432
Views
9
CrossRef citations to date
0
Altmetric
Reviews

Allogeneic stem cell transplantation and targeted therapy for FLT3/ITD+ acute myeloid leukemia: an update

, , &

References

  • Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J. Clin. 62(1), 10–29 (2012).
  • O’Donnell MR, Abboud CN, Altman J et al. Acute myeloid leukemia. J. Natl Compr. Canc. Netw. 10(8), 984–1021 (2012).
  • Frohling S, Schlenk RF, Breitruck J et al. Prognostic significance of activating FLT3 mutations in younger adults (16 to 60 years) with acute myeloid leukemia and normal cytogenetics: a study of the AML Study Group Ulm. Blood 100(13), 4372–4380 (2002).
  • Schlenk RF, Dohner K, Krauter J et al. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N. Engl. J. Med. 358(18), 1909–1918 (2008).
  • Thiede C, Steudel C, Mohr B et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 99(12), 4326–4335 (2002).
  • Kiyoi H, Towatari M, Yokota S et al. Internal tandem duplication of the FLT3 gene is a novel modality of elongation mutation which causes constitutive activation of the product. Leukemia 12(9), 1333–1337 (1998).
  • Yokota S, Kiyoi H, Nakao M et al. Internal tandem duplication of the FLT3 gene is preferentially seen in acute myeloid leukemia and myelodysplastic syndrome among various hematological malignancies. A study on a large series of patients and cell lines. Leukemia 11(10), 1605–1609 (1997).
  • Nakao M, Yokota S, Iwai T et al. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia 10(12), 1911–1918 (1996).
  • Gilliland DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood 100(5), 1532–1542 (2002).
  • Hayakawa F, Towatari M, Kiyoi H et al. Tandem-duplicated FLT3 constitutively activates STAT5 and MAP kinase and introduces autonomous cell growth in IL-3-dependent cell lines. Oncogene 19(5), 624–631 (2000).
  • Mizuki M, Fenski R, Halfter H et al. FLT3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways. Blood 96(12), 3907–3914 (2000).
  • Choudhary C, Brandts C, Schwable J et al. Activation mechanisms of STAT5 by oncogenic FLT3-ITD. Blood 110(1), 370–374 (2007).
  • Stirewalt DL, Radich JP. The role of FLT3 in haematopoietic malignancies. Nat. Rev. Cancer 3(9), 650–665 (2003).
  • Choudhary C, Muller-Tidow C, Berdel WE, Serve H. Signal transduction of oncogenic FLT3. Int. J. Hematol. 82(2), 93–99 (2005).
  • Bagrintseva K, Schwab R, Kohl TM et al. Mutations in the tyrosine kinase domain of FLT3 define a new molecular mechanism of acquired drug resistance to PTK inhibitors in FLT3-ITD-transformed hematopoietic cells. Blood 103(6), 2266–2275 (2004).
  • Lee BH, Tothova Z, Levine RL et al. FLT3 mutations confer enhanced proliferation and survival properties to multipotent progenitors in a murine model of chronic myelomonocytic leukemia. Cancer Cell 12(4), 367–380 (2007).
  • Kottaridis PD, Gale RE, Frew ME et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 98(6), 1752–1759 (2001).
  • Whitman SP, Archer KJ, Feng L et al. Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: a cancer and leukemia group B study. Cancer Res. 61(19), 7233–7239 (2001).
  • Kiyoi H, Naoe T, Nakano Y et al. Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood 93(9), 3074–3080 (1999).
  • Yamamoto Y, Kiyoi H, Nakano Y et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 97(8), 2434–2439 (2001).
  • Bienz M, Ludwig M, Leibundgut EO et al. Risk assessment in patients with acute myeloid leukemia and a normal karyotype. Clin. Cancer Res. 11(4), 1416–1424 (2005).
  • Santos FP, Jones D, Qiao W et al. Prognostic value of FLT3 mutations among different cytogenetic subgroups in acute myeloid leukemia. Cancer 117(10), 2145–2155 (2011).
