350
Views
11
CrossRef citations to date
0
Altmetric
Review

Novel diagnostic techniques for celiac disease

, , , &
Pages 795-805 | Received 26 Nov 2015, Accepted 27 Jan 2016, Published online: 20 Feb 2016

References

  • Vilppula A, Kaukinen K, Luostarinen L, et al. Increasing prevalence and high incidence of celiac disease in elderly people: a population-based study. BMC Gastroenterol. 2009;9:49.
  • Myléus A, Ivarsson A, Webb C, et al. Celiac disease revealed in 3% of Swedish 12-year-olds born during an epidemic. J Pediatr Gastroenterol Nutr. 2009;49:170–176.
  • Cummins AG, Roberts-Thomson IC. Prevalence of celiac disease in the Asia-Pacific region. J Gastroenterol Hepatol. 2009;24:1347–1351.
  • Virta L, Kaukinen K, Collin P. Incidence and prevalence of diagnosed coeliac disease in Finland: results of effective case finding in adults. Scand J Gastroenterol. 2009;44:933–938.
  • Kivelä L, Kaukinen K, Lähdeaho ML, et al.. Presentation of celiac disease in Finnish children is no longer changing: a 50-year perspective. J Pediatr. 2015. doi:10.1016/j.jpeds.2015.07.057.
  • Kurppa K, Paavola A, Collin P, et al. Benefits of a gluten-free diet for asymptomatic patients with serologic markers of celiac disease. Gastroenterology. 2014;147:610–617.
  • Molberg O, Mcadam SN, Körner R, et al. Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. Nat Med. 1998;4:713–717.
  • Lundin KE, Sollid LM. Advances in coeliac disease. Curr Opin Gastroenterol. 2014;30:154–162.
  • Lindfors K, Mäki M, Kaukinen K. Transglutaminase 2-targeted autoantibodies in celiac disease: pathogenetic players in addition to diagnostic tools?. Autoimmun Rev. 2010;9:744–749.
  • Husby S, Koletzko S, Korponay-Szabó IR, et al.. European society for pediatric gastroenterology, hepatology, and nutrition guidelines for the diagnosis of coeliac disease. J Pediatr Gastroenterol Nutr. 2012;54:136–160.
  • Kurppa K, Collin P, Viljamaa M, et al. Diagnosing mild enteropathy celiac disease: a randomized, controlled clinical study. Gastroenterology. 2009;136:816–823.
  • Kurien M, Ludvigsson JF, Sanders DS. A no biopsy strategy for adult patients with suspected coeliac disease: making the world gluten-free. Gut. 2015;64:1003–1004.
  • Pekki H, Kurppa K, Mäki M, et al. Predictors and significance of incomplete mucosal recovery in celiac disease after 1 year on a gluten-free diet. Am J Gastroenterol. 2015;110:1078–1085.
  • Kurppa K, Hietikko M, Sulic AM, et al. Current status of drugs in development for celiac disease. Expert Opin Investig Drugs. 2014;23:1079–1091.
  • Lecleire S, Di Fiore F, Antonietti M, et al. Endoscopic markers of villous atrophy are not useful for the detection of celiac disease in patients with dyspeptic symptoms. Endoscopy. 2006;38:696–701.
  • Ravelli A, Villanacci V, Monfredini C, et al. How patchy is patchy villous atrophy? Distribution pattern of histological lesions in the duodenum of children with celiac disease. Am J Gastroenterol. 2010;105:2103–2110.
  • Murray JA, Rubio-Tapia A, Van Dyke CT, et al. Mucosal atrophy in celiac disease: extent of involvement, correlation with clinical presentation, and response to treatment. Clin Gastroenterol Hepatol. 2008;6:186–193.
  • Gasbarrini A, Ojetti V, Cuoco L, et al. Lack of endoscopic visualization of intestinal villi with the “immersion technique” in overt atrophic celiac disease. Gastrointest Endosc. 2003;57:348–351.
  • Cammarota G, Cazzato A, Genovese O, et al. Water-immersion technique during standard upper endoscopy may be useful to drive the biopsy sampling of duodenal mucosa in children with celiac disease. J Pediatr Gastroenterol Nutr. 2009;49:411–416.
  • Ianiro G, Bibbò S, Pecere S, et al. Current technologies for the endoscopic assessment of duodenal villous pattern in celiac disease. Comput Biol Med. 2015;65:308–314.
