135
Views
11
CrossRef citations to date
0
Altmetric
Review

Sensory nerve regeneration after epithelium wounding in normal and diabetic corneas

, , , &

References

  • Atkinson MA, Maclaren NK. The pathogenesis of insulin-dependent diabetes mellitus. N Engl J Med 1994;331(21):1428-36
  • Atkinson MA. The pathogenesis and natural history of type 1 diabetes. Cold Spring Harb Perspect Med 2012;2(11):a007641
  • Beck-Nielsen H, Groop LC. Metabolic and genetic characterization of prediabetic states. Sequence of events leading to non-insulin-dependent diabetes mellitus. J Clin Invest 1994;94(5):1714-21
  • Kahn CR. Banting Lecture. Insulin action, diabetogenes, and the cause of type II diabetes. Diabetes 1994;43(8):1066-84
  • Clark CM, Lee DA. Prevention and treatment of the complications of diabetes mellitus. N Engl J Med 1995;332(18):1210-17
  • Cousen P, Cackett P, Bennett H, et al. Tear production and corneal sensitivity in diabetes. J Diabetes Complications 2007;21(6):371-3
  • Saito J, Enoki M, Hara M, et al. Correlation of corneal sensation, but not of basal or reflex tear secretion, with the stage of diabetic retinopathy. Cornea 2003;22(1):15-18
  • Figueroa-Ortiz LC, Jimenez Rodriguez E, Garcia-Ben A, et al. Study of tear function and the conjunctival surface in diabetic patients. Arch Soc Esp Oftalmol 2011;86(4):107-12
  • Kaji Y. Prevention of diabetic keratopathy. Br J Ophthalmol 2005;89(3):254-5
  • Aiello LP, Gardner TW, King GL, et al. Diabetic retinopathy. Diabetes Care 1998;21(1):143-56
  • Didenko TN, Smoliakova GP, Sorokin EL, Egorov VV. Clinical and pathogenetic features of neurotrophic corneal disorders in diabetes. Vestn Oftalmol 1999;115(6):7-11
  • Friend J, Thoft RA. The diabetic cornea. Int Ophthalmol Clin 1984;24(4):111-23
  • Friend J, Ishii Y, Thoft RA. Corneal epithelial changes in diabetic rats. Ophthalmic Res 1982;14(4):269-78
  • Kabosova A, Kramerov AA, Aoki AM, et al. Human diabetic corneas preserve wound healing, basement membrane, integrin and MMP-10 differences from normal corneas in organ culture. Exp Eye Res 2003;77(2):211-17
  • Bikbova G, Oshitari T, Tawada A, et al. Corneal changes in diabetes mellitus. Curr Diabetes Rev 2012;8(4):294-302
  • Lockwood A, Hope-Ross M, Chell P. Neurotrophic keratopathy and diabetes mellitus. Eye (Lond) 2006;20(7):837-9
  • Frank RN. Diabetic retinopathy. N Engl J Med 2004;350(1):48-58
  • Rosenberg ME, Tervo TM, Immonen IJ, et al. Corneal structure and sensitivity in type 1 diabetes mellitus. Invest Ophthalmol Vis Sci 2000;41(10):2915-21
  • Taylor HR, Kimsey RA. Corneal epithelial basement membrane changes in diabetes. Invest Ophthalmol Vis Sci 1981;20(4):548-53
  • Azar DT, Spurr MS, Tisdale AS, et al. Altered epithelial-basement membrane interactions in diabetic corneas. Arch Ophthalmol 1992;110(4):537-40
  • McDermott AM, Xiao TL, Kern TS, et al. Non-enzymatic glycation in corneas from normal and diabetic donors and its effects on epithelial cell attachment in vitro. Optometry 2003;74(7):443-52
  • Friend J, Ishii Y, Thoft RA. Corneal epithelial changes in diabetic rats. Ophthalmic Res 1982;14(4):269-78
  • Quadrado MJ, Popper M, Morgado AM, et al. Diabetes and corneal cell densities in humans by in vivo confocal microscopy. Cornea 2006;25(7):761-8
  • Ljubimov AV, Huang ZS, Huang GH, et al. Human corneal epithelial basement membrane and integrin alterations in diabetes and diabetic retinopathy. J Histochem Cytochem 1998;46(9):1033-42
  • Zagon IS, Sassani JW, McLaughlin PJ. Insulin treatment ameliorates impaired corneal reepithelialization in diabetic rats. Diabetes 2006;55(4):1141-7
  • Xu K, Yu FS. Impaired epithelial wound healing and EGFR signaling pathways in the corneas of diabetic rats. Invest Ophthalmol Vis Sci 2011;52:3301-8
