121
Views
5
CrossRef citations to date
0
Altmetric
Reviews

Neuroprotection in glaucoma: current and emerging approaches

, &

References

  • Quigley HA, Broman AT. The number of people with glaucoma worldwide in. 2010 and 2020. Br J Ophthalmol 2006;90(3):262-7
  • Quigley HA. Glaucoma. Lancet 2011;377(9774):1367-77
  • Kendell KR, Quigley HA, Kerrigan LA, et al. Primary open-angle glaucoma is not associated with photoreceptor loss. Invest Ophthalmol Vis Sci 1995;36(1):200-5
  • Baltmr A, Duggan J, Nizari S, et al. Neuroprotection in glaucoma – is there a future role? Exp Eye Res 2010;91(5):554-66
  • Garcia-Valenzuela E, Shareef S, Walsh J, Sharma SC. Programmed cell death of retinal ganglion cells during experimental glaucoma. Exp Eye Res 1995;61(1):33-44
  • Dahlmann-Noor AH, Vijay S, Limb GA, Khaw PT. Strategies for optic nerve rescue and regeneration in glaucoma and other optic neuropathies. Drug Discov Today 2010;15(7-8):287-99
  • Levin LA. Retinal ganglion cells and neuroprotection for glaucoma. Surv Ophthalmol 2003;48(Suppl 1):S21-4
  • Goldberg I. Is this neuroprotective drug good for my glaucoma patients? Some key factors in clinical decision-making. Can J Ophthalmol 2007;42(3):418-20
  • Chang EE, Goldberg JL. Glaucoma 2.0: neuroprotection, neuroregeneration, neuroenhancement. Ophthalmology 2012;119(5):979-86
  • Quigley HA. Clinical trials for glaucoma neuroprotection are not impossible. Curr Opin Ophthalmol 2012;23(2):144-54
  • Levin LA. Extrapolation of animal models of optic nerve injury to clinical trial design. J Glaucoma 2004;13(1):1-5
  • Knels L, Worm M, Wendel M, et al. Effects of advanced glycation end products-inductor glyoxal and hydrogen peroxide as oxidative stress factors on rat retinal organ cultures and neuroprotection by UK-14,304. J Neurochem 2008;106(4):1876-87
  • Wheeler LA, Lai R, Woldemussie E. From the lab to the clinic: activation of an alpha-2 agonist pathway is neuroprotective in models of retinal and optic nerve injury. Eur J Ophthalmol 1999;9(Suppl 1):S17-21
  • WoldeMussie E, Ruiz G, Wijono M, Wheeler LA. Neuroprotection of retinal ganglion cells by brimonidine in rats with laser-induced chronic ocular hypertension. Invest Ophthalmol Vis Sci 2001;42(12):2849-55
  • Donello JE, Padillo EU, Webster ML, et al. Alpha(2)-adrenoceptor agonists inhibit vitreal glutamate and aspartate accumulation and preserve retinal function after transient ischemia. J Pharmacol Exp Ther 2001;296(1):216-23
  • Pinar-Sueiro S, Urcola H, Rivas MA, Vecino E. Prevention of retinal ganglion cell swelling by systemic brimonidine in a rat experimental glaucoma model. Clin Experiment Ophthalmol 2011;39(8):799-807
  • Araie M, Yamazaki Y, Sugiyama K, et al. [Phase III clinical trial of brimonidine in patients with primary open-angle glaucoma and ocular hypertension – comparison of the effects of brimonidine monotherapy versus timolol monotherapy, or combination brimonidine/prostaglandins therapy versus combination placebo/prostaglandins therapy]. Nihon Ganka Gakkai Zasshi 2012;116(10):955-66
  • Joshi SR, Akat PB, Ramanand JB, et al. Evaluation of brimonidine-timolol fixed combination in patients of primary open-angle glaucoma. Indian J Ophthalmol 2013;61(12):765-7
  • Moisseiev E, Kurtz S, Lazar M, Shemesh G. Intraocular pressure reduction using a fixed combination of timolol maleate 0.5% and brimonidine tartrate 0.2% administered three times daily. Clin Ophthalmol 2013;7:1269-73
  • Krupin T, Liebmann JM, Greenfield DS, et al. A randomized trial of brimonidine versus timolol in preserving visual function: results from the Low-Pressure Glaucoma Treatment Study. Am J Ophthalmol 2011;151(4):671-81
  • Pfeiffer N, Lamparter J, Gericke A, et al. Neuroprotection of medical IOP-lowering therapy. Cell Tissue Res 2013;353(2):245-51
  • Cordeiro MF, Levin LA. Clinical evidence for neuroprotection in glaucoma. Am J Ophthalmol 2011;152(5):715-16
  • Ammar DA, Hughes BA, Thompson DA. Neuropeptide Y and the retinal pigment epithelium: receptor subtypes, signaling, and bioelectrical responses. Invest Ophthalmol Vis Sci 1998;39(10):1870-8
  • Santos-Carvalho A, Elvas F, Alvaro AR, et al. Neuropeptide Y receptors activation protects rat retinal neural cells against necrotic and apoptotic cell death induced by glutamate. Cell Death Dis 2013;4:e636