  • Bacher U, Haferlach C, Kern W, Haferlach T, Schnittger S. Prognostic relevance of FLT3-TKD mutations in AML: the combination matters--an analysis of 3082 patients. Blood 111(5), 2527–2537 (2008).
  • Mead AJ, Linch DC, Hills RK, Wheatley K, Burnett AK, Gale RE. FLT3 tyrosine kinase domain mutations are biologically distinct from and have a significantly more favorable prognosis than FLT3 internal tandem duplications in patients with acute myeloid leukemia. Blood 110(4), 1262–1270 (2007).
  • Yanada M, Matsuo K, Suzuki T, Kiyoi H, Naoe T. Prognostic significance of FLT3 internal tandem duplication and tyrosine kinase domain mutations for acute myeloid leukemia: a meta-analysis. Leukemia 19(8), 1345–1349 (2005).
  • Beran M, Luthra R, Kantarjian H, Estey E. FLT3 mutation and response to intensive chemotherapy in young adult and elderly patients with normal karyotype. Leuk. Res. 28(6), 547–550 (2004).
  • Kayser S, Schlenk RF, Londono MC et al. Insertion of FLT3 internal tandem duplication in the tyrosine kinase domain-1 is associated with resistance to chemotherapy and inferior outcome. Blood 114(12), 2386–2392 (2009).
  • Gale RE, Hills R, Kottaridis PD et al. No evidence that FLT3 status should be considered as an indicator for transplantation in acute myeloid leukemia (AML): an analysis of 1135 patients, excluding acute promyelocytic leukemia, from the UK MRC AML10 and 12 trials. Blood 106(10), 3658–3665 (2005).
  • Meshinchi S, Arceci RJ, Sanders JE et al. Role of allogeneic stem cell transplantation in FLT3/ITD-positive AML. Blood 108(1), 400; author reply 400–401 (2006).
  • Brunet S, Labopin M, Esteve J et al. Impact of FLT3 internal tandem duplication on the outcome of related and unrelated hematopoietic transplantation for adult acute myeloid leukemia in first remission: a retrospective analysis. J. Clin. Oncol. 30(7), 735–741 (2012).
  • Sengsayadeth SM, Jagasia M, Engelhardt BG et al. Allo-SCT for high-risk AML-CR1 in the molecular era: impact of FLT3/ITD outweighs the conventional markers. Bone Marrow Transplant. 47(12), 1535–1537 (2012).
  • Bornhauser M, Illmer T, Schaich M et al. Improved outcome after stem-cell transplantation in FLT3/ITD-positive AML. Blood 109(5), 2264–2265; author reply 2265 (2007).
  • Yoshimoto G, Nagafuji K, Miyamoto T et al. FLT3 mutations in normal karyotype acute myeloid leukemia in first complete remission treated with autologous peripheral blood stem cell transplantation. Bone Marrow Transplant. 36(11), 977–983 (2005).
  • Palmieri S, Ferrara F, Leoni F et al. Myeloablative chemotherapy followed by autologous stem cell infusion may overcome the adverse prognostic impact of FLT3 (foetal liver tyrosine kinase 3) mutations in patients with acute myeloid leukaemia and normal karyotype. Hematol. Oncol. 25(1), 1–5 (2007).
  • Dezern AE, Sung A, Kim S et al. Role of allogeneic transplantation for FLT3/ITD acute myeloid leukemia: outcomes from 133 consecutive newly diagnosed patients from a single institution. Biol. Blood Marrow Transplant. 17(9), 1404–1409 (2011).
  • Singh H, Werner LL, Asali S et al. Comparison of autologous stem cell transplantation versus consolidation chemotherapy for patients with cytogenetically normal acute myeloid leukemia (CN-AML) and FLT3ITD. Am. J. Hematol. 86(7), 625–627 (2011).
  • De Labarthe A, Pautas C, Thomas X et al. Allogeneic stem cell transplantation in second rather than first complete remission in selected patients with good-risk acute myeloid leukemia. Bone Marrow Transplant. 35(8), 767–773 (2005).
