2,662
Views
66
CrossRef citations to date
0
Altmetric
Reviews

RARA fusion genes in acute promyelocytic leukemia: a review

, &

References

  • Rowley JD, Golomb HM, Vardiman J, et al. Further evidence for a non-random chromosomal abnormality in acute promyelocytic leukemia. Int J Cancer 1977;20:869-72
  • Van den Berghe H, Louwagie A, Broeckaert-Van Orshoven A, et al. Chromosome abnormalities in acute promyelocytic leukemia (APL). Cancer 1979;43:558-62
  • Borrow J, Goddard AD, Sheer D, Solomon E. Molecular analysis of acute promyelocytic leukemia breakpoint cluster region on chromosome 17. Science 1990;249:1577-80
  • de Thé H, Chomienne C, Lanotte M, et al. The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus. Nature 1990;347:558-61
  • Alcalay M, Zangrilli D, Pandolfi PP, et al. Translocation breakpoint of acute promyelocytic leukemia lies within the retinoic acid receptor alpha locus. Proc Natl Acad Sci USA 1991;88:1977-81
  • Kakizuka A, Miller WH Jr, Umesono K, et al. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML. Cell 1991;66:663-74
  • Melnick A, Licht JD. Deconstructing a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood 1999;93:3167-215
  • Zelent A, Guidez F, Melnick A, et al. Translocations of the RARalpha gene in acute promyelocytic leukemia. Oncogene 2001;20:7186-203
  • Chen Z, Tong JH, Dong S, et al. Retinoic acid regulatory pathways, chromosomal translocations, and acute promyelocytic leukemia. Genes Chromosomes Cancer 1996;15:147-56
  • Grimwade D. The pathogenesis of acute promyelocytic leukaemia: evaluation of the role of molecular diagnosis and monitoring in the management of the disease. Br J Haematol 1999;106:591-613
  • Hjalt TA, Murray JC. Genomic structure of the human retinoic acid receptor-alpha1 gene. Mamm Genome 1999;10:528-9
  • Nagpal S, Friant S, Nakshatri H, Chambon P. RARs and RXRs: evidence for two autonomous transactivation functions (AF-1 and AF-2) and heterodimerization in vivo. EMBO J 1993;12:2349-60
  • Gudas LJ. Retinoids and vertebrate development. J Biol Chem 1994;269:15399-402
  • Pazin MJ, Kadonaga JT. What’s up and down with histone deacetylation and transcription? Cell 1997;89:325-8
  • vom Baur E, Zechel C, Heery D, et al. Differential ligand-dependent interactions between the AF-2 activating domain of nuclear receptors and the putative transcriptional intermediary factors mSUG1 and TIF1. EMBO J 1996;15:110-24
  • Kamei Y, Xu L, Heinzel T, et al. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 1996;85:403-14
  • Pandolfi PP, Alcalay M, Fagioli M, et al. Genomic variability and alternative splicing generate multiple PML/RAR alpha transcripts that encode aberrant PML proteins and PML/RAR alpha isoforms in acute promyelocytic leukaemia. EMBO J 1992;11:1397-407
  • Grignani F, Fagioli M, Alcalay M, et al. Acute promyelocytic leukemia: from genetics to treatment. Blood 1994;83:10-25
  • Fagioli M, Alcalay M, Pandolfi PP, et al. Alternative splicing of PML transcripts predicts coexpression of several carboxy-terminally different protein isoforms. Oncogene 1992;7:1083-91
  • Le XF, Yang P, Chang KS. Analysis of the growth and transformation suppressor domains of promyelocytic leukemia gene, PML. J Biol Chem 1996;271:130-5
  • Borden KL, CampbellDwyer EJ, Salvato MS. The promyelocytic leukemia protein PML has a pro-apoptotic activity mediated through its RING domain. FEBS Lett 1997;418:30-4
  • Grignani F, Testa U, Rogaia D, et al. Effects on differentiation by the promyelocytic leukemia PML/RARalpha protein depend on the fusion of the PML protein dimerization and RARalpha DNA binding domains. EMBO J 1996;15:4949-58