  • Alvaro AR, Martins J, Costa AC, et al. Neuropeptide Y protects retinal neural cells against cell death induced by ecstasy. Neuroscience 2008;152(1):97-105
  • Alvaro AR, Rosmaninho-Salgado J, Ambrósio AF, Cavadas C. Neuropeptide Y inhibits [Ca2+]i changes in rat retinal neurons through NPY Y1, Y4, and Y5 receptors. J Neurochem 2009;109(5):1508-15
  • D’Angelo I, Brecha NC. Y2 receptor expression and inhibition of voltage-dependent Ca2+ influx into rod bipolar cell terminals. Neuroscience 2004;125(4):1039-49
  • Uckermann O, Wolf A, Kutzera F, et al. Glutamate release by neurons evokes a purinergic inhibitory mechanism of osmotic glial cell swelling in the rat retina: activation by neuropeptide Y. J Neurosci Res 2006;83(4):538-50
  • Blazynski C, Mosinger JL, Cohen AI. Comparison of adenosine uptake and endogenous adenosine-containing cells in mammalian retina. Vis Neurosci 1989;2(2):109-16
  • Braas KM, Zarbin MA, Snyder SH. Endogenous adenosine and adenosine receptors localized to ganglion cells of the retina. Proc Natl Acad Sci USA 1987;84(11):3906-10
  • Konno T, Uchibori T, Nagai A, et al. Effect of 2-(6-cyano-1-hexyn-1-yl)adenosine on ocular blood flow in rabbits. Life Sci 2007;80(12):1115-22
  • Kaelin-Lang A, Jurklies B, Niemeyer G. Effects of adenosinergic agents on the vascular resistance and on the optic nerve response in the perfused cat eye. Vision Res 1999;39(6):1059-68
  • Polska E, Ehrlich P, Luksch A, et al. Effects of adenosine on intraocular pressure, optic nerve head blood flow, and choroidal blood flow in healthy humans. Invest Ophthalmol Vis Sci 2003;44(7):3110-14
  • Li B, Rosenbaum PS, Jennings NM, et al. Differing roles of adenosine receptor subtypes in retinal ischemia-reperfusion injury in the rat. Exp Eye Res 1999;68(1):9-17
  • Larsen AK, Osborne NN. Involvement of adenosine in retinal ischemia. Studies on the rat. Invest Ophthalmol Vis Sci 1996;37(13):2603-11
  • Hashimoto E, Kage K, Ogita T, et al. Adenosine as an endogenous mediator of hypoxia for induction of vascular endothelial growth factor mRNA in U-937 cells. Biochem Biophys Res Commun 1994;204(1):318-24
  • Zhong Y, Yang Z, Huang WC, Luo X. Adenosine, adenosine receptors and glaucoma: an updated overview. Biochim Biophys Acta 2013;1830(4):2882-90
  • Hartwick AT, Lalonde MR, Barnes S, Baldridge WH. Adenosine A1-receptor modulation of glutamate-induced calcium influx in rat retinal ganglion cells. Invest Ophthalmol Vis Sci 2004;45(10):3740-8
  • Wu JH, Zhang SH, Gao FJ, et al. RNAi screening identifies GSK3beta as a regulator of DRP1 and the neuroprotection of lithium chloride against elevated pressure involved in downregulation of DRP1. Neurosci Lett 2013;554:99-104
  • Park SW, Kim KY, Lindsey JD, et al. A selective inhibitor of drp1, mdivi-1, increases retinal ganglion cell survival in acute ischemic mouse retina. Invest Ophthalmol Vis Sci 2011;52(5):2837-43
  • Chuang DM, Wang Z, Chiu CT. GSK-3 as a target for lithium-induced neuroprotection against excitotoxicity in neuronal cultures and animal models of ischemic stroke. Front Mol Neurosci 2011;4:15
  • Forlenza OV, de Paula VJ, Machado-Vieira R, et al. Does lithium prevent Alzheimer’s disease? Drugs Aging 2012;29(5):335-42
  • Jammoul F, Dégardin J, Pain D, et al. Taurine deficiency damages photoreceptors and retinal ganglion cells in vigabatrin-treated neonatal rats. Mol Cell Neurosci 2010;43(4):414-21
  • Froger N, Jammoul F, Gaucher D, et al. Taurine is a crucial factor to preserve retinal ganglion cell survival. Adv Exp Med Biol 2013;775:69-83
  • Froger N, Cadetti L, Lorach H, et al. Taurine provides neuroprotection against retinal ganglion cell degeneration. PLoS One 2012;7(10):e42017
  • Shao A, Hathcock JN. Risk assessment for the amino acids taurine, L-glutamine and L-arginine. Regul Toxicol Pharmacol 2008;50(3):376-99
  • Yamori Y, Liu L, Mizushima S, et al. Male cardiovascular mortality and dietary markers in 25 population samples of 16 countries. J Hypertens 2006;24(8):1499-505
  • Mey J, Thanos S. Intravitreal injections of neurotrophic factors support the survival of axotomized retinal ganglion cells in adult rats in vivo. Brain Res 1993;602(2):304-17
  • Chen SD, Wang L, Zhang XL. Neuroprotection in glaucoma: present and future. Chin Med J (Engl) 2013;126(8):1567-77