  • Ustun C, Lazarus HM, Weisdorf D. To transplant or not: a dilemma for treatment of elderly AML patients in the twenty-first century. Bone Marrow Transplant. doi:10.1038/bmt.2013.67 (2013) [ Epub ahead of print].
  • Imahashi N, Suzuki R, Fukuda T et al. Allogeneic hematopoietic stem cell transplantation for intermediate cytogenetic risk AML in first CR. Bone Marrow Transplant. 48(1), 56–62 (2013).
  • Kayser S, Dohner K, Krauter J et al. Impact of allogeneic transplantation from matched related and unrelated donors on clinical outcome in younger adult AML patients with FLT3 internal tandem duplications. In:ASH Annual Meeting Blood 909 (2010).
  • Cohen MH, Williams G, Johnson JR et al. Approval summary for imatinib mesylate capsules in the treatment of chronic myelogenous leukemia. Clin. Cancer Res. 8(5), 935–942 (2002).
  • Savani BN, Montero A, Kurlander R, Childs R, Hensel N, Barrett AJ. Imatinib synergizes with donor lymphocyte infusions to achieve rapid molecular remission of CML relapsing after allogeneic stem cell transplantation. Bone Marrow Transplant. 36(11), 1009–1015 (2005).
  • Pemmaraju N, Kantarjian H, Ravandi F, Cortes J. FLT3 inhibitors in the treatment of acute myeloid leukemia: the start of an era? Cancer 117(15), 3293–3304 (2011).
  • Pratz KW, Sato T, Murphy KM, Stine A, Rajkhowa T, Levis M. FLT3-mutant allelic burden and clinical status are predictive of response to FLT3 inhibitors in AML. Blood 115(7), 1425–1432 (2010).
  • Auclair D, Miller D, Yatsula V et al. Antitumor activity of sorafenib in FLT3-driven leukemic cells. Leukemia 21(3), 439–445 (2007).
  • Zhang W, Konopleva M, Shi YX et al. Mutant FLT3: a direct target of sorafenib in acute myelogenous leukemia. J. Natl Cancer Inst. 100(3), 184–198 (2008).
  • Levis M, Pham R, Smith BD, Small D. In vitro studies of a FLT3 inhibitor combined with chemotherapy: sequence of administration is important to achieve synergistic cytotoxic effects. Blood 104(4), 1145–1150 (2004).
  • Clark JW, Eder JP, Ryan D, Lathia C, Lenz HJ. Safety and pharmacokinetics of the dual action Raf kinase and vascular endothelial growth factor receptor inhibitor, BAY 43-9006, in patients with advanced, refractory solid tumors. Clin. Cancer Res. 11(15), 5472–5480 (2005).
  • Escudier B, Eisen T, Stadler WM et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med. 356(2), 125–134 (2007).
  • Llovet JM, Ricci S, Mazzaferro V et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 359(4), 378–390 (2008).
  • Quintas-Cardama A, Kantarjian H, Andreef M et al. Phase I trial of intermittent administration of sorafenib (BAY 43–9006) for patients (pts) with refractory/relapsed acute myelogenous leukemia (AML). In: ASCO Annual Meeting J. Clin. Oncol. 378–390 (2007).
  • Pratz KW, Cho E, Karp J et al. Phase I dose escalation trial of sorafenib as a single agent for adults with relapsed and refractory acute leukemias. In: 2009 ASCO Annual Meeting: J. Clin. Oncol. 27(15S), 7065 (2009).
  • Borthakur G, Kantarjian H, Ravandi F et al. Phase I study of sorafenib in patients with refractory or relapsed acute leukemias. Haematologica 96(1), 62–68 (2011).
  • Safaian NN, Czibere A, Bruns I et al. Sorafenib (Nexavar) induces molecular remission and regression of extramedullary disease in a patient with FLT3-ITD+ acute myeloid leukemia. Leuk. Res. 33(2), 348–350 (2009).