  • Kastner P, Perez A, Lutz Y, et al. Structure, localization and transcriptional properties of two classes of retinoic acid receptor alpha fusion proteins in acute promyelocytic leukemia (APL): structural similarities with a new family of oncoproteins. EMBO J 1992;11:629-42
  • Fenaux P, Chomienne C. Biology and treatment of acute promyelocytic leukemia. Curr Opin Oncol 1996;8:3-12
  • Slack JL, Arthur DC, Lawrence D, et al. Secondary cytogenetic changes in acute promyelocytic leukemia--prognostic importance in patients treated with chemotherapy alone and association with the intron 3 breakpoint of the PML gene: a Cancer and Leukemia Group B study. J Clin Oncol 1997;15:1786-95
  • Gallagher RE, Willman CL, Slack JL, et al. Association of PML-RAR alpha fusion mRNA type with pretreatment hematologic characteristics but not treatment outcome in acute promyelocytic leukemia: an intergroup molecular study. Blood 1997;90:1656-63
  • Douer D, Santillana S, Ramezani L, et al. Acute promyelocytic leukaemia in patients originating in Latin America is associated with an increased frequency of the bcr1 subtype of the PML/RARalpha fusion gene. Br J Haematol 2003;122:563-70
  • Ruiz-Arguelles GJ, Garces-Eisele J, Reyes-Nunez V, et al. More on geographic hematology: the breakpoint cluster regions of the PML/RARalpha fusion gene in Mexican Mestizo patients with promyelocytic leukemia are different from those in Caucasians. Leuk Lymphoma 2004;45:1365-8
  • Mandelli F, Diverio D, Avvisati G, et al. Molecular remission in PML/RAR alpha-positive acute promyelocytic leukemia by combined all-trans retinoic acid and idarubicin (AIDA) therapy. Gruppo Italiano-Malattie Ematologiche Maligne dell’Adulto and Associazione Italiana di Ematologia ed Oncologia Pediatrica Cooperative Groups. Blood 1997;90:1014-21
  • Dong S, Geng JP, Tong JH, et al. Breakpoint clusters of the PML gene in acute promyelocytic leukemia: primary structure of the reciprocal products of the PML-RARA gene in a patient with t(15;17). Genes Chromosomes Cancer 1993;6:133-9
  • Burnett AK, Grimwade D, Solomon E, et al. Presenting white blood cell count and kinetics of molecular remission predict prognosis in acute promyelocytic leukemia treated with all-trans retinoic acid: result of the Randomized MRC Trial. Blood 1999;93:4131-43
  • Gonzalez M, Barragan E, Bolufer P, et al. Pretreatment characteristics and clinical outcome of acute promyelocytic leukaemia patients according to the PML-RAR alpha isoforms: a study of the PETHEMA group. Br J Haematol 2001;114:99-103
  • Huang W, Sun GL, Li XS, et al. Acute promyelocytic leukemia: clinical relevance of two major PML-RAR alpha isoforms and detection of minimal residual disease by retrotranscriptase/polymerase chain reaction to predict relapse. Blood 1993;82:1264-9
  • Gallagher RE, Li YP, Rao S, et al. Characterization of acute promyelocytic leukemia cases with PML-RAR alpha break/fusion sites in PML exon 6: identification of a subgroup with decreased in vitro responsiveness to all-trans retinoic acid. Blood 1995;86:1540-7
  • Grimwade D, Howe K, Langabeer S, et al. Establishing the presence of the t(15;17) in suspected acute promyelocytic leukaemia: cytogenetic, molecular and PML immunofluorescence assessment of patients entered into the M.R.C. ATRA trial. M.R.C. Adult Leukaemia Working Party. Br J Haematol 1996;94:557-73
  • Ismail S, Ababneh N, Awidi A. Identification of atypical PML-RARA breakpoint in a patient with acute promyelocytic leukemia. Acta Haematol 2007;118:183-7