  • Polglase AL, McLaren WJ, Skinner SA, et al. A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract. Gastrointest Endosc. 2005;62:686–695.
  • Leong RW, Nguyen NQ, Meredith CG, et al.. In vivo confocal endomicroscopy in the diagnosis and evaluation of celiac disease. Gastroenterology. 2008;135:1870–1876.
  • Venkatesh K, Abou-Taleb A, Cohen M, et al. Role of confocal endomicroscopy in the diagnosis of celiac disease. J Pediatr Gastroenterol Nutr. 2010;51:274–279.
  • Ianiro G, Gasbarrini A, Cammarota G. Endoscopic tools for the diagnosis and evaluation of celiac disease. World J Gastroenterol. 2013;19:8562–8570.
  • Siegel LM, Stevens PD, Lightdale CJ, et al. Combined magnification endoscopy with chromoendoscopy in the evaluation of patients with suspected malabsorption. Gastrointest Endosc. 1997;46:226–230.
  • Banerjee R, Reddy DN. High-resolution narrow-band imaging can identify patchy atrophy in celiac disease: targeted biopsy can increase diagnostic yield. Gastrointest Endosc. 2009;69:984–985.
  • Singh R, Nind G, Tucker G, et al. Narrow-band imaging in the evaluation of villous morphology: a feasibility study assessing a simplified classification and observer agreement. Endoscopy. 2010;42:889–894.
  • Masci E, Mangiavillano B, Albarello L, et al. Optical coherence tomography in the diagnosis of coeliac disease: a preliminary report. Gut. 2006;55:579.
  • Masci E, Mangiavillano B, Albarello L, et al. Pilot study on the correlation of optical coherence tomography with histology in celiac disease and normal subjects. J Gastroenterol Hepatol. 2007;22:2256–2260.
  • Cammarota G, Ianiro G, Sparano L, et al. Image-enhanced endoscopy with I-scan technology for the evaluation of duodenal villous patterns. Dig Dis Sci. 2013;58:1287–1292.
  • Hegenbart S, Uhl A, Vécsei A. Survey on computer aided decision support for diagnosis of celiac disease. Comput Biol Med. 2015;65:348–358.
  • Chang MS, Rubin M, Lewis SK, et al.. Diagnosing celiac disease by video capsule endoscopy (VCE) when esophagogastroduodenoscopy (EGD) and biopsy is unable to provide a diagnosis: a case series. BMC Gastroenterol. 2012;12:90.
  • Rondonotti E, Spada C, Cave D, et al. Video capsule enteroscopy in the diagnosis of celiac disease: a multicenter study. Am J Gastroenterol. 2007;102:1624–1631.
  • Biagi F, Rondonotti E, Campanella J, et al. Video capsule endoscopy and histology for small-bowel mucosa evaluation: a comparison performed by blinded observers. Clin Gastroenterol Hepatol. 2006;4:998–1003.
  • Rondonotti E, Paggi S. Videocapsule endoscopy in celiac disease: indications and timing. Dig Dis. 2015;33:244–251.
  • Tomba C, Sidhu R, Sanders DS, et al.. Celiac disease and double-balloon enteroscopy: what can we achieve? The experience of 2 European tertiary referral centers. J Clin Gastroenterol. 2015. doi:10.1097/MCG.0000000000000424.
  • Marsh MN. Gluten, major histocompatibility complex, and the small intestine. A molecular and immunobiologic approach to the spectrum of gluten sensitivity (‘celiac sprue’). Gastroenterology. 1992;102:330–354.
  • Mubarak A, Nikkels P, Houwen R, et al.. Reproducibility of the histological diagnosis of celiac disease. Scand J Gastroenterol. 2011;46:1065–1073.
  • Arguelles-Grande C, Tennyson CA, Lewis SK, et al. Variability in small bowel histopathology reporting between different pathology practice settings: impact on the diagnosis of coeliac disease. J Clin Pathol. 2012;65:242–247.
  • Corazza GR, Villanacci V, Zambelli C, et al. Comparison of the interobserver reproducibility with different histologic criteria used in celiac disease. Clin Gastroenterol Hepatol. 2007;5:838–843.
  • Taavela J, Koskinen O, Huhtala H, et al. Validation of morphometric analyses of small-intestinal biopsy readouts in celiac disease. PLoS One. 2013;8:e76163.