  • Wakuta M, Morishige N, Chikama T, et al. Delayed wound closure and phenotypic changes in corneal epithelium of the spontaneously diabetic Goto-Kakizaki rat. Invest Ophthalmol Vis Sci 2007;48(2):590-6
  • Inoue K, Okugawa K, Amano S, et al. Blinking and superficial punctate keratopathy in patients with diabetes mellitus. Eye 2005;19(4):418-21
  • Rehany U, Ishii Y, Lahav M, Rumelt S. Ultrastructural changes in corneas of diabetic patients: an electron-microscopy study. Cornea 2000;19(4):534-8
  • Yin J, Huang J, Chen C, et al. Corneal complications in streptozocin-induced type I diabetic rats. Invest Ophthalmol Vis Sci 2011;52(9):6589-96
  • Saini J, Khandalavla B. Corneal epithelial fragility in diabetes mellitus. Canadian J Ophthalmol 1995;30:142-6
  • Sato N, Nakamura M, Chikama T, Nishida T. Abnormal deposition of laminin and type IV collagen at corneal epithelial basement membrane during wound healing in diabetic rats. Jpn J Ophthalmol 1999;43(5):343-7
  • Kenney MC, Chwa M, Atilano SR, et al. Increased levels of catalase and cathepsin V/L2 but decreased TIMP-1 in keratoconus corneas: evidence that oxidative stress plays a role in this disorder. Invest Ophthalmol Vis Sci 2005;46(3):823-32
  • Xu KP, Li Y, Ljubimov AV, et al. High glucose suppresses epidermal growth factor receptor/phosphatidylinositol 3-kinase/Akt signaling pathway and attenuates corneal epithelial wound healing. Diabetes 2009;58(5):1077-85
  • Pflugfelder SC. Is autologous serum a tonic for the ailing corneal epithelium? Am J Ophthalmol 2006;142(2):316-17
  • Brightbill FS, Myers FL, Bresnick GH. Postvitrectomy keratopathy. Am J Ophthalmol 1978;85(5 Pt 1):651-5
  • Fukushi S, Merola LO, Tanaka M, et al. Reepithelialization of denuded corneas in diabetic rats. Exp Eye Res 1980;31(5):611-21
  • Schultz RO, Van Horn DL, Peters MA, et al. Diabetic keratopathy. Trans Am Ophthalmol Soc 1981;79:180-99
  • Ishibashi F, Kawasaki A, Yamanaka E, et al. Morphometric features of corneal epithelial basal cells, and their relationship with corneal nerve pathology and clinical factors in patients with type 2 diabetes. J Diabetes Investig 2013;4(5):492-501
  • Chang PY, Carrel H, Huang JS, et al. Decreased density of corneal basal epithelium and subbasal corneal nerve bundle changes in patients with diabetic retinopathy. Am J Ophthalmol 2006;142(3):488-90
  • Watanabe H, Katakami C, Miyata S, Negi A. Corneal disorders in KKAy mouse: a type 2 diabetes model. Jpn J Ophthalmol 2002;46(2):130-9
  • Cai D, Zhu M, Petroll WM, et al. The impact of type 1 diabetes mellitus on corneal epithelial nerve morphology and the corneal epithelium. Am J Pathol 2014;184(10):2662-70
  • Frueh BE, Korner U, Bohnke M. Confocal microscopy of the cornea in patients with diabetes. Klin Monbl Augenheilkd 1995;206(5):317-19
  • Modis LJr, Szalai E, Kertesz K, et al. Evaluation of the corneal endothelium in patients with diabetes mellitus type I and II. Histol Histopathol 2010;25(12):1531-7
  • Roszkowska AM, Tringali CG, Colosi P, et al. Corneal endothelium evaluation in type I and type II diabetes mellitus. Ophthalmologica 1999;213(4):258-61
  • Muller LJ, Marfurt CF, Kruse F, Tervo TM. Corneal nerves: structure, contents and function. Exp Eye Res 2003;76(5):521-42
  • Garcia-Hirschfeld J, Lopez-Briones LG, Belmonte C. Neurotrophic influences on corneal epithelial cells. Experimental Eye Res 1994;59(5):597-605
  • Wang F, Gao N, Yin J, Yu FS. Reduced innervation and delayed re-innervation after epithelial wounding in type 2 diabetic Goto-Kakizaki rats. Am J Pathol 2012;181(6):2058-66
  • Millodot M. A review of research on the sensitivity of the cornea. Ophthalmic Physiol Opt 1984;4(4):305-18