  • Park TS, Lee ST, Kim JS, et al. Acute promyelocytic leukemia in early pregnancy with translocation t(15;17) and variant PML/RARA fusion transcripts. Cancer Genet Cytogenet 2009;188:48-51
  • Park TS, Kim JS, Song J, et al. Acute promyelocytic leukemia with insertion of PML exon 7a and partial deletion of exon 3 of RARA: a novel variant transcript related to aggressive course and not detected with real-time polymerase chain reaction analysis. Cancer Genet Cytogenet 2009;188:103-7
  • Kim MJ, Cho SY, Kim MH, et al. FISH-negative cryptic PML-RARA rearrangement detected by long-distance polymerase chain reaction and sequencing analyses: a case study and review of the literature. Cancer Genet Cytogenet 2010;203:278-83
  • Chillon MC, Gonzalez M, Garcia-Sanz R, et al. Two new 3’ PML breakpoints in t(15;17)(q22;q21)-positive acute promyelocytic leukemia. Genes Chromosomes Cancer 2000;27:35-43
  • Reiter A, Saussele S, Grimwade D, et al. Genomic anatomy of the specific reciprocal translocation t(15;17) in acute promyelocytic leukemia. Genes Chromosomes Cancer 2003;36:175-88
  • Ashur-Fabian O, Trakhtenbrot L, Dominissini D, et al. The presence of a single PML-RARA isoform lacking exon 5 in FISH-negative APL samples. Leukemia 2008;22:200-3
  • Jeziskova I, Razga F, Gazdova J, et al. A case of a novel PML/RARA short fusion transcript with truncated transcription variant 2 of the RARA gene. Mol Diagn Ther 2010;14:113-17
  • de Thé H, Lavau C, Marchio A, et al. The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 1991;66:675-84
  • Jensen K, Shiels C, Freemont PS. PML protein isoforms and the RBCC/TRIM motif. Oncogene 2001;20:7223-33
  • Barragan E, Bolufer P, Martin G, et al. Identification of two atypical PML-RAR(alpha) transcripts in two patients with acute promyelocytic leukemia. Leuk Res 2002;26:439-42
  • Najfeld V, Scalise A, Troy K. A new variant translocation 11;17 in a patient with acute promyelocytic leukemia together with t(7;12). Cancer Genet Cytogenet 1989;43:103-8
  • Sainty D, Liso V, Cantu-Rajnoldi A, et al. A new morphologic classification system for acute promyelocytic leukemia distinguishes cases with underlying PLZF/RARA gene rearrangements. Blood 2000;96:1287-96
  • Grimwade D, Biondi A, Mozziconacci MJ, et al. Characterization of acute promyelocytic leukemia cases lacking the classic t(15;17): results of the European Working Party. Groupe Francais de Cytogenetique Hematologique, Groupe de Francais d’Hematologie Cellulaire, UK Cancer Cytogenetics Group and BIOMED 1 European Community-Concerted Action "Molecular Cytogenetic Diagnosis in Haematological Malignancies". Blood 2000;96:1297-308
  • Licht JD, Chomienne C, Goy A, et al. Clinical and molecular characterization of a rare syndrome of acute promyelocytic leukemia associated with translocation (11;17). Blood 1995;85:1083-94
  • Chen SJ, Zelent A, Tong JH, et al. Rearrangements of the retinoic acid receptor alpha and promyelocytic leukemia zinc finger genes resulting from t(11;17)(q23;q21) in a patient with acute promyelocytic leukemia. J Clin Invest 1993;91:2260-7
  • Chen Z, Brand NJ, Chen A, et al. Fusion between a novel Kruppel-like zinc finger gene and the retinoic acid receptor-alpha locus due to a variant t(11;17) translocation associated with acute promyelocytic leukaemia. EMBO J 1993;12:1161-7
  • Zhang T, Xiong H, Kan LX, et al. Genomic sequence, structural organization, molecular evolution, and aberrant rearrangement of promyelocytic leukemia zinc finger gene. Proc Natl Acad Sci USA 1999;96:11422-7
  • van Schothorst EM, Prins DE, Baysal BE, et al. Genomic structure of the human PLZF gene. Gene 1999;236:21-4