  • Martinez-Lopez J, Castro N, Rueda D, Canal A, Grande C, Ayala R. Use of Sorafenib as an effective treatment in an AML patient carrying a new point mutation affecting the Juxtamembrane domain of FLT3. Br. J. Haematol. 158(4), 555–558 (2012).
  • Ravandi F, Cortes JE, Jones D et al. Phase I/II study of combination therapy with sorafenib, idarubicin, and cytarabine in younger patients with acute myeloid leukemia. J. Clin. Oncol. 28(11), 1856–1862 (2010).
  • Al-Kali A, Cortes J, Faderl S et al. Patterns of molecular response to and relapse after combination of sorafenib, idarubicin, and cytarabine in patients with FLT3 mutant acute myeloid leukemia. Clin. Lymphoma Myeloma Leuk. 11(4), 361–366 (2011).
  • Ravandi F, Alattar ML, Grunwald MR et al. Phase 2 study of azacytidine plus sorafenib in patients with acute myeloid leukemia and FLT-3 internal tandem duplication mutation. Blood 121(23), 4655–4662 (2013).
  • Serve H, Krug U, Wagner R et al. Sorafenib in combination with intensive chemotherapy in elderly patients with acute myeloid leukemia: results from a randomized, placebo-controlled trial. J. Clin. Oncol. 31(25), 3110–3118 (2013).
  • Wolleschak D, Schalk E, Krogel C et al. Rapid induction of complete molecular remission by sequential therapy with LDAC and sorafenib in FLT3-ITD-positive patients unfit for intensive treatment: two cases and review of the literature. J. Hematol. Oncol. 6, 39 (2013).
  • Sharma M, Ravandi F, Bayraktar UD et al. Treatment of FLT3-ITD-positive acute myeloid leukemia relapsing after allogeneic stem cell transplantation with sorafenib. Biol. Blood Marrow Transplant. 17(12), 1874–1877 (2011).
  • Metzelder S, Wang Y, Wollmer E et al. Compassionate use of sorafenib in FLT3-ITD-positive acute myeloid leukemia: sustained regression before and after allogeneic stem cell transplantation. Blood 113(26), 6567–6571 (2009).
  • Yokoyama H, Lundqvist A, Su S, Childs R. Toxic effects of sorafenib when given early after allogeneic hematopoietic stem cell transplantation. Blood 116(15), 2858–2859 (2010).
  • Metzelder SK, Schroeder T, Finck A et al. High activity of sorafenib in FLT3-ITD-positive acute myeloid leukemia synergizes with allo-immune effects to induce sustained responses. Leukemia 26(11), 2353–2359 (2012).
  • Kruger WH, Hirt C, Kiefer T, Neumann T, Busemann C, Dolken G. Molecular remission of FLT3-ITD(+) positive AML relapse after allo-SCT by acute GVHD in addition to sorafenib. Bone Marrow Transplant. 47(1), 137–138 (2012).
  • Knapper S, Mills KI, Gilkes AF, Austin SJ, Walsh V, Burnett AK. The effects of lestaurtinib (CEP701) and PKC412 on primary AML blasts: the induction of cytotoxicity varies with dependence on FLT3 signaling in both FLT3-mutated and wild-type cases. Blood 108(10), 3494–3503 (2006).
  • Smith BD, Levis M, Beran M et al. Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood 103(10), 3669–3676 (2004).
  • Knapper S, Burnett AK, Littlewood T et al. A phase 2 trial of the FLT3 inhibitor lestaurtinib (CEP701) as first-line treatment for older patients with acute myeloid leukemia not considered fit for intensive chemotherapy. Blood 108(10), 3262–3270 (2006).
  • Levis M, Ravandi F, Wang ES et al. Results from a randomized trial of salvage chemotherapy followed by lestaurtinib for patients with FLT3 mutant AML in first relapse. Blood 117(12), 3294–3301 (2011).
  • O’farrell AM, Abrams TJ, Yuen HA et al. SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo. Blood 101(9), 3597–3605 (2003).
  • Yee KW, Schittenhelm M, O’farrell AM et al. Synergistic effect of SU11248 with cytarabine or daunorubicin on FLT3 ITD-positive leukemic cells. Blood 104(13), 4202–4209 (2004).