  • Dartt DA. Dysfunctional neural regulation of lacrimal gland secretion and its role in the pathogenesis of dry eye syndromes. Ocular Surface 2004;2(2):76-91
  • Heigle TJ, Pflugfelder SC. Aqueous tear production in patients with neurotrophic keratitis. Cornea 1996;15(2):135-8
  • Nishida T, Chikama T, Sawa M, et al. Differential contributions of impaired corneal sensitivity and reduced tear secretion to corneal epithelial disorders. Jpn J Ophthalmol 2012;56(1):20-5
  • Marfurt CF, Cox J, Deek S, et al. Anatomy of the human corneal innervation. Exp Eye Res 2010;90(4):478-92
  • MacIver MB, Tanelian DL. Free nerve ending terminal morphology is fiber type specific for A delta and C fibers innervating rabbit corneal epithelium. J Neurophysiol 1993;69(5):1779-83
  • Tanelian DL, Beuerman RW. Responses of rabbit corneal nociceptors to mechanical and thermal stimulation. Exp Neurol 1984;84(1):165-78
  • Gallar J, Pozo MA, Tuckett RP, Belmonte C. Response of sensory units with unmyelinated fibres to mechanical, thermal and chemical stimulation of the cat’s cornea. J Physiol 1993;468:609-22
  • Muller LJ, Pels L, Vrensen GF. Ultrastructural organization of human corneal nerves. Invest Ophthalmol Vis Sci 1996;37(4):476-88
  • Muller LJ, Vrensen GF, Pels L, et al. Architecture of human corneal nerves. Invest Ophthalmol Vis Sci 1997;5):985-94
  • Acosta MC, Belmonte C, Gallar J. Sensory experiences in humans and single-unit activity in cats evoked by polymodal stimulation of the cornea. J Physiol 2001;534(Pt. 2):511-25
  • Feng Y, Simpson TL. Nociceptive sensation and sensitivity evoked from human cornea and conjunctiva stimulated by CO2. Invest Ophthalmol Vis Sci 2003;44(2):529-32
  • Al-Aqaba MA, Fares U, Suleman H, et al. Architecture and distribution of human corneal nerves. Br J Ophthalmol 2010;94(6):784-9
  • Abdelkader H, Patel DV, McGhee C, et al. New therapeutic approaches in the treatment of diabetic keratopathy: a review. Clin Experiment Ophthalmol 2011;39(3):259-70
  • Okada Y, Reinach PS, Kitano A, et al. Neurotrophic keratopathy; its pathophysiology and treatment. Histol Histopathol 2010;25(6):771-80
  • Sacchetti M, Lambiase A. Diagnosis and management of neurotrophic keratitis. Clin Ophthalmol 2014;8:571-9
  • Bonini S, Rama P, Olzi D, et al. Neurotrophic keratitis. Eye 2003;17(8):989-95
  • Ishida N, Rao GN, del Cerro M, et al. Corneal nerve alterations in diabetes mellitus. Arch Ophthalmol 1984;102(9):1380-4
  • Li JY, Mai CK, Hu YH, et al. Experimental study of corneal innervation in diabetic mellitus. J Tongji Med Univ 1995;15(1):38-40
  • Hosotani H, Ohashi Y, Kinoshita S, et al. Effects of topical aldose reductase inhibitor CT-112 on corneal sensitivity of diabetic rats. Curr Eye Res 1996;15(10):1005-7
  • He J, Bazan HE. Mapping the nerve architecture of diabetic human corneas. Ophthalmology 2012;119(5):956-64
  • Davidson EP, Coppey LJ, Kardon RH, et al. Differences and similarities in development of corneal nerve damage and peripheral neuropathy and in diet-induced obesity and type 2 diabetic rats. Invest Ophthalmol Vis Sci 2014;55(3):1222-30
  • Yorek MS, Obrosov A, Shevalye H, et al. Effect of diet induced obesity or type 1 or type 2 diabetes on corneal nerves and peripheral neuropathy in C57Bl/6J mice. J Peripher Nerv Syst 2015. [Epub ahead of print]
  • Zhivov A, Winter K, Hovakimyan M, et al. Imaging and quantification of subbasal nerve plexus in healthy volunteers and diabetic patients with or without retinopathy. PLoS One 2013;8(1):e52157
  • Malik RA, Kallinikos P, Abbott CA, et al. Corneal confocal microscopy: a non-invasive surrogate of nerve fibre damage and repair in diabetic patients. Diabetologia 2003;46(5):683-8