  • Baysal BE, van Schothorst EM, Farr JE, et al. A high-resolution STS, EST, and gene-based physical map of the hereditary paraganglioma region on chromosome 11q23. Genomics 1997;44:214-21
  • Koken MH, Reid A, Quignon F, et al. Leukemia-associated retinoic acid receptor alpha fusion partners, PML and PLZF, heterodimerize and colocalize to nuclear bodies. Proc Natl Acad Sci USA 1997;94:10255-60
  • Shaknovich R, Yeyati PL, Ivins S, et al. The promyelocytic leukemia zinc finger protein affects myeloid cell growth, differentiation, and apoptosis. Mol Cell Biol 1998;18:5533-45
  • Reid A, Gould A, Brand N, et al. Leukemia translocation gene, PLZF, is expressed with a speckled nuclear pattern in early hematopoietic progenitors. Blood 1995;86:4544-52
  • Jovanovic JV, Rennie K, Culligan D, et al. Development of real-time quantitative polymerase chain reaction assays to track treatment response in retinoid resistant acute promyelocytic leukemia. Front Oncol 2011;1:35
  • Corey SJ, Locker J, Oliveri DR, et al. A non-classical translocation involving 17q12 (retinoic acid receptor alpha) in acute promyelocytic leukemia (APML) with atypical features. Leukemia 1994;8:1350-3
  • Mitelman database of chromosome aberrations and gene fusions in cancer. Available from: http://cgap.nci.nih.gov/Chromosomes/Mitelman
  • Brunel V, Sainty D, Carbuccia N, et al. Unbalanced translocation t(5;17) in an typical acute promyelocytic leukemia. Genes Chromosomes Cancer 1995;14:307-12
  • Redner RL, Corey SJ, Rush EA. Differentiation of t(5;17) variant acute promyelocytic leukemic blasts by all-trans retinoic acid. Leukemia 1997;11:1014-16
  • Redner RL, Rush EA, Faas S, et al. The t(5;17) variant of acute promyelocytic leukemia expresses a nucleophosmin-retinoic acid receptor fusion. Blood 1996;87:882-6
  • Chan PK, Chan FY, Morris SW, Xie Z. Isolation and characterization of the human nucleophosmin/B23 (NPM) gene: identification of the YY1 binding site at the 5’ enhancer region. Nucleic Acids Res 1997;25:1225-32
  • Chang JH, Dumbar TS, Olson MO. cDNA and deduced primary structure of rat protein B23, a nucleolar protein containing highly conserved sequences. J Biol Chem 1988;263:12824-7
  • Wells RA, Hummel JL, De Koven A, et al. A new variant translocation in acute promyelocytic leukaemia: molecular characterization and clinical correlation. Leukemia 1996;10:735-40
  • Wells RA, Catzavelos C, Kamel-Reid S. Fusion of retinoic acid receptor alpha to NuMA, the nuclear mitotic apparatus protein, by a variant translocation in acute promyelocytic leukaemia. Nat Genet 1997;17:109-13
  • Yang CH, Lambie EJ, Snyder M. NuMA: an unusually long coiled-coil related protein in the mammalian nucleus. J Cell Biol 1992;116:1303-17
  • Compton DA, Szilak I, Cleveland DW. Primary structure of NuMA, an intranuclear protein that defines a novel pathway for segregation of proteins at mitosis. J Cell Biol 1992;116:1395-408
  • Cleveland DW. NuMA: a protein involved in nuclear structure, spindle assembly, and nuclear re-formation. Trends Cell Biol 1995;5:60-4
  • Jonveaux P, Le Coniat M, Derre J, et al. Chromosome microdissection in leukemia: a powerful tool for the analysis of complex chromosomal rearrangements. Genes Chromosomes Cancer 1996;15:26-33
  • Arnould C, Philippe C, Bourdon V, et al. The signal transducer and activator of transcription STAT5b gene is a new partner of retinoic acid receptor alpha in acute promyelocytic-like leukaemia. Hum Mol Genet 1999;8:1741-9
