438
Views
9
CrossRef citations to date
0
Altmetric
Review

Acute myeloid leukemia: advancing clinical trials and promising therapeutics

, , &
Pages 433-445 | Received 07 Jan 2016, Accepted 22 Feb 2016, Published online: 17 Mar 2016

References

  • Dohner H, Estey EH, Amadori S, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010 Jan 21;115(3):453–474.
  • Schiffer CA. Hematopoietic growth factors and the future of therapeutic research on acute myeloid leukemia. N Engl J Med. 2003 Aug 21;349(8):727–729.
  • Kantarjian HM. Therapy for elderly patients with acute myeloid leukemia: a problem in search of solutions. Cancer. 2007 Mar 15;109(6):1007–1010.
  • Kantarjian H, O’Brien S, Cortes J, et al. Results of intensive chemotherapy in 998 patients age 65 years or older with acute myeloid leukemia or high-risk myelodysplastic syndrome: predictive prognostic models for outcome. Cancer. 2006 Mar 1;106(5):1090–1098.
  • Nazha A, Ravandi F. Acute myeloid leukemia in the elderly: do we know who should be treated and how? Leuk Lymphoma. 2014 May;55(5):979–987.
  • Patel JP, Gonen M, Figueroa ME, et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med. 2012 Mar 22;366(12):1079–1089.
  • Marcucci G, Haferlach T, Dohner H. Molecular genetics of adult acute myeloid leukemia: prognostic and therapeutic implications. J Clin Oncol. 2011 Feb 10;29(5):475–486.
  • Wouters BJ, Lowenberg B, Delwel R. A decade of genome-wide gene expression profiling in acute myeloid leukemia: flashback and prospects. Blood. 2009 Jan 8;113(2):291–298.
  • Anensen N, Hjelle SM, Van Belle W, et al. Correlation analysis of p53 protein isoforms with NPM1/FLT3 mutations and therapy response in acute myeloid leukemia. Oncogene. 2012 Mar 22;31(12):1533–1545.
  • Bruserud O, Hovland R, Wergeland L, et al. Flt3-mediated signaling in human acute myelogenous leukemia (AML) blasts: a functional characterization of Flt3-ligand effects in AML cell populations with and without genetic Flt3 abnormalities. Haematologica. 2003 Apr;88(4):416–428.
  • Bret C, Viziteu E, Kassambara A, et al. Identifying high-risk adult AML patients: epigenetic and genetic risk factors and their implications for therapy. Expert Rev Hematol. 2016 Feb;12:1–10.
  • Hou HA, Tien HF. Mutations in epigenetic modifiers in acute myeloid leukemia and their clinical utility. Expert Rev Hematol. 2016 Feb;9:1–23.
  • Daver N, Cortes J, Ravandi F, et al. Secondary mutations as mediators of resistance to targeted therapy in leukemia. Blood. 2015 Mar 20;125(21):3236–3245.
  • Reikvam H, Hoang TT, Bruserud O. Emerging therapeutic targets in human acute myeloid leukemia (part 2) - bromodomain inhibition should be considered as a possible strategy for various patient subsets. Expert Rev Hematol. 2015 Jun;8(3):315–327.
  • Reikvam H, Hauge M, Brenner AK, et al. Emerging therapeutic targets for the treatment of human acute myeloid leukemia (part 1) - gene transcription, cell cycle regulation, metabolism and intercellular communication. Expert Rev Hematol. 2015 Jun;8(3):299–313.
  • Bruserud O, Nepstad I, Hauge M, et al. STAT3 as a possible therapeutic target in human malignancies: lessons from acute myeloid leukemia. Expert Rev Hematol. 2015 Feb;8(1):29–41.
  • Janning M, Ben-Batalla I, Loges S. Axl inhibition: a potential road to a novel acute myeloid leukemia therapy? Expert Rev Hematol. 2015 Apr;8(2):135–138.
  • Rashidi A, Walter RB. Antigen-specific immunotherapy for acute myeloid leukemia: where are we now, and where do we go from here? Expert Rev Hematol. 2016 Feb 6:1–16. [Epub ahead of print].
  • Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2006. CA Cancer J Clin. 2006 Mar–Apr;56(2):106–130.