  • Fiedler W, Serve H, Dohner H et al. A phase 1 study of SU11248 in the treatment of patients with refractory or resistant acute myeloid leukemia (AML) or not amenable to conventional therapy for the disease. Blood 105(3), 986–993 (2005).
  • O’farrell AM, Foran JM, Fiedler W et al. An innovative phase I clinical study demonstrates inhibition of FLT3 phosphorylation by SU11248 in acute myeloid leukemia patients. Clin. Cancer Res. 9(15), 5465–5476 (2003).
  • Propper DJ, Mcdonald AC, Man A et al. Phase I and pharmacokinetic study of PKC412, an inhibitor of protein kinase C. J. Clin. Oncol. 19(5), 1485–1492 (2001).
  • Stone RM, Fischer T, Paquette R et al. Phase IB study of the FLT3 kinase inhibitor midostaurin with chemotherapy in younger newly diagnosed adult patients with acute myeloid leukemia. Leukemia 26(9), 2061–2068 (2012).
  • Stone RM, Deangelo DJ, Klimek V et al. Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood 105(1), 54–60 (2005).
  • Fischer T, Stone RM, Deangelo DJ et al. Phase IIB trial of oral Midostaurin (PKC412), the FMS-like tyrosine kinase 3 receptor (FLT3) and multi-targeted kinase inhibitor, in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome with either wild-type or mutated FLT3. J. Clin. Oncol. 28(28), 4339–4345 (2010).
  • Cheng Y, Paz K. Tandutinib, an oral, small-molecule inhibitor of FLT3 for the treatment of AML and other cancer indications. IDrugs 11(1), 46–56 (2008).
  • Deangelo DJ, Stone RM, Heaney ML et al. Phase 1 clinical results with tandutinib (MLN518), a novel FLT3 antagonist, in patients with acute myelogenous leukemia or high-risk myelodysplastic syndrome: safety, pharmacokinetics, and pharmacodynamics. Blood 108(12), 3674–3681 (2006).
  • Schittenhelm MM, Kampa KM, Yee KW, Heinrich MC. The FLT3 inhibitor tandutinib (formerly MLN518) has sequence-independent synergistic effects with cytarabine and daunorubicin. Cell Cycle 8(16), 2621–2630 (2009).
  • Shiotsu Y, Kiyoi H, Ishikawa Y et al. KW-2449, a novel multikinase inhibitor, suppresses the growth of leukemia cells with FLT3 mutations or T315I-mutated BCR/ABL translocation. Blood 114(8), 1607–1617 (2009).
  • Pratz KW, Cortes J, Roboz GJ et al. A pharmacodynamic study of the FLT3 inhibitor KW-2449 yields insight into the basis for clinical response. Blood 113(17), 3938–3946 (2009).
  • Zarrinkar PP, Gunawardane RN, Cramer MD et al. AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML). Blood 114(14), 2984–2992 (2009).
  • Cortes J, A P, C S et al. AC220 monotherapy efficacy (ACE) study in patients with acute myeloid leukemia (AML) with FLT3-ITD activating mutations: Interim results. 16th Congress of the European Hematology Association, London, UK, 9–12 June 2011 ( Abstract 1019).
  • Kindler T, Lipka DB, Fischer T. FLT3 as a therapeutic target in AML: still challenging after all these years. Blood 116(24), 5089–5102 (2010).
  • Taylor SJ, Dagger SA, Thien CB, Wikstrom ME, Langdon WY. Flt3 inhibitor AC220 is a potent therapy in a mouse model of myeloproliferative disease driven by enhanced wild-type Flt3 signaling. Blood 120(19), 4049–4057 (2012).
  • Cortes J, Foran J, Ghirdaladze D et al. AC220, A potent, selective, second generation FLT3 receptor tyrosine kinase (RTK) inhibitor, in a first-in-human phase 1 AML study. ASH Annual Meeting Abstracts. New Orleans, LA, USA, 5–8 December 2009.