  • Wilson AM, Di Polo A. Gene therapy for retinal ganglion cell neuroprotection in glaucoma. Gene Ther 2012;19(2):127-36
  • Cheng L, Sapieha P, Kittlerova P, et al. TrkB gene transfer protects retinal ganglion cells from axotomy-induced death in vivo. J Neurosci 2002;22(10):3977-86
  • Harvey AR, Kamphuis W, Eggers R, et al. Intravitreal injection of adeno-associated viral vectors results in the transduction of different types of retinal neurons in neonatal and adult rats: a comparison with lentiviral vectors. Mol Cell Neurosci 2002;21(1):141-57
  • Borras T. Advances in glaucoma treatment and management: gene therapy. Invest Ophthalmol Vis Sci 2012;53(5):2506-10
  • Sena DF, Lindsley K. Neuroprotection for treatment of glaucoma in adults. Cochrane Database Syst Rev 2013;2:CD006539
  • Johnson TV, Tomarev SI. Rodent models of glaucoma. Brain Res Bull 2010;81(2-3):349-58
  • Danias J, Shen F, Kavalarakis M, et al. Characterization of retinal damage in the episcleral vein cauterization rat glaucoma model. Exp Eye Res 2006;82(2):219-28
  • Levkovitch-Verbin H, Quigley HA, Martin KR, et al. Translimbal laser photocoagulation to the trabecular meshwork as a model of glaucoma in rats. Invest Ophthalmol Vis Sci 2002;43(2):402-10
  • Sappington RM, Carlson BJ, Crish SD, Calkins DJ. The microbead occlusion model: a paradigm for induced ocular hypertension in rats and mice. Invest Ophthalmol Vis Sci 2010;51(1):207-16
  • Chrysostomou V, Trounce IA, Crowston JG. Mechanisms of retinal ganglion cell injury in aging and glaucoma. Ophthalmic Res 2010;44(3):173-8
  • Cone FE, Gelman SE, Son JL, et al. Differential susceptibility to experimental glaucoma among 3 mouse strains using bead and viscoelastic injection. Exp Eye Res 2010;91(3):415-24
  • Cioffi GA, Wang L, Fortune B, et al. Chronic ischemia induces regional axonal damage in experimental primate optic neuropathy. Arch Ophthalmol 2004;122(10):1517-25
  • Harada C, Namekata K, Guo X, et al. ASK1 deficiency attenuates neural cell death in GLAST-deficient mice, a model of normal tension glaucoma. Cell Death Differ 2010;17(11):1751-9
  • Liu Y, Pang IH. Challenges in the development of glaucoma neuroprotection therapy. Cell Tissue Res 2013;353(2):253-60
  • Howell GR, Soto I, Ryan M, et al. Deficiency of complement component 5 ameliorates glaucoma in DBA/2J mice. J Neuroinflammation 2013;10(1):76
  • Artes PH, Hutchison DM, Nicolela MT, et al. Threshold and variability properties of matrix frequency-doubling technology and standard automated perimetry in glaucoma. Invest Ophthalmol Vis Sci 2005;46(7):2451-7
  • Heijl A, Bengtsson B, Hyman L, et al. Natural history of open-angle glaucoma. Ophthalmology 2009;116(12):2271-6
  • Caprioli J, Zeyen T. A critical discussion of the rates of progression and causes of optic nerve damage in glaucoma: international Glaucoma Think Tank II: July 25-26, 2008, Florence, Italy. J Glaucoma 2009;18(6 Suppl):S1-21
  • Leske MC, Heijl A, Hyman L, et al. Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology 2007;114(11):1965-72
  • Araie M, Shirato S, Yamazaki Y, et al. Visual field loss in patients with normal-tension glaucoma under topical nipradilol or timolol: subgroup and subfield analyses of the nipradilol-timolol study. Jpn J Ophthalmol 2010;54(4):278-85
  • Drance SM. A comparison of the effects of betaxolol, timolol, and pilocarpine on visual function in patients with open-angle glaucoma. J Glaucoma 1998;7(4):247-52
  • Koseki N, Araie M, Yamagami J, et al. Effects of oral brovincamine on visual field damage in patients with normal-tension glaucoma with low-normal intraocular pressure. J Glaucoma 1999;8(2):117-23
  • Sawada A, Kitazawa Y, Yamamoto T, et al. Prevention of visual field defect progression with brovincamine in eyes with normal-tension glaucoma. Ophthalmology 1996;103(2):283-8
  • Garcia-Medina M, Garcia-Medina JJ, Garrido-Fernandez P, et al. Central corneal thickness, intraocular pressure, and degree of myopia in an adult myopic population aged 20 to 40 years in southeast Spain: determination and relationships. Clin Ophthalmol 2011;5:249-58
  • Chen YJ, Tai MC, Cheng JH, et al. The longitudinal changes of the visual field in an Asian population with primary angle-closure glaucoma with and without an acute attack. J Ocul Pharmacol Ther 2012;28(5):529-35