  • Lowenberg B, Downing JR, Burnett A. Acute myeloid leukemia. N Engl J Med. 1999 Sep 30;341(14):1051–1062.
  • Juliusson G, Antunovic P, Derolf A, et al. Age and acute myeloid leukemia: real world data on decision to treat and outcomes from the Swedish Acute Leukemia Registry. Blood. 2009 Apr 30;113(18):4179–4187.
  • Buchner T, Berdel WE, Haferlach C, et al. Age-related risk profile and chemotherapy dose response in acute myeloid leukemia: a study by the German Acute Myeloid Leukemia Cooperative Group. J Clin Oncol. 2009 Jan 1;27(1):61–69.
  • Kantarjian H, Ravandi F, O’Brien S, et al. Intensive chemotherapy does not benefit most older patients (age 70 years or older) with acute myeloid leukemia. Blood. 2010 Nov 25;116(22):4422–4429.
  • Kantarjian HM, Thomas XG, Dmoszynska A, et al. Multicenter, randomized, open-label, phase III trial of decitabine versus patient choice, with physician advice, of either supportive care or low-dose cytarabine for the treatment of older patients with newly diagnosed acute myeloid leukemia. J Clin Oncol. 2012 Jul 20;30(21):2670–2677.
  • Thomas XG, Arthur C, Delaunay J, et al. A post hoc sensitivity analysis of survival probabilities in a multinational phase III trial of decitabine in older patients with newly diagnosed acute myeloid leukemia. Clin Lymphoma Myeloma Leuk. 2014 Feb;14(1):68–72.
  • Fenaux P, Mufti GJ, Hellstrom-Lindberg E, et al. Azacitidine prolongs overall survival compared with conventional care regimens in elderly patients with low bone marrow blast count acute myeloid leukemia. J Clin Oncol. 2010 Feb 1;28(4):562–569.
  • Dombret H, Seymour JF, Butrym A, et al. International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with >30% blasts. Blood. 2015 Jul 16;126(3):291–299.
  • Yee K, Daver N, Kropf P, et al. Results of a randomized multicenter phase 2 study of a 5-day regimen of sgi-110, a novel hypomethylating agent, in treatment naive elderly acute myeloid leukemia not eligible for intensive therapy. Haematologica. 2014 Jun 1;99:222.
  • DiNardo CPD, Pratz K, Thirman M, et al. A phase 1b study of venetoclax (ABT-199/GDC-0199) in combination with decitabine or azacitidine in treatment-naive patients with acute myelogenous leukemia who areto 65 years and not eligible for standard induction therapy. Blood. 2015;126:abst 327.
  • Daver NKH, Garcia-Manero G, Jabbour E, et al. Phase I/II Study of vosaroxin and decitabine in newly diagnosed older patients (pts) with acute myeloid leukemia (aml) and high risk myelodysplastic syndrome (MDS). Blood. 2015;126:abst 461.
  • Fathi AEH, Lancet J, Stein E, et al. SGN-CD33A Plus hypomethylating agents: a novel, well-tolerated regimen with high remission rate in frontline unfit AML. Blood. 2015;126:abst 454.
  • Kadia T, Borthakur G, Ferrajoli A, et al. Phase II Study of cladribine and low-dose cytarabine (AraC) alternating with decitabine in older patients with acute myeloid leukemia (AML). Blood. 2014 Dec 6;124(21):Abst 5011.
  • Lancet JE, Cortes JE, Hogge DE, et al. Phase 2 trial of CPX-351, a fixed 5:1 molar ratio of cytarabine/daunorubicin, vs cytarabine/daunorubicin in older adults with untreated AML. Blood. 2014 May 22;123(21):3239–3246.
  • Issa JP, Roboz G, Rizzieri D, et al. Safety and tolerability of guadecitabine (SGI-110) in patients with myelodysplastic syndrome and acute myeloid leukaemia: a multicentre, randomised, dose-escalation phase 1 study. Lancet Oncol. 2015 Sep;16(9):1099–1110.
  • Konopleva M, Contractor R, Tsao T, et al. Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell. 2006 Nov;10(5):375–388.
  • Souers AJ, Leverson JD, Boghaert ER, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013 Feb;19(2):202–208.
  • Pan R, Hogdal LJ, Benito JM, et al. Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia. Cancer Discov. 2014 Mar;4(3):362–375.