  • Bonamico M, Mariani P, Thanasi E, et al. Patchy villous atrophy of the duodenum in childhood celiac disease. J Pediatr Gastroenterol Nutr. 2004;38:204–207.
  • Rubin C, Brandborg L, Phelps P, et al.. Studies of celiac disease. I. The apparent identical and specific nature of the duodenal and proximal jejunal lesion in celiac disease and idiopathic sprue. Gastroenterology. 1960;38:28–49.
  • Evans KE, Aziz I, Cross SS, et al. A prospective study of duodenal bulb biopsy in newly diagnosed and established adult celiac disease. Am J Gastroenterol. 2011;106:1837–742.
  • Ravelli A, Bolognini S, Gambarotti M, et al.. Variability of histologic lesions in relation to biopsy site in gluten-sensitive enteropathy. Am J Gastroenterol. 2005;100:177–185.
  • Taavela J, Popp A, Korponay-Szabo IR, et al.. A prospective study on the usefulness of duodenal bulb biopsies in celiac disease diagnosis in children – urging caution. Am J Gastroenterol. 2016. doi:10.1038/ajg.2015.387.
  • Kurppa K, Ashorn M, Iltanen S, et al. Celiac disease without villous atrophy in children: a prospective study. J Pediatr. 2010;157:373–380.
  • Veress B, Franzén L, Bodin L, et al.. Duodenal intraepithelial lymphocyte-count revisited. Scand J Gastroenterol. 2004;39:138–144.
  • Järvinen T, Kaukinen K, Laurila K, et al. Intraepithelial lymphocytes in celiac disease. Am J Gastroenterol. 2003;98:1332–1337.
  • Salmi TT, Collin P, Reunala T, et al. Diagnostic methods beyond conventional histology in coeliac disease diagnosis. Dig Liver Dis. 2010;42:28–32.
  • Savilahti E, Arato A, Verkasalo M. Intestinal gamma/delta receptor-bearing T lymphocytes in celiac disease and inflammatory bowel diseases in children. Constant increase in celiac disease. Pediatr Res. 1990;28:579–581.
  • Leon F. Flow cytometry of intestinal intraepithelial lymphocytes in celiac disease. J Immunol Methods. 2011;363:177–186.
  • Iltanen S, Holm K, Ashorn M, et al. Changing jejunal gamma delta T cell receptor (TCR)-bearing intraepithelial lymphocyte density in coeliac disease. Clin Exp Immunol. 1999;117:51–55.
  • Lonardi S, Villanacci V, Lorenzi L, et al. Anti-TCR gamma antibody in celiac disease: the value of count on formalin-fixed paraffin-embedded biopsies. Virchows Arch. 2013;463:409–413.
  • Korponay-Szabó IR, Halttunen T, Szalai Z, et al.. In vivo targeting of intestinal and extraintestinal transglutaminase 2 by coeliac autoantibodies. Gut. 2004;53:641–648.
  • Salmi TT, Collin P, Korponay-Szabó IR, et al. Endomysial antibody-negative coeliac disease: clinical characteristics and intestinal autoantibody deposits. Gut. 2006;55:1746–1753.
  • Koskinen O, Collin P, Lindfors K, et al. Usefulness of small-bowel mucosal transglutaminase-2 specific autoantibody deposits in the diagnosis and follow-up of celiac disease. J Clin Gastroenterol. 2010;44:483–488.
  • Salmi TT, Collin P, Järvinen O, et al. Immunoglobulin A autoantibodies against transglutaminase 2 in the small intestinal mucosa predict forthcoming coeliac disease. Aliment Pharmacol Ther. 2006;24:541–552.
  • Maglio M, Tosco A, Auricchio R, et al. Intestinal deposits of anti-tissue transglutaminase IgA in childhood celiac disease. Dig Liver Dis. 2011;43:604–608.
  • Picarelli A, Di Tola M, Marino M, et al. Usefulness of the organ culture system when villous height/crypt depth ratio, intraepithelial lymphocyte count, or serum antibody tests are not diagnostic for celiac disease. Transl Res. 2013;161:172–180.
  • Picarelli A, Borghini R, Donato G, et al. Weaknesses of histological analysis in celiac disease diagnosis: new possible scenarios. Scand J Gastroenterol. 2014;49:1318–1324.
  • Stenman SM, Lindfors K, Korponay-Szabo IR, et al. Secretion of celiac disease autoantibodies after in vitro gliadin challenge is dependent on small-bowel mucosal transglutaminase 2-specific IgA deposits. BMC Immunol. 2008;9:6.