  • Quigley HA, Addicks EM, Green WR. Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy. Arch Ophthalmol 1982;100(1):135-46
  • Chauhan BC, Garway-Heath DF, Goñi FJ, et al. Practical recommendations for measuring rates of visual field change in glaucoma. Br J Ophthalmol 2008;92(4):569-73
  • Hoffmann EM, Miglior S, Zeyen T, et al. The Heidelberg retina tomograph ancillary study to the European glaucoma prevention study: study design and baseline factors. Acta Ophthalmol 2013;91(8):e612-19
  • Goren D, Demirel S, Fortune B, Gardiner SK. Correlating Perimetric Indices With Three Nerve Fiber Layer Thickness Measures. Optom Vis Sci 2013;90(12):1353-60
  • Rao HL, Addepalli UK, Chaudhary S, et al. Ability of different scanning protocols of spectral domain optical coherence tomography to diagnose preperimetric glaucoma. Invest Ophthalmol Vis Sci 2013;54(12):7252-7
  • Lisboa R, Weinreb RN, Medeiros FA. Combining structure and function to evaluate glaucomatous progression: implications for the design of clinical trials. Curr Opin Pharmacol 2013;13(1):115-22
  • Harwerth RS, Wheat JL, Fredette MJ, Anderson DR. Linking structure and function in glaucoma. Prog Retin Eye Res 2010;29(4):249-71
  • Medeiros FA, Lisboa R, Weinreb RN, et al. A combined index of structure and function for staging glaucomatous damage. Arch Ophthalmol 2012;130(9):1107-16
  • Weinreb RN, Kaufman PL. Glaucoma research community and FDA look to the future, II: NEI/FDA Glaucoma Clinical Trial Design and Endpoints Symposium: measures of structural change and visual function. Invest Ophthalmol Vis Sci 2011;52(11):7842-51
  • Cordeiro MF, Guo L, Luonget V, et al. Real-time imaging of single nerve cell apoptosis in retinal neurodegeneration. Proc Natl Acad Sci USA 2004;101(36):13352-6
  • Tilley BC, Palesch YY, Kieburtz K, et al. Optimizing the ongoing search for new treatments for Parkinson disease: using futility designs. Neurology 2006;66(5):628-33
  • NINDS NET-PD Investigators. A randomized, double-blind, futility clinical trial of creatine and minocycline in early Parkinson disease. Neurology 2006;66(5):664-71
  • Lang AE, Melamed E, Poewe W, Rascol O. Trial designs used to study neuroprotective therapy in Parkinson’s disease. Mov Disord 2013;28(1):86-95
  • Padmanabhan SK, Berry S, Dragalin V, Krams M. A bayesian dose-finding design adapting to efficacy and tolerability response. J Biopharm Stat 2012;22(2):276-93
  • Wang SJ, Hung HM, O’Neill R. Adaptive design clinical trials and trial logistics models in CNS drug development. Eur Neuropsychopharmacol 2011;21(2):159-66
  • Meurer WJ, Barsan WG. Spinal Cord Injury Neuroprotection and the Promise of Flexible Adaptive Clinical Trials. World Neurosurg 2013. [Epub ahead of print]
  • Mi MY, Betensky RA. An analysis of adaptive design variations on the sequential parallel comparison design for clinical trials. Clin Trials 2013;10(2):207-15
  • Broberg P. Sample size re-assessment leading to a raised sample size does not inflate type I error rate under mild conditions. BMC Med Res Methodol 2013;13:94
  • Committee for medicinal products for human use (CHMP). Reflection Paper on methodological issues in confirmatory trials planned with an adaptive design. European Medicines Agency; London, UK: 2007
  • Barker AD, Sigman CC, Kelloff GJ, et al. I-SPY 2: an adaptive breast cancer trial design in the setting of neoadjuvant chemotherapy. Clin Pharmacol Ther 2009;86(1):97-100
  • Esserman LJ, Woodcock J. Accelerating identification and regulatory approval of investigational cancer drugs. Jama 2011;306(23):2608-9
  • Wang SJ, Hung HM, O’Neill R. Regulatory perspectives on multiplicity in adaptive design clinical trials throughout a drug development program. J Biopharm Stat 2011;21(4):846-59
  • Berry SM, Spinelli W, Littman GS, et al. A Bayesian dose-finding trial with adaptive dose expansion to flexibly assess efficacy and safety of an investigational drug. Clin Trials 2010;7(2):121-35
  • Elkind MS, Sacco RL, MacArthur RB, et al. The Neuroprotection with Statin Therapy for Acute Recovery Trial (NeuSTART): an adaptive design phase I dose-escalation study of high-dose lovastatin in acute ischemic stroke. Int J Stroke 2008;3(3):210-18