  • Tsao T, Shi Y, Kornblau S, et al. Concomitant inhibition of DNA methyltransferase and BCL-2 protein function synergistically induce mitochondrial apoptosis in acute myelogenous leukemia cells. Ann Hematol. 2012 Dec;91(12):1861–1870.
  • Konopleva M, Pollyea DA, Potluri J, et al. A phase 2 study of ABT-199 (GDC-0199) in patients with acute myelogenous leukemia (AML). Blood. 2014 Dec 6;124(21):Abst 188.
  • Ravandi F, Ritchie EK, Sayar H, et al. Vosaroxin plus cytarabine versus placebo plus cytarabine in patients with first relapsed or refractory acute myeloid leukaemia (VALOR): a randomised, controlled, double-blind, multinational, phase 3 study. Lancet Oncol. 2015 Sep;16(9):1025–1036.
  • Daver NG, Kantarjian HM, Pierce S, et al. Phase I/II study of vosaroxin and decitabine in older patients (pts) with acute myeloid leukemia (AML) and high-risk myelodysplastic syndrome (MDS). J Clin Oncol. 2014 May 20;32(15):Abst 7098.
  • Feldman EJ, Brandwein J, Stone R, et al. Phase III randomized multicenter study of a humanized anti-CD33 monoclonal antibody, lintuzumab, in combination with chemotherapy, versus chemotherapy alone in patients with refractory or first-relapsed acute myeloid leukemia. J Clin Oncol. 2005 Jun 20;23(18):4110–4116.
  • Lapusan S, Vidriales MB, Thomas X, et al. Phase I studies of AVE9633, an anti-CD33 antibody-maytansinoid conjugate, in adult patients with relapsed/refractory acute myeloid leukemia. Invest New Drugs. 2012 Jun;30(3):1121–1131.
  • Sievers EL, Larson RA, Stadtmauer EA, et al. Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J Clin Oncol. 2001 Jul 1;19(13):3244–3254.
  • Burnett AK, Hills RK, Milligan D, et al. Identification of patients with acute myeloblastic leukemia who benefit from the addition of gemtuzumab ozogamicin: results of the MRC AML15 trial. J Clin Oncol. 2011 Feb 1;29(4):369–377.
  • Castaigne S, Pautas C, Terre C, et al. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study. Lancet. 2012 Apr 21;379(9825):1508–1516.
  • Kung Sutherland MS, Walter RB, Jeffrey SC, et al. SGN-CD33A: a novel CD33-targeting antibody-drug conjugate using a pyrrolobenzodiazepine dimer is active in models of drug-resistant AML. Blood. 2013 Aug 22;122(8):1455–1463.
  • Sutherland MK, Yu C, Anderson M, et al. 5-azacytidine enhances the anti-leukemic activity of lintuzumab (SGN-33) in preclinical models of acute myeloid leukemia. Mabs. 2010 Jul–Aug;2(4):440–448.
  • Daver N, Kantarjian H, Ravandi F, et al. A phase II study of decitabine and gemtuzumab ozogamicin in newly diagnosed and relapsed acute myeloid leukemia and high-risk myelodysplastic syndrome. Leukemia. 2016 Feb;30(2):268–273.
  • Kadia TM, Faderl S, Ravandi F, et al. Final results of a phase 2 trial of clofarabine and low-dose cytarabine alternating with decitabine in older patients with newly diagnosed acute myeloid leukemia. Cancer. 2015 Jul 15;121(14):2375–2382.
  • Feldman EJ, Kolitz JE, Trang JM, et al. Pharmacokinetics of CPX-351; a nano-scale liposomal fixed molar ratio formulation of cytarabine: daunorubicin,in patients with advanced leukemia. Leuk Res. 2012 Oct;36(10):1283–1289.
  • Cortes JE, Goldberg SL, Feldman EJ, et al. Phase II, multicenter, randomized trial of CPX-351 (cytarabine: daunorubicin)liposome injection versus intensive salvage therapy in adults with first relapse AML. Cancer. 2015 Jan 15;121(2):234–242.
  • Thomas BJ. Cell-cycle control during development: taking it up a notch. Dev Cell. 2005 Apr;8(4):451–452.