  • Gallagher RE, Mak S, Paietta E, et al. Identification of a second acute promyelocytic leukemia (APL) patient with the STAT5b-RARa fusion gene among PML-RARa-negative Eastern Cooperative Oncology Group (ECOG) APL protocol registrants. Blood 2004;104:821A
  • Kusakabe M, Suzukawa K, Nanmoku T, et al. Detection of the STAT5B-RARA fusion transcript in acute promyelocytic leukemia with the normal chromosome 17 on G-banding. Eur J Haematol 2008;80:444-7
  • Iwanaga E, Nakamura M, Nanri T, et al. Acute promyelocytic leukemia harboring a STAT5B-RARA fusion gene and a G596V missense mutation in the STAT5B SH2 domain of the STAT5B-RARA. Eur J Haematol 2009;83:499-501
  • Qiao C, Zhang SJ, Chen LJ, et al. Identification of the STAT5B-RARalpha fusion transcript in an acute promyelocytic leukemia patient without FLT3, NPM1, c-Kit and C/EBPalpha mutation. Eur J Haematol 2011;86:442-6
  • Chen H, Pan J, Yao L, et al. Acute promyelocytic leukemia with a STAT5b-RARalpha fusion transcript defined by array-CGH, FISH, and RT-PCR. Cancer Genet 2012;205:327-31
  • Strehl S, Konig M, Boztug H, et al. All-trans retinoic acid and arsenic trioxide resistance of acute promyelocytic leukemia with the variant STAT5B-RARA fusion gene. Leukemia 2013;27:1606-10
  • Ambrosio R, Fimiani G, Monfregola J, et al. The structure of human STAT5A and B genes reveals two regions of nearly identical sequence and an alternative tissue specific STAT5B promoter. Gene 2002;285:311-18
  • Bowman T, Garcia R, Turkson J, Jove R. STATs in oncogenesis. Oncogene 2000;19:2474-88
  • Levy DE, Darnell JE Jr. Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 2002;3:651-62
  • Dong S, Tweardy DJ. Interactions of STAT5b-RARa, a novel acute promyelocytic leukemia fusion protein, with retinoic acid receptor and STAT3 signaling pathways. Blood 2002;99:2637-46
  • Yamamoto Y, Tsuzuki S, Tsuzuki M, et al. BCOR as a novel fusion partner of retinoic acid receptor alpha in a t(X;17)(p11;q12) variant of acute promyelocytic leukemia. Blood 2010;116:4274-83
  • Grossmann V, Tiacci E, Holmes AB, et al. Whole-exome sequencing identifies somatic mutations of BCOR in acute myeloid leukemia with normal karyotype. Blood 2011;118:6153-63
  • Huynh KD, Fischle W, Verdin E, Bardwell VJ. BCoR, a novel corepressor involved in BCL-6 repression. Genes Dev 2000;14:1810-23
  • Catalano A, Dawson MA, Somana K, et al. The PRKAR1A gene is fused to RARA in a new variant acute promyelocytic leukemia. Blood 2007;110:4073-6
  • Solberg R, Sandberg M, Natarajan V, et al. The human gene for the regulatory subunit RI alpha of cyclic adenosine 3’, 5’-monophosphate-dependent protein kinase: two distinct promoters provide differential regulation of alternately spliced messenger ribonucleic acids. Endocrinology 1997;138:169-81
  • Boshart M, Weih F, Nichols M, Schutz G. The tissue-specific extinguisher locus TSE1 encodes a regulatory subunit of cAMP-dependent protein kinase. Cell 1991;66:849-59
  • Qiu JJ, Lu X, Zeisig BB, et al. Leukemic transformation by the APL fusion protein PRKAR1A-RAR{alpha} critically depends on recruitment of RXR{alpha}. Blood 2010;115:643-52
  • Buijs A, Bruin M. Fusion of FIP1L1 and RARA as a result of a novel t(4;17)(q12;q21) in a case of juvenile myelomonocytic leukemia. Leukemia 2007;21:1104-8
  • Kondo T, Mori A, Darmanin S, et al. The seventh pathogenic fusion gene FIP1L1-RARA was isolated from a t(4;17)-positive acute promyelocytic leukemia. Haematologica 2008;93:1414-16
  • Griffin JH, Leung J, Bruner RJ, et al. Discovery of a fusion kinase in EOL-1 cells and idiopathic hypereosinophilic syndrome. Proc Natl Acad Sci USA 2003;100:7830-5
  • Cools J, DeAngelo DJ, Gotlib J, et al. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med 2003;348:1201-14