  • Leber P. Observations and suggestions on antidementia drug development. Alzheimer Dis Assoc Disord 1996;10(Suppl 1):31-5
  • Cummings J, Gould H, Zhong K. Advances in designs for Alzheimer’s disease clinical trials. Am J Neurodegener Dis 2012;1(3):205-16
  • Olanow CW, Rascol O, Hauser R, et al. ADAGIO Study Investigators. A double-blind, delayed-start trial of rasagiline in Parkinson’s disease. N Engl J Med 2009;361(13):1268-78
  • Schapira AH, Albrecht S, Barone P, et al. Rationale for delayed-start study of pramipexole in Parkinson’s disease: the PROUD study. Mov Disord 2010;25(11):1627-32
  • Zhang RY, Leon AC, Chuang-Stein C, Romano SJ. A new proposal for randomized start design to investigate disease-modifying therapies for Alzheimer disease. Clin Trials 2011;8(1):5-14
  • Shimazawa M, Nakajima Y, Mashima Y, Hara H. Docosahexaenoic acid (DHA) has neuroprotective effects against oxidative stress in retinal ganglion cells. Brain Res 2009;1251:269-75
  • Schnebelen C, Pasquis B, Salinas-Navarro M, et al. A dietary combination of omega-3 and omega-6 polyunsaturated fatty acids is more efficient than single supplementations in the prevention of retinal damage induced by elevation of intraocular pressure in rats. Graefes Arch Clin Exp Ophthalmol 2009;247(9):1191-203
  • Juravleva E, Barbakadze T, Mikeladze D, Kekelidze T. Creatine enhances survival of glutamate-treated neuronal/glial cells, modulates Ras/NF-kappaB signaling, and increases the generation of reactive oxygen species. J Neurosci Res 2005;79(1-2):224-30
  • Siu AW, Ortiz GG, Benitez-King G, et al. Effects of melatonin on the nitric oxide treated retina. Br J Ophthalmol 2004;88(8):1078-81
  • Tang Q, Hu Y, Cao Y. Neuroprotective effect of melatonin on retinal ganglion cells in rats. J Huazhong Univ Sci Technolog Med Sci 2006;26(2):235-7, 253
  • Cazevieille C, Osborne NN. Retinal neurones containing kainate receptors are influenced by exogenous kainate and ischaemia while neurones lacking these receptors are not -- melatonin counteracts the effects of ischaemia and kainate. Brain Res 1997;755(1):91-100
  • Thiagarajan G, Chandani S, Harinarayana Rao S, et al. Molecular and cellular assessment of ginkgo biloba extract as a possible ophthalmic drug. Exp Eye Res 2002;75(4):421-30
  • Hirooka K, Tokuda M, Miyamoto O, et al. The Ginkgo biloba extract (EGb 761) provides a neuroprotective effect on retinal ganglion cells in a rat model of chronic glaucoma. Curr Eye Res 2004;28(3):153-7
  • Chung HS, Harris A, Kristinsson JK, et al. Ginkgo biloba extract increases ocular blood flow velocity. J Ocul Pharmacol Ther 1999;15(3):233-40
  • Eckert A, Keil U, Scherping I, et al. Stabilization of mitochondrial membrane potential and improvement of neuronal energy metabolism by Ginkgo biloba extract EGb 761. Ann N Y Acad Sci 2005;1056:474-85
  • Aydemir O, Nazıroğlu M, Celebi S, et al. Antioxidant effects of alpha-, gamma- and succinate-tocopherols in guinea pig retina during ischemia-reperfusion injury. Pathophysiology 2004;11(3):167-71
  • Nakajima Y, Inokuchi Y, Nishi M, et al. Coenzyme Q10 protects retinal cells against oxidative stress in vitro and in vivo. Brain Res 2008;1226:226-33
  • Nucci C, Tartaglione R, Cerulli A, et al. Retinal damage caused by high intraocular pressure-induced transient ischemia is prevented by coenzyme Q10 in rat. Int Rev Neurobiol 2007;82:397-406
  • Lee D, Kim KY, Shim MS, et al. Coenzyme Q10 ameliorates oxidative stress and prevents mitochondrial alteration in ischemic retinal injury. Apoptosis 2013. [Epub ahead of print]
  • Zhang B, Safa R, Rusciano D, Osborne NN. Epigallocatechin gallate, an active ingredient from green tea, attenuates damaging influences to the retina caused by ischemia/reperfusion. Brain Res 2007;1159:40-53
  • Yang SW, Lee BR, Koh JW. Protective effects of epigallocatechin gallate after UV irradiation in cultured human retinal pigment epithelial cells. Korean J Ophthalmol 2007;21(4):232-7
  • Sattler MB, Merkler D, Maier K, et al. Neuroprotective effects and intracellular signaling pathways of erythropoietin in a rat model of multiple sclerosis. Cell Death Differ 2004;11(Suppl 2):S181-92
  • Kilic U, Kilic E, Soliz J, et al. Erythropoietin protects from axotomy-induced degeneration of retinal ganglion cells by activating ERK-1/-2. FASEB J 2005;19(2):249-51