  • Kallinikos P, Berhanu M, O’Donnell C, et al. Corneal nerve tortuosity in diabetic patients with neuropathy. Invest Ophthalmol Vis Sci 2004;45(2):418-22
  • Midena E, Brugin E, Ghirlando A, et al. Corneal diabetic neuropathy: a confocal microscopy study. J Refract Surg 2006;22(9 Suppl):S1047-52
  • Nitoda E, Kallinikos P, Pallikaris A, et al. Correlation of diabetic retinopathy and corneal neuropathy using confocal microscopy. Curr Eye Res 2012;37(10):898-906
  • Edwards K, Pritchard N, Vagenas D, et al. Utility of corneal confocal microscopy for assessing mild diabetic neuropathy: baseline findings of the LANDMark study. Clin Exp Optom 2012;95(3):348-54
  • Ziegler D, Papanas N, Zhivov A, et al. Early detection of nerve fiber loss by corneal confocal microscopy and skin biopsy in recently diagnosed type 2 diabetes. Diabetes 2014;63(7):2454-63
  • Messmer EM, Schmid-Tannwald C, Zapp D, et al. In vivo confocal microscopy of corneal small fiber damage in diabetes mellitus. Graefes Arch Clin Exp Ophthalmol 2010;248(9):1307-12
  • Premkumar LS, Pabbidi RM. Diabetic peripheral neuropathy: role of reactive oxygen and nitrogen species. Cell Biochem Biophys 2013;67(2):373-83
  • Jack M, Wright D. Role of advanced glycation endproducts and glyoxalase I in diabetic peripheral sensory neuropathy. Transl Res 2012;159(5):355-65
  • Dobrowsky RT, Rouen S, Yu C. Altered neurotrophism in diabetic neuropathy: spelunking the caves of peripheral nerve. J Pharmacol Exp Ther 2005;313(2):485-91
  • Sima AA, Kamiya H. Diabetic neuropathy differs in type 1 and type 2 diabetes. Ann N Y Acad Sci 2006;1084:235-49
  • Hossain P, Sachdev A, Malik RA. Early detection of diabetic peripheral neuropathy with corneal confocal microscopy. Lancet 2005;366(9494):1340-3
  • Schultz RO, Peters MA, Sobocinski K, et al. Diabetic keratopathy as a manifestation of peripheral neuropathy. Am J Ophthalmol 1983;96(3):368-71
  • Efron N, The Glenn A. Fry award lecture 2010: Ophthalmic markers of diabetic neuropathy. Optometry Vis Sci 2011;88(6):661-83
  • Lutty GA. Effects of diabetes on the eye. Invest Ophthalmol Vis Sci 2013;54(14):ORSF81-7
  • Pritchard N, Edwards K, Vagenas D, et al. Corneal sensitivity is related to established measures of diabetic peripheral neuropathy. Clin Exp Optom 2012;95(3):355-61
  • Hertz P, Bril V, Orszag A, et al. Reproducibility of in vivo corneal confocal microscopy as a novel screening test for early diabetic sensorimotor polyneuropathy. Diabet Med 2011;28(10):1253-60
  • Ahmed A, Bril V, Orszag A, et al. Detection of diabetic sensorimotor polyneuropathy by corneal confocal microscopy in type 1 diabetes: a concurrent validity study. Diabetes Care 2012;35(4):821-8
  • Sivaskandarajah GA, Halpern EM, Lovblom LE, et al. Structure-function relationship between corneal nerves and conventional small-fiber tests in type 1 diabetes. Diabetes Care 2013;36(9):2748-55
  • Petropoulos IN, Alam U, Fadavi H, et al. Rapid automated diagnosis of diabetic peripheral neuropathy with in vivo corneal confocal microscopy. Invest Ophthalmol Vis Sci 2014;55(4):2071-8
  • Mehra S, Tavakoli M, Kallinikos PA, et al. Corneal confocal microscopy detects early nerve regeneration after pancreas transplantation in patients with type 1 diabetes. Diabetes Care 2007;30(10):2608-12
  • Tavakoli M, Mitu-Pretorian M, Petropoulos IN, et al. Corneal confocal microscopy detects early nerve regeneration in diabetic neuropathy after simultaneous pancreas and kidney transplantation. Diabetes 2013;62(1):254-60
  • Schulze SD, Sekundo W, Kroll P. Autologous serum for the treatment of corneal epithelial abrasions in diabetic patients undergoing vitrectomy. Am J Ophthalmol 2006;142(2):207-11