  • Kaufmann I, Martin G, Friedlein A, et al. Human Fip1 is a subunit of CPSF that binds to U-rich RNA elements and stimulates poly(A) polymerase. EMBO J 2004;23:616-26
  • Palaniswamy V, Moraes KC, Wilusz CJ, Wilusz J. Nucleophosmin is selectively deposited on mRNA during polyadenylation. Nat Struct Mol Biol 2006;13:429-35
  • Rego EM, Ruggero D, Tribioli C, et al. Leukemia with distinct phenotypes in transgenic mice expressing PML/RAR alpha, PLZF/RAR alpha or NPM/RAR alpha. Oncogene 2006;25:1974-9
  • Won D, Shin SY, Park CJ, et al. OBFC2A/RARA: a novel fusion gene in variant acute promyelocytic leukemia. Blood 2013;121:1432-5
  • Huang J, Gong Z, Ghosal G, Chen J. SOSS complexes participate in the maintenance of genomic stability. Mol Cell 2009;35:384-93
  • Richard DJ, Bolderson E, Cubeddu L, et al. Single-stranded DNA-binding protein hSSB1 is critical for genomic stability. Nature 2008;453:677-81
  • Li Y, Bolderson E, Kumar R, et al. HSSB1 and hSSB2 form similar multiprotein complexes that participate in DNA damage response. J Biol Chem 2009;284:23525-31
  • Mozziconacci MJ, Liberatore C, Grignani F, et al. Atypical response to all-trans retinoic acid in a der(5)t(5;17) acute promyelocytic leukemia. Leukemia 1999;13:862-8
  • Fenaux P, Chomienne C, Degos L. Treatment of acute promyelocytic leukaemia. Best Pract Res Clin Haematol 2001;14:153-74
  • Tallman MS, Rowe JM. Long-term follow-up and potential for cure in acute promyelocytic leukaemia. Best Pract Res Clin Haematol 2003;16:535-43
  • Park DJ, Vuong PT, de Vos S, et al. Comparative analysis of genes regulated by PML/RARa and PLZF/RARa in response to retinoic acid using oligonucleotide arrays. Blood 2003;102:3727-36
  • Gallagher RE. Retinoic acid resistance in acute promyelocytic leukemia. Leukemia 2002;16:1940-58
  • Imaizumi M, Suzuki H, Yoshinari M, et al. Mutations in the E-domain of RAR portion of the PML/RAR chimeric gene may confer clinical resistance to all-trans retinoic acid in acute promyelocytic leukemia. Blood 1998;92:374-82
  • Zhou DC, Kim SH, Ding W, et al. Frequent mutations in the ligand-binding domain of PML-RARalpha after multiple relapses of acute promyelocytic leukemia: analysis for functional relationship to response to all-trans retinoic acid and histone deacetylase inhibitors in vitro and in vivo. Blood 2002;99:1356-63
  • Marasca R, Zucchini P, Galimberti S, et al. Missense mutations in the PML/RARalpha ligand binding domain in ATRA-resistant As(2)O(3) sensitive relapsed acute promyelocytic leukemia. Haematologica 1999;84:963-8
  • Lengfelder E, Hofmann WK, Nowak D. Impact of arsenic trioxide in the treatment of acute promyelocytic leukemia. Leukemia 2012;26:433-42
  • Shao W, Fanelli M, Ferrara FF, et al. Arsenic trioxide as an inducer of apoptosis and loss of PML/RAR alpha protein in acute promyelocytic leukemia cells. J Natl Cancer Inst 1998;90:124-33
  • Look AT. Arsenic and apoptosis in the treatment of acute promyelocytic leukemia. J Natl Cancer Inst 1998;90:86-8
  • Zhang TD, Chen GQ, Wang ZG, et al. Arsenic trioxide, a therapeutic agent for APL. Oncogene 2001;20:7146-53
  • Mistry AR, Pedersen EW, Solomon E, Grimwade D. The molecular pathogenesis of acute promyelocytic leukaemia: implications for the clinical management of the disease. Blood Rev 2003;17:71-97
  • Zeisig BB, Kwok C, Zelent A, et al. Recruitment of RXR by homotetrameric RARalpha fusion proteins is essential for transformation. Cancer Cell 2007;12:36-51
  • Sukhai MA, Thomas M, Xuan Y, et al. Evidence of functional interaction between NuMA-RARalpha and RXRalpha in an in vivo model of acute promyelocytic leukemia. Oncogene 2008;27:4666-77