  • Wang ES, Yee K, Koh LP et al. Phase 1 trial of linifanib (ABT-869) in patients with refractory or relapsed acute myeloid leukemia. Leuk. Lymphoma 53(8), 1543–1551 (2012).
  • Fathi AT, Arowojolu O, Swinnen I et al. A potential therapeutic target for FLT3-ITD AML: PIM1 kinase. Leuk. Res. 36(2), 224–231 (2012).
  • Chen LS, Redkar S, Taverna P, Cortes JE, Gandhi V. Mechanisms of cytotoxicity to Pim kinase inhibitor, SGI-1776, in acute myeloid leukemia. Blood 118(3), 693–702 (2011).
  • Hospital MA, Green AS, Lacombe C, Mayeux P, Bouscary D, Tamburini J. The FLT3 and Pim kinases inhibitor SGI-1776 preferentially target FLT3-ITD AML cells. Blood 119(7), 1791–1792 (2012).
  • Gozgit JM, Wong MJ, Wardwell S et al. Potent activity of ponatinib (AP24534) in models of FLT3-driven acute myeloid leukemia and other hematologic malignancies. Mol. Cancer Ther. 10(6), 1028–1035 (2011).
  • Weisberg E, Roesel J, Furet P et al. Antileukemic effects of novel first- and second-generation FLT3 inhibitors: structure-affinity comparison. Genes Cancer 1(10), 1021–1032 (2010).
  • Ahmad R, Liu S, Weisberg E et al. Combining the FLT3 inhibitor PKC412 and the triterpenoid CDDO-Me synergistically induces apoptosis in acute myeloid leukemia with the internal tandem duplication mutation. Mol. Cancer Res. 8(7), 986–993 (2010).
  • Lin WH, Jiaang WT, Chen CW et al. BPR1J-097, a novel FLT3 kinase inhibitor, exerts potent inhibitory activity against AML. Br. J. Cancer 106(3), 475–481 (2012).
  • Burkholder TP, Clayton JR, Rempala ME et al. Discovery of LY2457546: a multi-targeted anti-angiogenic kinase inhibitor with a novel spectrum of activity and exquisite potency in the acute myelogenous leukemia-Flt-3-internal tandem duplication mutant human tumor xenograft model. Invest. New Drugs 30(3), 936–949 (2012).
  • Heidary DK, Huang G, Boucher D et al. VX-322: a novel dual receptor tyrosine kinase inhibitor for the treatment of acute myelogenous leukemia. J. Med. Chem. 55(2), 725–734 (2012).
  • Goh KC, Novotny-Diermayr V, Hart S et al. TG02, a novel oral multi-kinase inhibitor of CDKs, JAK2 and FLT3 with potent anti-leukemic properties. Leukemia 26(2), 236–243 (2012).
  • Pallis M, Abdul-Aziz A, Burrows F, Seedhouse C, Grundy M, Russell N. The multi-kinase inhibitor TG02 overcomes signalling activation by survival factors to deplete MCL1 and XIAP and induce cell death in primary acute myeloid leukaemia cells. Br. J. Haematol. 159(2), 191–203 (2012).
  • Pasha MK, Jayaraman R, Reddy VP et al. Preclinical metabolism and pharmacokinetics of SB1317 (TG02), a potent CDK/JAK2/FLT3 inhibitor. Drug Metab. Lett. 6(1), 33–42 (2012).
  • Davies RJ, Pierce AC, Forster C et al. Design, synthesis, and evaluation of a novel dual FMS-like tyrosine kinase 3/stem cell factor receptor (FLT3/c-KIT) inhibitor for the treatment of acute myelogenous leukemia. J. Med. Chem. 54(20), 7184–7192 (2011).
  • Nordigarden A, Zetterblad J, Trinks C et al. Irreversible pan-ERBB inhibitor canertinib elicits anti-leukaemic effects and induces the regression of FLT3-ITD transformed cells in mice. Br. J. Haematol. 155(2), 198–208 (2011).