  • Nandiwada SL, Tebo AE. Testing for antireticulin antibodies in patients with celiac disease is obsolete: a review of recommendations for serologic screening and the literature. Clin Vaccine Immunol. 2013;20:447–451.
  • Dieterich W, Ehnis T, Bauer M, et al. Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat Med. 1997;3:797–801.
  • Sulkanen S, Halttunen T, Laurila K, et al. Tissue transglutaminase autoantibody enzyme-linked immunosorbent assay in detecting celiac disease. Gastroenterology. 1998;115:1322–1328.
  • Lewis NR, Scott BB. Systematic review: the use of serology to exclude or diagnose coeliac disease (a comparison of the endomysial and tissue transglutaminase antibody tests). Aliment Pharmacol Ther. 2006;24:47–54.
  • Simon-Vecsei Z, Király R, Bagossi P, et al.. A single conformational transglutaminase 2 epitope contributed by three domains is critical for celiac antibody binding and effects. Proc Natl Acad Sci USA. 2012;109:431–436.
  • Van Meensel B, Hiele M, Hoffman I, et al. Diagnostic accuracy of ten second-generation (human) tissue transglutaminase antibody assays in celiac disease. Clin Chem. 2004;50:2125–2135.
  • Schyum AC, Rumessen JJ. Serological testing for celiac disease in adults. United European Gastroenterol J. 2013;1:319–325.
  • Li M, Yu L, Tiberti C, et al. A report on the international transglutaminase autoantibody workshop for celiac disease. Am J Gastroenterol. 2009;104:154–163.
  • Pinkas DM, Strop P, Brunger AT, et al.. Transglutaminase 2 undergoes a large conformational change upon activation. PLoS Biol. 2007;5:e327.
  • Lindfors K, Koskinen O, Kurppa K, et al. Serodiagnostic assays for celiac disease based on the open or closed conformation of the autoantigen, transglutaminase 2. J Clin Immunol. 2011;31:436–442.
  • Pallav K, Leffler DA, Bennett M, et al. Open conformation tissue transglutaminase testing for celiac dietary assessment. Dig Liver Dis. 2012;44:375–378.
  • Ferrara F, Quaglia S, Caputo I, et al. Anti-transglutaminase antibodies in non-coeliac children suffering from infectious diseases. Clin Exp Immunol. 2010;159:217–223.
  • Kaukinen K, Collin P, Holm K, et al. Small-bowel mucosal inflammation in reticulin or gliadin antibody-positive patients without villous atrophy. Scand J Gastroenterol. 1998;33:944–949.
  • Tursi A, Giorgetti GM, Brandimarte G, et al.. High prevalence of celiac disease among patients affected by Crohn’s disease. Inflamm Bowel Dis. 2005;11:662–666.
  • Alarida K, Harown J, Ahmaida A, et al. Coeliac disease in Libyan children: a screening study based on the rapid determination of anti-transglutaminase antibodies. Dig Liver Dis. 2011;43:688–691.
  • Aleanzi M, Demonte AM, Esper C, et al.. Celiac disease: antibody recognition against native and selectively deamidated gliadin peptides. Clin Chem. 2001;47:2023–2028.
  • Kurppa K, Lindfors K, Collin P, et al. Antibodies against deamidated gliadin peptides in early-stage celiac disease. J Clin Gastroenterol. 2011;45(8):673–678.
  • Liu E, Li M, Emery L, et al. Natural history of antibodies to deamidated gliadin peptides and transglutaminase in early childhood celiac disease. J Pediatr Gastroenterol Nutr. 2007;45:293–300.
  • Korponay-Szabo IR, Gyimesi J, Castillejo G. Evolution and HLA-association of the early infantile gliadin antibody response in a high-risk cohort for coeliac disease with gluten introduction from 4 or 6 months of age. J Pediatr Gastroenterol Nutr. 2013;56:Supplement 2.
  • Mansueto P, Seidita A, D’Alcamo A, et al.. Non-celiac gluten sensitivity: literature review. J Am Coll Nutr. 2014;33:39–54.
  • Molina-Infante J, Santolaria S, Sanders DS, et al.. Systematic review: noncoeliac gluten sensitivity. Aliment Pharmacol Ther. 2015;41:807–820.
  • Leffler DA, Green PH, Fasano A. Extraintestinal manifestations of coeliac disease. Nat Rev Gastroenterol Hepatol. 2015;12:561–571.