  • Bakalash S, Kessler A, Mizrahi T, et al. Antigenic specificity of immunoprotective therapeutic vaccination for glaucoma. Invest Ophthalmol Vis Sci 2003;44(8):3374-81
  • Ben Simon GJ, Bakalash S, Aloni E, Rosner M. A rat model for acute rise in intraocular pressure: immune modulation as a therapeutic strategy. Am J Ophthalmol 2006;141(6):1105-11
  • Li X, Qian S.H, Sun XH. [Protection of autoimmunity induced by copolymer-1 on optic nerve: experiment with rat glaucoma models]. Zhonghua Yi Xue Za Zhi 2008;88(30):2152-4
  • Laengle UW, Trendelenburg AU, Markstein R, et al. GLC756 decreases TNF-alpha via an alpha2 and beta2 adrenoceptor related mechanism. Exp Eye Res 2006;83(5):1246-51
  • Laengle UW, Markstein R, Pralet D, et al. Effect of GLC756, a novel mixed dopamine D1 receptor antagonist and dopamine D2 receptor agonist, on TNF-alpha release in vitro from activated rat mast cells. Exp Eye Res 2006;83(6):1335-9
  • Ishii Y, Kwong JM, Caprioli J. Retinal ganglion cell protection with geranylgeranylacetone, a heat shock protein inducer, in a rat glaucoma model. Invest Ophthalmol Vis Sci 2003;44(5):1982-92
  • Caprioli J, Ishii Y, Kwong JM. Retinal ganglion cell protection with geranylgeranylacetone, a heat shock protein inducer, in a rat glaucoma model. Trans Am Ophthalmol Soc 2003;101:39-50; discussion 50-1
  • Chen HS, Lipton SA. The chemical biology of clinically tolerated NMDA receptor antagonists. J Neurochem 2006;97(6):1611-26
  • WoldeMussie E, Yoles E, Schwartz M, et al. Neuroprotective effect of memantine in different retinal injury models in rats. J Glaucoma 2002;11(6):474-80
  • Yucel YH, Gupta N, Zhang Q, et al. Memantine protects neurons from shrinkage in the lateral geniculate nucleus in experimental glaucoma. Arch Ophthalmol 2006;124(2):217-25
  • Hare WA, Gupta N, Zhang Q, et al. Efficacy and safety of memantine treatment for reduction of changes associated with experimental glaucoma in monkey, I: functional measures. Invest Ophthalmol Vis Sci 2004;45(8):2625-39
  • Guo L, Salt TE, Maass A, et al. Assessment of neuroprotective effects of glutamate modulation on glaucoma-related retinal ganglion cell apoptosis in vivo. Invest Ophthalmol Vis Sci 2006;47(2):626-33
  • Tsuda K. Neuroprotective effects of MK-801 and catecholamine release in the central nervous system. Stroke 2004;35(5):e96
  • Chaudhary P, Ahmed F, Sharma SC. MK801-a neuroprotectant in rat hypertensive eyes. Brain Res 1998;792(1):154-8
  • Otori Y, Wei JY, Barnstable CJ. Neurotoxic effects of low doses of glutamate on purified rat retinal ganglion cells. Invest Ophthalmol Vis Sci 1998;39(6):972-81
  • Guo L, Salt TE, Luong V, et al. Targeting amyloid-beta in glaucoma treatment. Proc Natl Acad Sci USA 2007;104(33):13444-9
  • Lorenzo A, Yankner BA. Beta-amyloid neurotoxicity requires fibril formation and is inhibited by Congo red. Proc Natl Acad Sci USA 1994;91(25):12243-7
  • Yamamoto R, Yoneda S, Hara H. Neuroprotective effects of beta-secretase inhibitors against rat retinal ganglion cell death. Neurosci Lett 2004;370(1):61-4
  • Hare WA, WoldeMussie E, Weinreb RN, et al. Efficacy and safety of memantine treatment for reduction of changes associated with experimental glaucoma in monkey, II: structural measures. Invest Ophthalmol Vis Sci 2004;45(8):2640-51
  • Miguel-Hidalgo JJ, Alvarez XA, Cacabelos R, Quack G. Neuroprotection by memantine against neurodegeneration induced by beta-amyloid(1-40). Brain Res 2002;958(1):210-21
  • Zwart I, Hill AJ, Al-Allaf F, et al. Umbilical cord blood mesenchymal stromal cells are neuroprotective and promote regeneration in a rat optic tract model. Exp Neurol 2009;216(2):439-48
  • Hu Y, Tan HB, Wang XM, et al. Bone marrow mesenchymal stem cells protect against retinal ganglion cell loss in aged rats with glaucoma. Clin Interv Aging 2013;8:1467-70
  • Johnson TV, Bull ND, Hunt DP, et al. Neuroprotective effects of intravitreal mesenchymal stem cell transplantation in experimental glaucoma. Invest Ophthalmol Vis Sci 2010;51(4):2051-9
  • Voulgari-Kokota A, Fairless R, Karamita M, et al. Mesenchymal stem cells protect CNS neurons against glutamate excitotoxicity by inhibiting glutamate receptor expression and function. Exp Neurol 2012;236(1):161-70
