364
Views
9
CrossRef citations to date
0
Altmetric
Reviews

Personalizing and targeting therapy for COPD – the role of molecular and clinical biomarkers

, , , , , , , , , , , & show all
Pages 593-605 | Published online: 09 Jan 2014

References

  • Vestbo J, Hurd SS, Agustí AG et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 187(4), 347–365 (2013).
  • Lozano R, Naghavi M, Foreman K et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380(9859), 2095–2128 (2012).
  • Zeng G, Sun B, Zhong N. Non-smoking-related chronic obstructive pulmonary disease: a neglected entity? Respirology 17(6), 908–912 (2012).
  • Siedlinski M, Tingley D, Lipman PJ et al. Dissecting direct and indirect genetic effects on chronic obstructive pulmonary disease (COPD) susceptibility. Hum. Genet. 132(4), 431–441 (2013).
  • Drummond MB, Hansel NN, Connett JE, Scanlon PD, Tashkin DP, Wise RA. Spirometric predictors of lung function decline and mortality in early chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 185(12), 1301–1306 (2012).
  • Montuschi P. Drugs for chronic obstructive pulmonary disease. Curr. Med. Chem. 20(12), 1461–1463 (2013).
  • Montuschi P. Pharmacological treatment of chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 1(4), 409–423 (2006).
  • Decramer M, Janssens W, Miravitlles M. Chronic obstructive pulmonary disease. Lancet 379(9823), 1341–1351 (2012).
  • Rosenberg SR, Kalhan R. Biomarkers in chronic obstructive pulmonary disease. Transl. Res. 159(4), 228–237 (2012).
  • Montuschi P. Toward a personalized pharmacotherapy of respiratory diseases. Front. Pharmacol. 1, 131 (2010).
  • Bowman RV, Wright CM, Davidson MR, Francis SM, Yang IA, Fong KM. Epigenomic targets for the treatment of respiratory disease. Expert Opin. Ther. Targets 13(6), 625–640 (2009).
  • Wan ES, Qiu W, Baccarelli A et al. Cigarette smoking behaviors and time since quitting are associated with differential DNA methylation across the human genome. Hum. Mol. Genet. 21(13), 3073–3082 (2012).
  • Qiu W, Baccarelli A, Carey VJ et al. Variable DNA methylation is associated with chronic obstructive pulmonary disease and lung function. Am. J. Respir. Crit. Care Med. 185(4), 373–381 (2012).
  • Ko FW, Hui DS. Air pollution and chronic obstructive pulmonary disease. Respirology 17(3), 395–401 (2012).
  • Ristovski ZD, Miljevic B, Surawski NC et al. Respiratory health effects of diesel particulate matter. Respirology 17(2), 201–212 (2012).
  • Yang IA, Fong KM, Zimmerman PV, Holgate ST, Holloway JW. Genetic susceptibility to the respiratory effects of air pollution. Thorax 63(6), 555–563 (2008).
  • Holloway JW, Savarimuthu Francis S, Fong KM, Yang IA. Genomics and the respiratory effects of air pollution exposure. Respirology 17(4), 590–600 (2012).
  • Yang IA, Holz O, Jorres RA et al. Association of tumour necrosis factor-alpha polymorphisms and ozone-induced change in lung function. Am. J. Respir. Crit. Care Med. 171(2), 171–176 (2005).
  • Londahl J, Swietlicki E, Rissler J et al. Experimental determination of the respiratory tract deposition of diesel combustion particles in patients with chronic obstructive pulmonary disease. Part Fibre Toxicol. 9, 30 (2012).
  • Pezzulo AA, Starner TD, Scheetz TE et al. The air-liquid interface and use of primary cell cultures are important to recapitulate the transcriptional profile of in vivo airway epithelia. Am. J. Physiol. Lung Cell Mol. Physiol. 300(1), L25–L31 (2011).