  • Williams AB, Nguyen B, Li L et al. Mutations of FLT3/ITD confer resistance to multiple tyrosine kinase inhibitors. Leukemia 27(1), 48–55 (2013).
  • Cao ZX, Liu JJ, Zheng RL et al. SKLB1028, a novel oral multikinase inhibitor of EGFR, FLT3 and Abl, displays exceptional activity in models of FLT3-driven AML and considerable potency in models of CML harboring Abl mutants. Leukemia 26(8), 1892–1895 (2012).
  • Man CH, Fung TK, Ho C et al. Sorafenib treatment of FLT3-ITD(+) acute myeloid leukemia: favorable initial outcome and mechanisms of subsequent nonresponsiveness associated with the emergence of a D835 mutation. Blood 119(22), 5133–5143 (2012).
  • Alvarado Y, Kantarjian HM, Ravandi F et al. FLT3 inhibitor treatment in FLT3-mutated AML is associated with development of secondary FLT3-TKD mutations. ASH Annual Meeting. San Diego, CA, USA, 10 December 2011.
  • Smith CC, Wang Q, Chin CS et al. Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Nature 485(7397), 260–263 (2012).
  • Heidel F, Solem FK, Breitenbuecher F et al. Clinical resistance to the kinase inhibitor PKC412 in acute myeloid leukemia by mutation of Asn-676 in the FLT3 tyrosine kinase domain. Blood 107(1), 293–300 (2006).
  • Bagrintseva K, Geisenhof S, Kern R et al. FLT3-ITD-TKD dual mutants associated with AML confer resistance to FLT3 PTK inhibitors and cytotoxic agents by overexpression of Bcl-x(L). Blood 105(9), 3679–3685 (2005).
  • Zhang W, Konopleva M, Jacamo RO et al. Acquired point mutations of TKD are responsible for sorafenib resistance in FLT3-ITD mutant AML. ASH Annual Meeting 118(21) (2011).
  • Mohi MG, Boulton C, Gu TL et al. Combination of rapamycin and protein tyrosine kinase (PTK) inhibitors for the treatment of leukemias caused by oncogenic PTKs. Proc. Natl Acad. Sci. USA 101(9), 3130–3135 (2004).
  • Hernandez-Davies JE, Zape JP, Landaw EM et al. The multitargeted receptor tyrosine kinase inhibitor linifanib (ABT-869) induces apoptosis through an Akt and glycogen synthase kinase 3beta-dependent pathway. Mol. Cancer Ther. 10(6), 949–959 (2011).
  • Ikezoe T, Nishioka C, Tasaka T et al. The antitumor effects of sunitinib (formerly SU11248) against a variety of human hematologic malignancies: enhancement of growth inhibition via inhibition of mammalian target of rapamycin signaling. Mol. Cancer Ther. 5(10), 2522–2530 (2006).
  • Zhou J, Bi C, Chng WJ et al. PRL-3, a metastasis associated tyrosine phosphatase, is involved in FLT3-ITD signaling and implicated in anti-AML therapy. PloS ONE 6(5), e19798 (2011).
  • Neubauer A, Fiebeler A, Graham DK et al. Expression of axl, a transforming receptor tyrosine kinase, in normal and malignant hematopoiesis. Blood 84(6), 1931–1941 (1994).
  • Hong CC, Lay JD, Huang JS et al. Receptor tyrosine kinase AXL is induced by chemotherapy drugs and overexpression of AXL confers drug resistance in acute myeloid leukemia. Cancer Lett. 268(2), 314–324 (2008).
  • Park IK, Mishra A, Chandler J, Whitman SP, Marcucci G, Caligiuri MA. Inhibition of the receptor tyrosine kinase Axl impedes activation of the FLT3 internal tandem duplication in human acute myeloid leukemia: implications for Axl as a potential therapeutic target. Blood 121(11), 2064–2073 (2013).
  • Reddy PN, Sargin B, Choudhary C et al. SOCS1 cooperates with FLT3-ITD in the development of myeloproliferative disease by promoting the escape from external cytokine control. Blood 120(8), 1691–1702 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.