  • Bull ND, Limb GA, Martin KR. Human Muller stem cell (MIO-M1) transplantation in a rat model of glaucoma: survival, differentiation, and integration. Invest Ophthalmol Vis Sci 2008;49(8):3449-56
  • Song WT, Zhang XY, Xia XB. Atoh7 promotes the differentiation of retinal stem cells derived from Muller cells into retinal ganglion cells by inhibiting Notch signaling. Stem Cell Res Ther 2013;4(4):94
  • Aoki H, Hara A, Niwa M, et al. Transplantation of cells from eye-like structures differentiated from embryonic stem cells in vitro and in vivo regeneration of retinal ganglion-like cells. Graefes Arch Clin Exp Ophthalmol 2008;246(2):255-65
  • Crigler L, Robey RC, Asawachaicharn A, et al. Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol 2006;198(1):54-64
  • Johnson TV, Dekorver NW, Levasseur VA, et al. Identification of retinal ganglion cell neuroprotection conferred by platelet-derived growth factor through analysis of the mesenchymal stem cell secretome. Brain 2013;137(Pt 2):503-19
  • Harper MM, Grozdanic SD, Blits B, et al. Transplantation of BDNF-secreting mesenchymal stem cells provides neuroprotection in chronically hypertensive rat eyes. Invest Ophthalmol Vis Sci 2011;52(7):4506-15
  • Hambright D, Park KY, Brooks M, et al. Long-term survival and differentiation of retinal neurons derived from human embryonic stem cell lines in un-immunosuppressed mouse retina. Mol Vis 2012;18:920-36
  • Park HY, Kim JH, Sun Kim H, Park CK. Stem cell-based delivery of brain-derived neurotrophic factor gene in the rat retina. Brain Res 2012;1469:10-23
  • Manuguerra-Gagne R, Boulos PR, Ammar A, et al. Transplantation of mesenchymal stem cells promotes tissue regeneration in a glaucoma model through laser-induced paracrine factor secretion and progenitor cell recruitment. Stem Cells 2013;31(6):1136-48
  • Li N, Li XR, Yuan JQ. Effects of bone-marrow mesenchymal stem cells transplanted into vitreous cavity of rat injured by ischemia/reperfusion. Graefes Arch Clin Exp Ophthalmol 2009;247(4):503-14
  • Yu S, Tanabe T, Dezawa M, et al. Effects of bone marrow stromal cell injection in an experimental glaucoma model. Biochem Biophys Res Commun 2006;344(4):1071-9
  • Zhou X, Xia XB, Xiong SQ. Neuro-protection of retinal stem cells transplantation combined with copolymer-1 immunization in a rat model of glaucoma. Mol Cell Neurosci 2013;54:1-8
  • Zhao T, Li Y, Tang L, et al. Protective effects of human umbilical cord blood stem cell intravitreal transplantation against optic nerve injury in rats. Graefes Arch Clin Exp Ophthalmol 2011;249(7):1021-8
  • Mead B, Logan A, Berry M, et al. Intravitreally transplanted dental pulp stem cells promote neuroprotection and axon regeneration of retinal ganglion cells after optic nerve injury. Invest Ophthalmol Vis Sci 2013;54(12):7544-56
  • Hellstrom M, Pollett MA, Harvey AR. Post-injury delivery of rAAV2-CNTF combined with short-term pharmacotherapy is neuroprotective and promotes extensive axonal regeneration after optic nerve trauma. J Neurotrauma 2011;28(12):2475-83
  • Di Polo A, Aigner LJ, Dunn RJ, et al. Prolonged delivery of brain-derived neurotrophic factor by adenovirus-infected Muller cells temporarily rescues injured retinal ganglion cells. Proc Natl Acad Sci USA 1998;95(7):3978-83
  • Isenmann S, Klöcker N, Gravel C, Bähr M. Short communication: protection of axotomized retinal ganglion cells by adenovirally delivered BDNF in vivo. Eur J Neurosci 1998;10(8):2751-6
  • Miyazaki M, Ikeda Y, Yonemitsu Y, et al. Pigment epithelium-derived factor gene therapy targeting retinal ganglion cell injuries: neuroprotection against loss of function in two animal models. Hum Gene Ther 2011;22(5):559-65
  • Leaver SG, Cui Q, Plant GW, et al. AAV-mediated expression of CNTF promotes long-term survival and regeneration of adult rat retinal ganglion cells. Gene Ther 2006;13(18):1328-41
  • Mo X, Yokoyama A, Oshitari T, et al. Rescue of axotomized retinal ganglion cells by BDNF gene electroporation in adult rats. Invest Ophthalmol Vis Sci 2002;43(7):2401-5
  • Ishikawa H, Takano M, Matsumoto N, et al. Effect of GDNF gene transfer into axotomized retinal ganglion cells using in vivo electroporation with a contact lens-type electrode. Gene Ther 2005;12(4):289-98
  • Bonfanti L, Strettoi E, Chierzi S, et al. Protection of retinal ganglion cells from natural and axotomy-induced cell death in neonatal transgenic mice overexpressing bcl-2. J Neurosci 1996;16(13):4186-94