  • Straface G, Aprahamian T, Flex A, et al. Sonic hedgehog regulates angiogenesis and myogenesis during post-natal skeletal muscle regeneration. J Cell Mol Med. 2009 Aug;13(8B):2424–2435.
  • Bai L-Y, Chiu C-F, Lin C-W, et al. Differential expression of Sonic hedgehog and Gli1 in hematological malignancies. Leukemia. 2008 Jan;22(1):226–228.
  • Renner AG, Dos Santos C, Recher C, et al. Polo-like kinase 1 is overexpressed in acute myeloid leukemia and its inhibition preferentially targets the proliferation of leukemic cells. Blood. 2009 Jul 16;114(3):659–662.
  • Rockova V, Abbas S, Wouters BJ, et al. Risk stratification of intermediate-risk acute myeloid leukemia: integrative analysis of a multitude of gene mutation and gene expression markers. Blood. 2011 Jul 28;118(4):1069–1076.
  • Lai C, Karp JE, Hourigan CS. Precision medicine for acute myeloid leukemia. Expert Rev Hematol. 2016 Jan;9(1):1–3.
  • Figueroa ME, Lugthart S, Li Y, et al. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell. 2010 Jan 19;17(1):13–27.
  • Stein EG-MG, Rizzeri D, Tibes R, et al. 1 Study of the DOT1L inhibitor pinometostat (EPZ-5676) in advanced leukemia: safety, activity and evidence of target inhibition. Blood. 2015;Blood 126,Abst 2547.
  • Adolfsson J, Mansson R, Buza-Vidas N, et al. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell. 2005 Apr 22;121(2):295–306.
  • Cortes JE, Kantarjian H, Foran JM, et al. Phase I study of quizartinib administered daily to patients with relapsed or refractory acute myeloid leukemia irrespective of FMS-like tyrosine kinase 3-internal tandem duplication status. J Clin Oncol. 2013 Oct 10;31(29):3681–3687.
  • Borthakur G, Kantarjian H, Ravandi F, et al. Phase I study of sorafenib in patients with refractory or relapsed acute leukemias. Haematologica. 2011 Jan;96(1):62–68.
  • Ravandi F, Alattar ML, Grunwald MR, et al. Phase 2 study of azacytidine plus sorafenib in patients with acute myeloid leukemia and FLT-3 internal tandem duplication mutation. Blood. 2013 Jun 6;121(23):4655–4662.
  • Stone RM, DeAngelo DJ, Klimek V, et al. Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood. 2005 Jan 1;105(1):54–60.
  • Stone RM, Fischer T, Paquette R, et al. Phase IB study of the FLT3 kinase inhibitor midostaurin with chemotherapy in younger newly diagnosed adult patients with acute myeloid leukemia. Leukemia. 2012 Sep;26(9):2061–2068.
  • Nazha A, Kantarjian HM, Borthakur G, et al. A Phase I/II trial of combination of midostaurin (PKC412) and 5-azacytidine (5-AZA) for the treatment of patients with refractory or relapsed (R/R) acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Blood. 2012 Nov 16;120(21):Abst 3587.
  • Knapper S, Burnett AK, Littlewood T, et al. A phase 2 trial of the FLT3 inhibitor lestaurtinib (CEP701) as first-line treatment for older patients with acute myeloid leukemia not considered fit for intensive chemotherapy. Blood. 2006 Nov 15;108(10):3262–3270.
  • Fathi AT. Emergence of crenolanib for FLT3-mutant AML. Blood. 2013 Nov 21;122(22):3547–3548.
  • Weisberg E, Boulton C, Kelly LM, et al. Inhibition of mutant FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitor PKC412. Cancer Cell. 2002 Jun;1(5):433–443.
  • Sawyers CL. Finding the next Gleevec: FLT3 targeted kinase inhibitor therapy for acute myeloid leukemia. Cancer Cell. 2002 Jun;1(5):413–415.
  • Smith CC, Lasater EA, Lin KC, et al. Crenolanib is a selective type I pan-FLT3 inhibitor. Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):5319–5324.
  • Stone RM, Dohner H, Ehninger G, et al. CALGB 10603 (RATIFY): A randomized phase III study of induction (daunorubicin/cytarabine) and consolidation (high-dose cytarabine) chemotherapy combined with midostaurin or placebo in treatment-naive patients with FLT3 mutated AML. J Clin Oncol. 2011 May 20;29(15):Abst 6.