  • Kamashev D, Vitoux D, De Thé H. PML-RARA-RXR oligomers mediate retinoid and rexinoid/cAMP cross-talk in acute promyelocytic leukemia cell differentiation. J Exp Med 2004;199:1163-74
  • Sternsdorf T, Phan VT, Maunakea ML, et al. Forced retinoic acid receptor alpha homodimers prime mice for APL-like leukemia. Cancer Cell 2006;9:81-94
  • Kwok C, Zeisig BB, Dong S, So CW. Forced homo-oligomerization of RARalpha leads to transformation of primary hematopoietic cells. Cancer Cell 2006;9:95-108
  • Licht JD. Reconstructing a disease: what essential features of the retinoic acid receptor fusion oncoproteins generate acute promyelocytic leukemia? Cancer Cell 2006;9:73-4
  • Alcalay M, Meani N, Gelmetti V, et al. Acute myeloid leukemia fusion proteins deregulate genes involved in stem cell maintenance and DNA repair. J Clin Invest 2003;112:1751-61
  • Muller-Tidow C, Steffen B, Cauvet T, et al. Translocation products in acute myeloid leukemia activate the Wnt signaling pathway in hematopoietic cells. Mol Cell Biol 2004;24:2890-904
  • Haferlach T, Kohlmann A, Schnittger S, et al. AML M3 and AML M3 variant each have a distinct gene expression signature but also share patterns different from other genetically defined AML subtypes. Genes Chromosomes Cancer 2005;43:113-27
  • Valk PJ, Verhaak RG, Beijen MA, et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 2004;350:1617-28
  • Rice KL, Hormaeche I, Doulatov S, et al. Comprehensive genomic screens identify a role for PLZF-RARalpha as a positive regulator of cell proliferation via direct regulation of c-MYC. Blood 2009;114:5499-511
  • Thompson A, Quinn MF, Grimwade D, et al. Global down-regulation of HOX gene expression in PML-RARalpha+ acute promyelocytic leukemia identified by small-array real-time PCR. Blood 2003;101:1558-65
  • Spicuglia S, Vincent-Fabert C, Benoukraf T, et al. Characterisation of genome-wide PLZF/RARA target genes. PLoS One 2011;6:e24176
  • Lin RJ, Sternsdorf T, Tini M, Evans RM. Transcriptional regulation in acute promyelocytic leukemia. Oncogene 2001;20:7204-15
  • Ruthardt M, Testa U, Nervi C, et al. Opposite effects of the acute promyelocytic leukemia PML-retinoic acid receptor alpha (RAR alpha) and PLZF-RAR alpha fusion proteins on retinoic acid signalling. Mol Cell Biol 1997;17:4859-69
  • Walter MJ, Park JS, Lau SK, et al. Expression profiling of murine acute promyelocytic leukemia cells reveals multiple model-dependent progression signatures. Mol Cell Biol 2004;24:10882-93
  • Tan Y, Bian S, Xu Z, et al. The short isoform of the long-type PML-RARA fusion gene in acute promyelocytic leukaemia lacks sensitivity to all-trans-retinoic acid. Br J Haematol 2013;162:93-7
  • Garzon R, Pichiorri F, Palumbo T, et al. MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia. Oncogene 2007;26:4148-57
  • Saumet A, Vetter G, Bouttier M, et al. Transcriptional repression of microRNA genes by PML-RARA increases expression of key cancer proteins in acute promyelocytic leukemia. Blood 2009;113:412-21
  • De Braekeleer E, Douet-Guilbert N, Basinko A, et al. HOX gene dysregulation in acute myeloid leukemia. Future Oncol 2014;10(3):475-95
  • Vitoux D, Nasr R, de The H. Acute promyelocytic leukemia: new issues on pathogenesis and treatment response. Int J Biochem Cell Biol 2007;39:1063-70
  • de Lera AR, Bourguet W, Altucci L, Gronemeyer H. Design of selective nuclear receptor modulators: RAR and RXR as a case study. Nat Rev Drug Discov 2007;6:811-20

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.