl Acad. Sci. USA91(8), 3077–3081 (1994).
  • Heikema A, Agsteribbe E, Wilschut J, Huckriede A. Generation of heat shock protein-based vaccines by intracellular loading of gp96 with antigenic peptides. Immunol. Lett.57(1–3) 69–74 (1997).
  • Zugel U, Sponaas AM, Neckermann J, Schoel B, Kaufmann SH. gp96-peptide vaccination of mice against intracellular bacteria. Infect. Immun.69(6), 4164–4167 (2001).
  • Suzue K, Young RA. Heat shock proteins as immunological carriers and vaccines. EXS77, 451–465 (1996).
  • Hoos A, Levey DL. Vaccination with heat shock protein-peptide complexes: from basic science to clinical applications. Expert Rev. Vaccines2(3), 369–379 (2003).
  • Palefsky JM, Berry JM, Jay N et al. A trial of SGN-00101 (HspE7) to treat high-grade anal intraepithelial neoplasia in HIV-positive individuals. AIDS20(8), 1151–1155 (2006).
  • von Nida J, Quirk C. Successful treatment of in-transit melanoma metastases using topical 2–4 dinitrochlorobenzene. Australas. J. Dermatol.44(4), 277–280 (2003).
  • Liu SJ, Tsai JP, Shen CR et al. Induction of a distinct CD8 Tnc17 subset by transforming growth factor-{β} and interleukin-6. J. Leukoc. Biol. (2007) (Epub ahead of print).
  • He D, Wu L, Kim HK, Li H, Elmets CA, Xu H. CD8+ IL-17-producing T cells are important in effector functions for the elicitation of contact hypersensitivity responses. J. Immunol.177(10), 6852–6858 (2006).
  • Zhang Z, Andoh A, Inatomi O et al. Interleukin-17 and lipopolysaccharides synergistically induce cyclooxygenase-2 expression in human intestinal myofibroblasts. J. Gastroenterol. Hepatol.20(4), 619–627 (2005).
  • Smiley KL, McNeal MM, Basu M, Choi AH, Clements JD, Ward RL. Association of γ interferon and interleukin-17 production in intestinal CD4+ T cells with protection against rotavirus shedding in mice intranasally immunized with VP6 and the adjuvant LT(R192G). J. Virol.81(8), 3740–3748 (2007).
  • Pestka J, Zhou HR. Toll-like receptor priming sensitizes macrophages to proinflammatory cytokine gene induction by deoxynivalenol and other toxicants. Toxicol. Sci.92(2), 445–455 (2006).
  • Aiba S, Katz SI. Phenotypic and functional characteristics of in vivo-activated Langerhans cells. J. Immunol.145(9), 2791–2796 (1990).
  • Iijima N, Yanagawa Y, Onoe K. Role of early- or late-phase activation of p38 mitogen-activated protein kinase induced by tumour necrosis factor-α or 2,4-dinitrochlorobenzene during maturation of murine dendritic cells. Immunology110(3), 322–328 (2003).
  • Boisleve F, Kerdine-Romer S, Rougier-Larzat N, Pallardy M. Nickel and DNCB induce CCR7 expression on human dendritic cells through different signalling pathways: role of TNF-α and MAPK. J. Invest. Dermatol.123(3), 494–502 (2004).
  • Ebner S, Lenz A, Reider D, Fritsch P, Schuler G, Romani N. Expression of maturation-/migration-related molecules on human dendritic cells from blood and skin. Immunobiology198(5) 568–587 (1998).
  • Staquet MJ, Sportouch M, Jacquet C, Schmitt D, Guesnet J, Peguet-Navarro J. Moderate skin sensitizers can induce phenotypic changes on in vitro generated dendritic cells. Toxicol. In Vitro.18(4), 493–500 (2004).
  • Schwarzenberger K, Udey MC. Contact allergens and epidermal proinflammatory cytokines modulate Langerhans cell E-cadherin expression in situ. J. Invest. Dermatol.106(3), 553–558 (1996).
  • Weiss JM, Sleeman J, Renkl AC et al. An essential role for CD44 variant isoforms in epidermal Langerhans cell and blood dendritic cell function. J. Cell Biol.137(5), 1137–1147 (1997).
  • Aiba S, Nakagawa S, Ozawa H, Miyake K, Yagita H, Tagami H. Up-regulation of α 4 integrin on activated Langerhans cells: analysis of adhesion molecules on Langerhans cells relating to their migration from skin to draining lymph nodes. J. Invest. Dermatol.100(2), 143–147 (1993).
  • Kobayashi Y. Langerhans’ cells produce type IV collagenase (MMP-9) following epicutaneous stimulation with haptens. Immunology90(4), 496–501 (1997).
  • Martin SF. T lymphocyte-mediated immune responses to chemical haptens and metal ions: implications for allergic and autoimmune disease. Int. Arch. Allergy Immunol.134(3), 186–198 (2004).