  • Zarrinkar PP, Gunawardane RN, Cramer MD, et al. AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML). Blood. 2009 Oct 1;114(14):2984–2992.
  • Cortes J, Foran J, Ghirdaladze D, et al. AC220, a potent, selective, second generation FLT3 receptor tyrosine kinase (RTK) inhibitor, in a first-in-human (FIH) phase 1 AML study. Blood. 2009 Nov 20;114(22):264.
  • Cortes JE, Perl AE, Dombret H, et al. Final results of a phase 2 open-label, monotherapy efficacy and safety study of quizartinib (AC220) in patients ≥ 60 years of age with FLT3 ITD positive or negative relapsed/refractory acute myeloid leukemia. Blood. 2012 Nov 16;120(21):Abst 48.
  • Cortes JE, Tallman MS, Schiller G, et al. Results of a phase 2 randomized, open-label, study of lower doses of quizartinib (AC220; ASP2689) in subjects with FLT3-ITD positive relapsed or refractory acute myeloid leukemia (AML). Blood. 2013 Nov 15;122(21):Abst 494.
  • Altman JK, Foran JM, Pratz KW, et al. Results of a phase 1 study of quizartinib (AC220, ASP2689) in combination with induction and consolidation chemotherapy in younger patients with newly diagnosed acute myeloid leukemia. Blood. 2013 Nov 15;122(21):623.
  • Ahmad T, Eisen T. Kinase inhibition with BAY 43-9006 in renal cell carcinoma. Clin Cancer Res. 2004 Sep 15;10(18 Pt 2):6388S–6392S.
  • Liu L, Cao Y, Chen C, et al. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res. 2006 Dec 15;66(24):11851–11858.
  • Zhang W, Konopleva M, Shi YX, et al. Mutant FLT3: a direct target of sorafenib in acute myelogenous leukemia. J Natl Cancer Inst. 2008 Feb 6;100(3):184–198.
  • Crump M, Hedley D, Kamel-Reid S, et al. A randomized phase I clinical and biologic study of two schedules of sorafenib in patients with myelodysplastic syndrome or acute myeloid leukemia: a NCIC (National Cancer Institute of Canada) Clinical trials group study. Leuk Lymphoma. 2010 Feb;51(2):252–260.
  • Metzelder S, Wang Y, Wollmer E, et al. Compassionate use of sorafenib in FLT3-ITD-positive acute myeloid leukemia: sustained regression before and after allogeneic stem cell transplantation. Blood. 2009 Jun 25;113(26):6567–6571.
  • Ravandi F, Cortes JE, Jones D, et al. Phase I/II study of combination therapy with sorafenib, idarubicin, and cytarabine in younger patients with acute myeloid leukemia. J Clin Oncol. 2010 Apr 10;28(11):1856–1862.
  • Rollig C, Serve H, Huttmann A, et al. Addition of sorafenib versus placebo to standard therapy in patients aged 60 years or younger with newly diagnosed acute myeloid leukaemia (SORAML): a multicentre, phase 2, randomised controlled trial. Lancet Oncol. 2015 Dec;16(16):1691–1699.
  • Serve H, Wagner R, Sauerland C, et al. Sorafenib in combination with standard induction and consolidation therapy in elderly AML patients: results from a randomized, placebo-controlled phase II trial. Blood. 2010 Nov 19;116(21):151.
  • Zimmerman EI, Hu S, Orwick S, et al. Evaluation of Crenolanib (CP-868,596) for the Treatment of FLT3-ITD-positive AML. Eur J Cancer. 2012;48:117–118.
  • Galanis A, Rajkhowa T, Muralidhara C, et al. Crenolanib is a highly potent, selective, FLT3 TKI with activity against D835 mutations. Blood. 2012 Nov 16;120(21):Abst 1341.
  • Galanis A, Ma H, Rajkhowa T, et al. Crenolanib is a potent inhibitor of FLT3 with activity against resistance-conferring point mutants. Blood. 2014 Jan 2;123(1):94–100.