  • Shi L, Chen H, Yu X, et al. Advanced glycation end products delay corneal epithelial wound healing through reactive oxygen species generation. Mol Cell Biochem 2013;383(1-2):253-9
  • Wang F, Gao N, Yin J, et al. Reduced innervation and delayed re-innervation after epithelial wounding in type 2 diabetic Goto-Kakizaki rats. Am J Pathol 2012;181(6):2058-66
  • Xu K, Yu FS. Impaired epithelial wound healing and EGFR signaling pathways in the corneas of diabetic rats. Invest Ophthalmol Vis Sci 2011;52(6):3301-8
  • Nakamura M, Kawahara M, Morishige N, et al. Promotion of corneal epithelial wound healing in diabetic rats by the combination of a substance P-derived peptide (FGLM-NH2) and insulin-like growth factor-1. Diabetologia 2003;46(6):839-42
  • Nakamura M, Sato N, Chikama TI, et al. Hyaluronan facilitates corneal epithelial wound healing in diabetic rats. Exp Eye Res 1997;64(6):1043-50
  • Nakamura M, Sato N, Chikama T, et al. Fibronectin facilitates corneal epithelial wound healing in diabetic rats. Exp Eye Res 1997;64(3):355-9
  • Saghizadeh M, Kramerov AA, Tajbakhsh J, et al. Proteinase and growth factor alterations revealed by gene microarray analysis of human diabetic corneas. Invest Ophthalmol Vis Sci 2005;46(10):3604-15
  • Saghizadeh M, Kramerov AA, Yaghoobzadeh Y, et al. Adenovirus-driven overexpression of proteinases in organ-cultured normal human corneas leads to diabetic-like changes. Brain Res Bull 2010;81(2-3):262-72
  • Saghizadeh M, Kramerov AA, Yu FS, et al. Normalization of wound healing and diabetic markers in organ cultured human diabetic corneas by adenoviral delivery of c-Met gene. Invest Ophthalmol Vis Sci 2010;51(4):1970-80
  • Winkler MA, Dib C, Ljubimov AV, et al. Targeting miR-146a to treat delayed wound healing in human diabetic organ-cultured corneas. PLoS ONE 2014;9(12):e114692
  • Saghizadeh M, Dib CM, Brunken WJ, et al. Normalization of wound healing and stem cell marker patterns in organ-cultured human diabetic corneas by gene therapy of limbal cells. Exp Eye Res 2014;129:66-73
  • Beuerman RW, Schimmelpfennig B. Sensory denervation of the rabbit cornea affects epithelial properties. Exp Neurol 1980;69(1):196-201
  • Gilbard JP, Rossi SR. Tear film and ocular surface changes in a rabbit model of neurotrophic keratitis. Ophthalmology 1990;97(3):308-12
  • Mackie IA. Role of the corneal nerves in destructive disease of the cornea. Trans Ophthalmol Soc UK 1978;98(3):343-7
  • Araki K, Ohashi Y, Kinoshita S, et al. Epithelial wound healing in the denervated cornea. Curr Eye Res 1994;13(3):203-11
  • Gallar J, Pozo MA, Rebollo I, et al. Effects of capsaicin on corneal wound healing. Invest Ophthalmol Vis Sci 1990;31(10):1968-74
  • Garcia-Hirschfeld J, Lopez-Briones LG, Belmonte C. Neurotrophic influences on corneal epithelial cells. Exp Eye Res 1994;59(5):597-605
  • Baker KS, Anderson SC, Romanowski EG, et al. Trigeminal ganglion neurons affect corneal epithelial phenotype. Influence on type VII collagen expression in vitro. Invest Ophthalmol Vis Sci 1993;34(1):137-44
  • Kowtharapu BS, Stahnke T, Wree A, et al. Corneal epithelial and neuronal interactions: role in wound healing. Exp Eye Res 2014;125:53-61
  • Chan KY, Haschke RH. Action of a trophic factor(s) from rabbit corneal epithelial culture on dissociated trigeminal neurons. J Neurosci 1981;1(10):1155-62
  • Chan KY, Haschke RH. Isolation and culture of corneal cells and their interactions with dissociated trigeminal neurons. Exp Eye Res 1982;35(2):137-56
  • Emoto I, Beuerman RW. Stimulation of neurite growth by epithelial implants into corneal stroma. Neurosci Lett 1987;82(2):140-4