  • Reunala T, Salmi TT, Hervonen K. Dermatitis herpetiformis: pathognomonic transglutaminase IgA deposits in the skin and excellent prognosis on a gluten-free diet. Acta Derm Venereol. 2015;95:917–922.
  • Sárdy M, Kárpáti S, Merkl B, et al.. Epidermal transglutaminase (TGase 3) is the autoantigen of dermatitis herpetiformis. J Exp Med. 2002;195:747–757.
  • Reunala T1, Salmi TT, Hervonen K, et al. IgA antiepidermal transglutaminase antibodies in dermatitis herpetiformis: a significant but not complete response to a gluten-free diet treatment. Br J Dermatol. 2015;172:1139–1141.
  • Hadjivassiliou M, Sanders DD, Aeschlimann DP. Gluten-related disorders: gluten ataxia. Dig Dis. 2015;33:264–268.
  • Boscolo S, Sarich A, Lorenzon A, et al. Gluten ataxia: passive transfer in a mouse model. Ann N Y Acad Sci. 2007;1107:319–328.
  • Hadjivassiliou M, Mäki M, Sanders DS, et al.. Autoantibody targeting of brain and intestinal transglutaminase in gluten ataxia. Neurology. 2006;66:373–377.
  • Hadjivassiliou M, Aeschlimann P, Sanders DS, et al. Transglutaminase 6 antibodies in the diagnosis of gluten ataxia. Neurology. 2013;80:1740–1745.
  • Korponay-Szabó IR, Raivio T, Laurila K, et al.. Coeliac disease case finding and diet monitoring by point-of-care testing. Aliment Pharmacol Ther. 2005;22:729–737.
  • Raivio T, Korponay-Szabó I, Collin P, et al. Performance of a new rapid whole blood coeliac test in adult patients with low prevalence of endomysial antibodies. Dig Liver Dis. 2007;39:1057–1063.
  • Singh P, Wadhwa N, Chaturvedi MK, et al. Validation of point-of-care testing for coeliac disease in children in a tertiary hospital in north India. Arch Dis Child. 2014;99:1004–1008.
  • Popp A, Jinga M, Jurcut C, et al. Fingertip rapid point-of-care test in adult case-finding in coeliac disease. BMC Gastroenterol. 2013;13:115.
  • Mooney PD, Kurien M, Evans KE, et al. Point-of-care testing for celiac disease has a low sensitivity in endoscopy. Gastrointest Endosc. 2014;80:456–462.
  • Bienvenu F, Besson Duvanel C, Seignovert C, et al. Evaluation of a point-of-care test based on deamidated gliadin peptides for celiac disease screening in a large pediatric population. Eur J Gastroenterol Hepatol. 2012;24:1418–1423.
  • Benkebil F, Combescure C, Anghel S, et al. Diagnostic accuracy of a new point-of-care screening assay for celiac disease. World J Gastroenterol. 2013;19:5111–5117.
  • Bienvenu F, Anghel SI, Besson Duvanel C, et al. Early diagnosis of celiac disease in IgA deficient children: contribution of a point-of-care test. BMC Gastroenterol. 2014;14:186.
  • Mooney PD, Wong SH, Johnston AJ, et al.. Increased detection of celiac disease with measurement of deamidated gliadin peptide antibody before endoscopy. Clin Gastroenterol Hepatol. 2015;13:1278–1284.
  • Bonamico M, Ferri M, Nenna R, et al. Tissue transglutaminase autoantibody detection in human saliva: a powerful method for celiac disease screening. J Pediatr. 2004;144:632–636.
  • Nenna R, Tiberti C, Petrarca L, et al. The celiac iceberg: characterization of the disease in primary schoolchildren. J Pediatr Gastroenterol Nutr. 2013;56:416–421.
  • Adornetto G, Fabiani L, Volpe G, et al. An electrochemical immunoassay for the screening of celiac disease in saliva samples. Anal Bioanal Chem. 2015;407:7189–7196.
  • Kappler M, Krauss-Etschmann S, Diehl V, et al. Detection of secretory IgA antibodies against gliadin and human tissue transglutaminase in stool to screen for coeliac disease in children: validation study. Bmj. 2006;332:213–214.
  • Ricaño-Ponce I, Wijmenga C, Gutierrez-Achury J. Genetics of celiac disease. Best Pract Res Clin Gastroenterol. 2015;29:399–412.