  • Collins R, Kantarjian HM, Levis MJ, et al. Clinical activity of Crenolanib in patients with D835 mutant FLT3-positive relapsed/refractory acute myeloid leukemia (AML). J Clin Oncol. 2014 May 20;32(15):Abst 7027.
  • Randhawa JK, Kantarjian HM, Borthakur G, et al. Results of a phase II study of crenolanib in relapsed/refractory acute myeloid leukemia patients (Pts) with activating FLT3 mutations. Blood. 2014 Dec 6;124(21):Abst 389.
  • Smith BD, Levis M, Beran M, et al. Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood. 2004 May 15;103(10):3669–3676.
  • Levis M, Ravandi F, Wang ES, et al. Results from a randomized trial of salvage chemotherapy followed by lestaurtinib for patients with FLT3 mutant AML in first relapse. Blood. 2011 Mar 24;117(12):3294–3301.
  • Hong -C-C, Lay J-D, Huang J-S, et al. Receptor tyrosine kinase AXL is induced by chemotherapy drugs and overexpression of AXL confers drug resistance in acute myeloid leukemia. Cancer Lett. 2008 Sep 18;268(2):314–324.
  • Park I-K, Mishra A, Chandler J, et al. Inhibition of the receptor tyrosine kinase Axl impedes activation of the FLT3 internal tandem duplication in human acute myeloid leukemia: implications for Axl as a potential therapeutic target. Blood. 2013 Mar 14;121(11):2064–2073.
  • Levis MJ, Perl AE, Altman JK, et al. Results of a first-in-human, phase I/II trial of ASP2215, a selective, potent inhibitor of FLT3/Axl in patients with relapsed or refractory (R/R) acute myeloid leukemia (AML). J Clin Oncol. 2015 May 20;33(15):Abst 7003.
  • Levis M. Targeting IDH: the next big thing in AML. Blood. 2013 Oct 17;122(16):2770–2771.
  • Yan H, Parsons DW, Jin G, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009 Feb 19;360(8):765–773.
  • Mardis ER, Ding L, Dooling DJ, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med. 2009 Sep 10;361(11):1058–1066.
  • Dang L, White DW, Gross S, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009 Dec 10;462(7274):739–744.
  • Xu W, Yang H, Liu Y, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell. 2011 Jan 18;19(1):17–30.
  • Losman JA, Looper RE, Koivunen P, et al. (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science. 2013 Mar 29;339(6127):1621–1625.
  • Im AP, Sehgal AR, Carroll MP, et al. DNMT3A and IDH mutations in acute myeloid leukemia and other myeloid malignancies: associations with prognosis and potential treatment strategies. Leukemia. 2014 Sep;28(9):1774–1783.
  • Abbas S, Lugthart S, Kavelaars FG, et al. Acquired mutations in the genes encoding IDH1 and IDH2 both are recurrent aberrations in acute myeloid leukemia: prevalence and prognostic value. Blood. 2010 Sep 23;116(12):2122–2126.
  • DiNardo CD, Ravandi F, Agresta S, et al. Characteristics, clinical outcome, and prognostic significance of IDH mutations in AML. Am J Hematol. 2015 Aug;90(8):732–736.
  • Chaturvedi A, Araujo Cruz MM, Jyotsana N, et al. Mutant IDH1 promotes leukemogenesis in vivo and can be specifically targeted in human AML. Blood. 2013 Oct 17;122(16):2877–2887.
  • DiNardo C, Stein EM, Altman JK, et al. Ag-221, an oral, selective, first-in-class, potent inhibitor of the idh2 mutant enzyme, induced durable responses in a phase 1 study of idh2 mutation-positive advanced hematologic malignancies. Haematologica. 2015;100:216–217.
  • De Botton S, Pollyea DA, Stein EM, et al. Clinical safety and activity of ag-120, a first-in-class, potent inhibitor of the idh1 mutant protein, in a phase 1 study of patients with advanced idh1-mutant hematologic malignancies. Haematologica. 2015;100:214–215.
  • Ding L, Ley TJ, Larson DE, et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature. 2012 Jan 26;481(7382):506–510.
  • Mullighan CG, Phillips LA, Su X, et al. Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science. 2008 Nov 28;322(5906):1377–1380.
  • Landau DA, Carter SL, Stojanov P, et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell. 2013 Feb 14;152(4):714–726.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.