  • Chen L, Wei RH, Tan DT, et al. Nerve growth factor expression and nerve regeneration in monkey corneas after LASIK. J Refract Surg 2014;30(2):134-9
  • Li Z, Burns AR, Han L, et al. IL-17 and VEGF are necessary for efficient corneal nerve regeneration. Am J Pathol 2011;178(3):1106-16
  • Zhou Q, Chen P, Di G, et al. Ciliary Neurotrophic Factor Promotes the Activation of Corneal Epithelial Stem/Progenitor Cells and Accelerates Corneal Epithelial Wound Healing. Stem Cells 2014;33(5):1566-76
  • Reichard M, Hovakimyan M, Guthoff RF, et al. In vivo visualisation of murine corneal nerve fibre regeneration in response to ciliary neurotrophic factor. Exp Eye Res 2014;120:20-7
  • Sarkar J, Chaudhary S, Jassim SH, et al. CD11b+GR1+ myeloid cells secrete NGF and promote trigeminal ganglion neurite growth: implications for corneal nerve regeneration. Invest Ophthalmol Vis Sci 2013;54(9):5920-36
  • Saghizadeh M, Soleymani S, Harounian A, et al. Alterations of epithelial stem cell marker patterns in human diabetic corneas and effects of c-met gene therapy. Mol Vis 2011;17:2177-90
  • Yamada N, Matsuda R, Morishige N, et al. Open clinical study of eye-drops containing tetrapeptides derived from substance P and insulin-like growth factor-1 for treatment of persistent corneal epithelial defects associated with neurotrophic keratopathy. Br J Ophthalmol 2008;92(7):896-900
  • Nagano T, Nakamura M, Nakata K, et al. Effects of substance P and IGF-1 in corneal epithelial barrier function and wound healing in a rat model of neurotrophic keratopathy. Invest Ophthalmol Vis Sci 2003;44(9):3810-15
  • Nakamura M, Kawahara M, Nakata K, et al. Restoration of corneal epithelial barrier function and wound healing by substance P and IGF-1 in rats with capsaicin-induced neurotrophic keratopathy. Invest Ophthalmol Vis Sci 2003;44(7):2937-40
  • Murphy CJ, Marfurt CF, McDermott A, et al. Spontaneous chronic corneal epithelial defects (SCCED) in dogs: clinical features, innervation, and effect of topical SP, with or without IGF-1. Invest Ophthalmol Vis Sci 2001;42(10):2252-61
  • Denis P, Fardin V, Nordmann JP, et al. Localization and characterization of substance P binding sites in rat and rabbit eyes. Invest Ophthalmol Vis Sci 1991;32(6):1894-902
  • Nakamura M, Ofuji K, Chikama T, et al. The NK1 receptor and its participation in the synergistic enhancement of corneal epithelial migration by substance P and insulin-like growth factor-1. Br J Pharmacol 1997;120(4):547-52
  • Reid TW, Murphy CJ, Iwahashi CK, et al. Stimulation of epithelial cell growth by the neuropeptide substance P. J Cell Biochem 1993;52(4):476-85
  • Nishida T, Nakamura M, Ofuji K, et al. Synergistic effects of substance P with insulin-like growth factor-1 on epithelial migration of the cornea. J Cell Physiol 1996;169(1):159-66
  • Yamada N, Yanai R, Kawamoto K, et al. Promotion of corneal epithelial wound healing by a tetrapeptide (SSSR) derived from IGF-1. Invest Ophthalmol Vis Sci 2006;47(8):3286-92
  • Yamada N, Yanai R, Nakamura M, et al. Role of the C domain of IGFs in synergistic promotion, with a substance P-derived peptide, of rabbit corneal epithelial wound healing. Invest Ophthalmol Vis Sci 2004;45(4):1125-31
  • Nakamura M, Kawahara M, Nakata K, et al. Restoration of corneal epithelial barrier function and wound healing by substance P and IGF-1 in rats with capsaicin-induced neurotrophic keratopathy. Invest Ophthalmol Vis Sci 2003;44(7):2937-40
  • Nakamura M, Nishida T, Ofuji K, et al. Synergistic effect of substance P with epidermal growth factor on epithelial migration in rabbit cornea. Exp Eye Res 1997;65(3):321-9
  • Nakamura M, Ofuji K, Chikama T, et al. Combined effects of substance P and insulin-like growth factor-1 on corneal epithelial wound closure of rabbit in vivo. Curr Eye Res 1997;16(3):275-8