  • Malik JM, Shevtsova Z, Bähr M, Kügler S. Long-term in vivo inhibition of CNS neurodegeneration by Bcl-XL gene transfer. Mol Ther 2005;11(3):373-81
  • Lingor P, Koeberle P, Kügler S, Bähr M. Down-regulation of apoptosis mediators by RNAi inhibits axotomy-induced retinal ganglion cell death in vivo. Brain 2005;128(Pt 3):550-8
  • Ju WK, Kim K-Y, Duong-Polk KX, et al. Increased optic atrophy type 1 expression protects retinal ganglion cells in a mouse model of glaucoma. Mol Vis 2010;16:1331-42
  • McKinnon SJ, Lehman DM, Kerrigan-Baumrind LA, et al. Caspase activation and amyloid precursor protein cleavage in rat ocular hypertension. Invest Ophthalmol Vis Sci 2002;43(4):1077-87
  • Ahmed Z, Kalinski H, Berry M, et al. Ocular neuroprotection by siRNA targeting caspase-2. Cell Death Dis 2011;2:e173
  • Koeberle PD, Wang Y, Schlichter LC. Kv1.1 and Kv1.3 channels contribute to the degeneration of retinal ganglion cells after optic nerve transection in vivo. Cell Death Differ 2010;17(1):134-44
  • Hegazy KA, Dunn MW, Sharma SC. Functional human heme oxygenase has a neuroprotective effect on adult rat ganglion cells after pressure-induced ischemia. Neuroreport 2000;11(6):1185-9
  • Fischer D, Petkova V, Thanos S, Benowitz LI. Switching mature retinal ganglion cells to a robust growth state in vivo: gene expression and synergy with RhoA inactivation. J Neurosci 2004;24(40):8726-40
  • Aggarwal SP, Zinman L, Simpson E, et al. Safety and efficacy of lithium in combination with riluzole for treatment of amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled trial. Lancet Neurol 2010;9(5):481-8
  • Gordon PH, Cheung YK, Levin B, et al. A novel, efficient, randomized selection trial comparing combinations of drug therapy for ALS. Amyotroph Lateral Scler 2008;9(4):212-22
  • Knafl GJ, Schoenthaler A, Ogedegbe G. Secondary analysis of electronically monitored medication adherence data for a cohort of hypertensive African-Americans. Patient Prefer Adherence 2012;6:207-19
  • Elkind MS, Sacco RL, Macarthur RB, et al. High-dose lovastatin for acute ischemic stroke: results of the phase I dose escalation neuroprotection with statin therapy for acute recovery trial (NeuSTART). Cerebrovasc Dis 2009;28(3):266-75
  • Selmaj K, Li DK, Hartung HP, et al. Siponimod for patients with relapsing-remitting multiple sclerosis (BOLD): an adaptive, dose-ranging, randomised, phase 2 study. Lancet Neurol 2013;12(8):756-67
  • Lewis RJ, Viele K, Broglio K, et al. An adaptive, phase II, dose-finding clinical trial design to evaluate L-carnitine in the treatment of septic shock based on efficacy and predictive probability of subsequent phase III success. Crit Care Med 2013;41(7):1674-8
  • Geiger MJ, Skrivanek Z, Gaydos B, et al. An adaptive, dose-finding, seamless phase 2/3 study of a long-acting glucagon-like peptide-1 analog (dulaglutide): trial design and baseline characteristics. J Diabetes Sci Technol 2012;6(6):1319-27
  • Stephenson JJ, Nemunaitis J, Joy AA, et al. Randomized phase 2 study of the cyclin-dependent kinase inhibitor dinaciclib (MK-7965) versus erlotinib in patients with non-small cell lung cancer. Lung Cancer 2014;83(2):219-23
  • Bleck T, Cock H, Chamberlain J, et al. The established status epilepticus trial 2013. Epilepsia 2013;54(Suppl 6):89-92
  • Lee SM, Hackshaw A. A potential new enriching trial design for selecting non-small-cell lung cancer patients with no predictive biomarker for trials based on both histology and early tumor response: further analysis of a thalidomide trial. Cancer Med 2013;2(3):360-6
  • Kaufmann P, Thompson JL, Levy G, et al. Phase II trial of CoQ10 for ALS finds insufficient evidence to justify phase III. Ann Neurol 2009;66(2):235-44
  • Ginsberg MD, Palesch YY, Hill MD, et al. High-dose albumin treatment for acute ischaemic stroke (ALIAS) Part 2: a randomised, double-blind, phase 3, placebo-controlled trial. Lancet Neurol 2013;12(11):1049-58
  • Lewis RA, McDermott MP, Herrmann DN, et al. High-dosage ascorbic acid treatment in Charcot-Marie-Tooth disease type 1A: results of a randomized, double-masked, controlled trial. JAMA Neurol 2013;70(8):981-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.