  • Ribas A, Butterfield LH, Glaspy JA, Economou JS. Current developments in cancer vaccines and cellular immunotherapy. J. Clin. Oncol.21(12), 2415–2432 (2003).
  • O’Neill D, Bhardwaj N. Generation of autologous peptide- and protein-pulsed dendritic cells for patient-specific immunotherapy. Methods Mol. Med.109, 97–112 (2005).
  • Lewis HM. Topical immunotherapy of refractory warts. Cutis12, 863–867 (1973).
  • Upitis JA, Krol A. The use of diphenylcyclopropenone in the treatment of recalcitrant warts. J. Cutan. Med. Surg.6(3), 214–217 (2002).
  • Orecchia G, Douville H, Santagostino L, Rabbiosi G. Treatment of multiple relapsing warts with diphenciprone. Dermatologica177(4), 225–231 (1988).
  • Puig L, Alegre M, Cuatrecasas M, De Moragas JM. Erythema multiforme-like reaction following diphencyprone treatment of plane warts. Int. J. Dermatol.33(3), 201–203 (1994).
  • Johansson E, Forstrom L. Dinitrochlorbenzene (DNCB) treatment of viral warts. A 5-year follow-up study. Acta Derm. Venereol.64(6), 529–533 (1984).
  • Petrelli R, Cotlier E, Robins S, Stoessel K. Dinitrochlorobenzene immunotherapy of recurrent squamous papilloma of the conjunctiva. Ophthalmology88(12), 1221–1225 (1981).
  • Dall’Oglio F, Nasca MR, D’Agata O, Micali G. Adult and paediatric contact immunotherapy with squaric acid dibutylester (SADBE) for recurrent, multiple, resistant, mucocutaneous anogenital warts. Sex Transm. Infect.78(4), 309–310 (2002).
  • Naylor MF, Neldner KH, Yarbrough GK, Rosio TJ, Iriondo M, Yeary J. Contact immunotherapy of resistant warts. J. Am. Acad. Dermatol.19(4), 679–683 (1988).
  • Rampen FH, Steijlen PM. Diphencyprone in the management of refractory palmoplantar and periungual warts: an open study. Dermatology193(3), 236–238 (1996).
  • Micali G, Dall’Oglio F, Tedeschi A, Pulvirenti N, Nasca MR. Treatment of cutaneous warts with squaric acid dibutylester: a decade of experience. Arch. Dermatol.136(4), 557–558 (2000).
  • Weisshaar E, Neumann HJ, Gollnick H. Successful treatment of disseminated facial verrucae with contact immunotherapy. Eur. J. Dermatol.8(7), 488–491 (1998).
  • Pollock B, Highet AS. An interesting response to diphencyprone (DPC) sensitization on facial warts: review of DPC treatment for viral warts. J. Dermatolog. Treat.13(2), 47–50 (2002).
  • Georgala S, Danopoulou I, Katsarou A. Dinitrochlorobenzene treatment of condylomata acuminata. Australas. J. Dermatol.30(2), 103–105 (1989).
  • Guthrie D, Way S. Immunotherapy of non-clinical vaginal cancer. Lancet2(7947), 1242–1243 (1975).
  • Levis WR, Holzer AM, Leonard LK. Topical diphenylcyclopropenone as a measure of immune competence in HIV-seropositive subjects. J. Drugs Dermatol.5(9), 853–858 (2006).
  • Callard RE. Decision-making by the immune response. Immunol. Cell. Biol.85(4), 300–305 (2007).
  • Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol.4(4), 330–336 (2003).
  • Kastelein RA, Hunter CA, Cua DJ. Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation. Annu. Rev. Immunol.25, 221–242 (2007).
  • Weaver CT, Hatton RD, Mangan PR, Harrington LE. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu. Rev. Immunol.25, 821–852 (2007).
  • Ivanov II, McKenzie BS, Zhou L et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell126(6), 1121–1133 (2006).
  • Bettelli E, Carrier Y, Gao W et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature441(7090), 235–238 (2006).
  • Weaver CT, Harrington LE, Mangan PR, Gavrieli M, Murphy KM. Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity24(6), 677–688 (2006).
  • Khader SA, Bell GK, Pearl JE et al. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat. Immunol.8(4), 369–377 (2007).
  • Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity24(2), 179–189 (2006).
  • Ye P, Rodriguez FH, Kanaly S et al. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J. Exp. Med.194(4), 519–527 (2001).
  • Mangan PR, Harrington LE, O’Quinn DB et al. Transforming growth factor-β induces development of the T(H)17 lineage. Nature441(7090), 231–234 (2006).
  • Leibundgut-Landmann S, Gross O, Robinson MJ et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat. Immunol.8(6), 630–638 (2007).
  • Maek-A-Nantawat W, Buranapraditkun S, Klaewsongkram J, Ruxrungthum K. Increased interleukin-17 production both in helper T cell subset Th17 and CD4-negative T cells in human immunodeficiency virus infection. Viral Immunol.20(1), 66–75 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.