  • Brown SM, Lamberts DW, Reid TW, et al. Neurotrophic and anhidrotic keratopathy treated with substance P and insulinlike growth factor 1. Arch Ophthalmol 1997;115(7):926-7
  • Chikama T, Fukuda K, Morishige N, et al. Treatment of neurotrophic keratopathy with substance-P-derived peptide (FGLM) and insulin-like growth factor I. Lancet 1998;351(9118):1783-4
  • Morishige N, Komatsubara T, Chikama T, et al. Direct observation of corneal nerve fibres in neurotrophic keratopathy by confocal biomicroscopy. Lancet 1999;354(9190):1613-14
  • Yang L, Di G, Qi X, et al. Substance P promotes diabetic corneal epithelial wound healing through molecular mechanisms mediated via the neurokinin-1 receptor. Diabetes 2014;63(12):4262-74
  • Jones MA, Marfurt CF. Calcitonin gene-related peptide and corneal innervation: a developmental study in the rat. J Comp Neurol 1991;313(1):132-50
  • Heino P, Oksala O, Luhtala J, et al. Localization of calcitonin gene-related peptide binding sites in the eye of different species. Curr Eye Res 1995;14(9):783-90
  • Mikulec AA, Tanelian DL. CGRP increases the rate of corneal re-epithelialization in an in vitro whole mount preparation. J Ocul Pharmacol Ther 1996;12(4):417-23
  • Ueno H, Ferrari G, Hattori T, et al. Dependence of corneal stem/progenitor cells on ocular surface innervation. Invest Ophthalmol Vis Sci 2012;53(2):867-72
  • Bennett JL, Zeiler SR, Jones KR. Patterned expression of BDNF and NT-3 in the retina and anterior segment of the developing mammalian eye. Invest Ophthalmol Vis Sci 1999;40(12):2996-3005
  • You L, Kruse FE, Volcker HE. Neurotrophic factors in the human cornea. Invest Ophthalmol Vis Sci 2000;41(3):692-702
  • Lambiase A, Manni L, Bonini S, et al. Nerve growth factor promotes corneal healing: structural, biochemical, and molecular analyses of rat and human corneas. Invest Ophthalmol Vis Sci 2000;41(5):1063-9
  • Lambiase A, Bonini S, Micera A, et al. Expression of nerve growth factor receptors on the ocular surface in healthy subjects and during manifestation of inflammatory diseases. Invest Ophthalmol Vis Sci 1998;39(7):1272-5
  • Kruse FE, Tseng SC. Growth factors modulate clonal growth and differentiation of cultured rabbit limbal and corneal epithelium. Invest Ophthalmol Vis Sci 1993;34(6):1963-76
  • Murphy CJ, Marfurt CF, McDermott A, et al. Spontaneous chronic corneal epithelial defects (SCCED) in dogs: clinical features, innervation, and effect of topical SP, with or without IGF-1. Invest Ophthalmol Vis Sci 2001;42(10):2252-61
  • You L, Ebner S, Kruse FE. Glial cell-derived neurotrophic factor (GDNF)-induced migration and signal transduction in corneal epithelial cells. Invest Ophthalmol Vis Sci 2001;42(11):2496-504
  • Romano MR, Biagioni F, Carrizzo A, et al. Effects of vitamin B12 on the corneal nerve regeneration in rats. Exp Eye Res 2014;120:109-17
  • Pan Z, Fukuoka S, Karagianni N, et al. Vascular endothelial growth factor promotes anatomical and functional recovery of injured peripheral nerves in the avascular cornea. FASEB J 2013;27(7):2756-67
  • Yu CQ, Zhang M, Matis KI, et al. Vascular endothelial growth factor mediates corneal nerve repair. Invest Ophthalmol Vis Sci 2008;49(9):3870-8
  • Cortina MS, He J, Li N, et al. Recovery of corneal sensitivity, calcitonin gene-related peptide-positive nerves, and increased wound healing induced by pigment epithelial-derived factor plus docosahexaenoic acid after experimental surgery. Arch Ophthalmol 2012;130(1):76-83
  • Zagon IS, Sassani JW, Allison G, et al. Conserved expression of the opioid growth factor, [Met5]enkephalin, and the zeta (zeta) opioid receptor in vertebrate cornea. Brain Res 1995;671(1):105-11