  • Van Heel DA, Franke L, Hunt KA, et al. A genome-wide association study for celiac disease identifies risk variants in the region harboring IL2 and IL21. Nat Genet. 2007;39:827–829.
  • Hunt KA, Zhernakova A, Turner G, et al. Newly identified genetic risk variants for celiac disease related to the immune response. Nat Genet. 2008;40:395–402.
  • Dubois PC, Trynka G, Franke L, et al. Multiple common variants for celiac disease influencing immune gene expression. Nat Genet. 2010;42:295–302.
  • Trynka G, Hunt KA, Bockett NA, et al. Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease. Nat Genet. 2011;43:1193–1201.
  • Coleman C, Quinn EM, Ryan AW, et al.. Common polygenic variation in coeliac disease and confirmation of ZNF335 and NIFA as disease susceptibility loci. Eur J Hum Genet. 2015. doi:10.1038/ejhg.2015.87.
  • Abraham G, Tye-Din JA, Bhalala OG, et al. Accurate and robust genomic prediction of celiac disease using statistical learning. PLoS Genet. 2014;10:e1004137.
  • Romanos J, Rosén A, Kumar V, et al.. Improving coeliac disease risk prediction by testing non-HLA variants additional to HLA variants. Gut. 2014;63:415–422.
  • Derikx JP, Vreugdenhil AC, Van Den Neucker AM, et al.. A pilot study on the noninvasive evaluation of intestinal damage in celiac disease using I-FABP and L-FABP. J Clin Gastroenterol. 2009;43:727–733.
  • Vreugdenhil AC, Wolters VM, Adriaanse MP, et al. Additional value of serum I-FABP levels for evaluating celiac disease activity in children. Scand J Gastroenterol. 2011;46:1435–1441.
  • Hoffmanová I, Sánchez D, Hábová V, et al. Serological markers of enterocyte damage and apoptosis in patients with celiac disease, autoimmune diabetes mellitus and diabetes mellitus type 2. Physiol Res. 2015;64:537–546.
  • Adriaanse MP, Tack GJ, Passos VL, et al. Serum I-FABP as marker for enterocyte damage in coeliac disease and its relation to villous atrophy and circulating autoantibodies. Aliment Pharmacol Ther. 2013;37:482–490.
  • Sarikaya M, Ergül B, Doğan Z, et al. Intestinal fatty acid binding protein (I-FABP) as a promising test for Crohn’s disease: a preliminary study. Clin Lab. 2015;61:87–91.
  • Morón B, Verma AK, Das P, et al.. CYP3A4-catalyzed simvastatin metabolism as a non-invasive marker of small intestinal health in celiac disease. Am J Gastroenterol. 2013;108:1344–1351.
  • Kolars JC, Lown KS, Schmiedlin-Ren P, et al. CYP3A gene expression in human gut epithelium. Pharmacogenetics. 1994;4:247–259.
  • Bragde H, Jansson U, Jarlsfelt I, et al.. Gene expression profiling of duodenal biopsies discriminates celiac disease mucosa from normal mucosa. Pediatr Res. 2011;69:530–537.
  • Anderson RP, Van Heel DA, Tye-Din JA, et al.. T cells in peripheral blood after gluten challenge in coeliac disease. Gut. 2005;54:1217–1223.
  • Christophersen A, Ráki M, Bergseng E, et al. Tetramer-visualized gluten-specific CD4+ T cells in blood as a potential diagnostic marker for coeliac disease without oral gluten challenge. United European Gastroenterol J. 2014;2:268–278.
  • Verdu EF, Galipeau HJ, Jabri B. Novel players in coeliac disease pathogenesis: role of the gut microbiota. Nat Rev Gastroenterol Hepatol. 2015;12:497–506.
  • Buoli Comani G, Panceri R, Dinelli M, et al. miRNA-regulated gene expression differs in celiac disease patients according to the age of presentation. Genes Nutr. 2015;10:482.
  • Sugai E, Hwang HJ, Vázquez H, et al. Should ESPGHAN guidelines for serologic diagnosis of celiac disease be used in adults? A prospective analysis in an adult patient cohort with high pretest probability. Am J Gastroenterol. 2015;110:1504–1505.
  • Vécsei E, Steinwendner S, Kogler H, et al. Follow-up of pediatric celiac disease: value of antibodies in predicting mucosal healing, a prospective cohort study. BMC Gastroenterol. 2014;14:28.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.