  • Zagon IS, Sassani JW, McLaughlin PJ. Opioid growth factor modulates corneal epithelial outgrowth in tissue culture. Am J Physiol 1995;268(4 Pt 2):R942-50
  • Zagon IS, Sassani JW, McLaughlin PJ. Reepithelialization of the human cornea is regulated by endogenous opioids. Invest Ophthalmol Vis Sci 2000;41(1):73-81
  • Zagon IS, Jenkins JB, Sassani JW, et al. Naltrexone, an opioid antagonist, facilitates reepithelialization of the cornea in diabetic rat. Diabetes 2002;51(10):3055-62
  • Zagon IS, Sassani JW, Carroll MA, et al. Topical application of naltrexone facilitates reepithelialization of the cornea in diabetic rabbits. Brain Res Bull 2010;81(2-3):248-55
  • Cisarik-Fredenburg P. Discoveries in research on diabetic keratopathy. Optometry 2001;72(11):691-704
  • Kinoshita JH, Fukushi S, Kador P, et al. Aldose reductase in diabetic complications of the eye. Metabolism 1979;28(4 Suppl 1):462-9
  • Awata T, Sogo S, Yamagami Y, et al. Effect of an aldose reductase inhibitor, CT-112, on healing of the corneal epithelium in galactose-fed rats. J Ocul Pharmacol 1988;4(3):195-201
  • Ohashi Y, Matsuda M, Hosotani H, et al. Aldose reductase inhibitor (CT-112) eyedrops for diabetic corneal epitheliopathy. Am J Ophthalmol 1988;105(3):233-8
  • Hosotani H, Ohashi Y, Yamada M, et al. Reversal of abnormal corneal epithelial cell morphologic characteristics and reduced corneal sensitivity in diabetic patients by aldose reductase inhibitor, CT-112. Am J Ophthalmol 1995;119(3):288-94
  • Matsuda M, Awata T, Ohashi Y, et al. The effects of aldose reductase inhibitor on the corneal endothelial morphology in diabetic rats. Curr Eye Res 1987;6(2):391-7
  • Ueno H, Hattori T, Kumagai Y, et al. Alterations in the corneal nerve and stem/progenitor cells in diabetes: preventive effects of insulin-like growth factor-1 treatment. Int J Endocrinol 2014;2014:312401
  • Saghizadeh M, Epifantseva I, Hemmati DM, et al. Enhanced wound healing, kinase and stem cell marker expression in diabetic organ-cultured human corneas upon MMP-10 and cathepsin F gene silencing. Invest Ophthalmol Vis Sci 2013;54(13):8172-80
  • Nakatsu MN, Gonzalez S, Mei H, et al. Human limbal mesenchymal cells support the growth of human corneal epithelial stem/progenitor cells. Invest Ophthalmol Vis Sci 2014;55(10):6953-9
  • Zickri MB, Ahmad NA, Maadawi ZM, et al. Effect of stem cell therapy on induced diabetic keratopathy in albino rat. Int J Stem Cells 2012;5(1):57-64
  • Bettahi I, Sun H, Gao N, et al. Genome-wide transcriptional analysis of differentially expressed genes in diabetic, healing corneal epithelial cells: hyperglycemia-suppressed TGFbeta3 expression contributes to the delay of epithelial wound healing in diabetic corneas. Diabetes 2014;63(2):715-27
  • Davidson EP, Coppey LJ, Holmes A, et al. Changes in corneal innervation and sensitivity and acetylcholine-mediated vascular relaxation of the posterior ciliary artery in a type 2 diabetic rat. Invest Ophthalmol Vis Sci 2012;53(3):1182-7
  • Gao N, Yin J, Yoon GS, et al. Dendritic cell-epithelium interplay is a determinant factor for corneal epithelial wound repair. Am J Pathol 2011;179(5):2243-53
  • Leppin K, Behrendt AK, Reichard M, et al. Diabetes mellitus leads to accumulation of dendritic cells and nerve fiber damage of the subbasal nerve plexus in the cornea. Invest Ophthalmol Vis Sci 2014;55(6):3603-15
  • Tavakoli M, Boulton AJ, Efron N, et al. Increased Langerhan cell density and corneal nerve damage in diabetic patients: role of immune mechanisms in human diabetic neuropathy. Cont Lens Anterior Eye 2011;34(1):7-11

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.