  • Aufderheide M, Halter B, Mohle N, Hochrainer D. The CULTEX RFS: a comprehensive technical approach for the in vitro exposure of airway epithelial cells to the particulate matter at the air-liquid interface. Biomed. Res. Int. 2013, 734137 (2013).
  • Repapi E, Sayers I, Wain LV et al. Genome-wide association study identifies five loci associated with lung function. Nat. Genet. 42(1), 36–44 (2010).
  • Soler Artigas M, Loth DW, Wain LV et al. Genome-wide association and large-scale follow up identifies 16 new loci influencing lung function. Nat. Genet. 43(11), 1082–1090 (2011).
  • Hansel N, Ruczinski I, Rafaels N et al. Genome-wide study identifies two loci associated with lung function decline in mild to moderate COPD. Hum. Genet. 132(1), 79–90 (2013).
  • Yang IA, Francis SM. Deconstructing COPD using genomic tools. Respirology 14(3), 313–317 (2009).
  • Savarimuthu Francis SM, Larsen JE, Pavey SJ et al. Expression profiling identifies genes involved in emphysema severity. Respir. Res. 10(1), 81 (2009).
  • Savarimuthu Francis SM, Larsen JE, Pavey SJ et al. Genes and gene ontologies common to airflow obstruction and emphysema in the lungs of patients with COPD. PLoS ONE 6(3), e17442 (2011).
  • Yang IA, Clarke MS, Sim EH, Fong KM. Inhaled corticosteroids for stable chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 7, CD002991 (2012).
  • Steiling K, Van Den Berge M, Hijazi K et al. A dynamic bronchial airway gene expression signature of chronic obstructive pulmonary disease and lung function impairment. Am. J. Respir. Crit. Care Med. 187(9), 933–942 (2013).
  • Kitaguchi Y, Komatsu Y, Fujimoto K, Hanaoka M, Kubo K. Sputum eosinophilia can predict responsiveness to inhaled corticosteroid treatment in patients with overlap syndrome of COPD and asthma. Int. J. Chron. Obstruct. Pulmon. Dis. 7, 283–289 (2012).
  • Nicholas BL. Search for biomarkers in chronic obstructive pulmonary disease: current status. Curr. Opin. Pulm. Med. 19(2), 103–108 (2013).
  • Warwick G, Thomas PS, Yates DH. Non-invasive biomarkers in exacerbations of obstructive lung disease. Respirology 18(5), 874–884 (2013).
  • Montuschi P, Collins JV, Ciabattoni G et al. Exhaled 8-isoprostane as an in vivo biomarker of lung oxidative stress in patients with COPD and healthy smokers. Am. J. Respir. Crit. Care Med. 162(3), 1175–1177 (2000).
  • Montuschi P. LC/MS/MS analysis of leukotriene B4 and other eicosanoids in exhaled breath condensate for assessing lung inflammation. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 877(13), 1272–1280 (2009).
  • Liu SF, Wang CC, Chin CH, Chen YC, Lin MC. High value of combined serum C-reactive protein and BODE score for mortality prediction in patients with stable COPD. Arch. Bronconeumol. 47(9), 427–432 (2011).
  • Ju CR, Liu W, Chen RC. Serum surfactant protein D: biomarker of chronic obstructive pulmonary disease. Dis. Markers 32(5), 281–287 (2012).
  • De Laurentiis G, Paris D, Melck D et al. Separating smoking-related diseases using NMR-based metabolomics of exhaled breath condensate. J. Proteome Res. 12(3), 1502–1511 (2013).
  • Fens N, De Nijs SB, Peters S et al. Exhaled air molecular profiling in relation to inflammatory subtype and activity in COPD. Eur. Respir. J. 38(6), 1301–1309 (2011).
  • Bofan M, Mores N, Baron M et al. Within-day and between-day repeatability of measurements with an electronic nose in patients with COPD. J. Breath Res. 7(1), 017103 (2013).
  • Bozinovski S, Hutchinson A, Thompson M et al. Serum amyloid a is a biomarker of acute exacerbations of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 177(3), 269–278 (2008).
  • Tacon CE, Wiehler S, Holden NS, Newton R, Proud D, Leigh R. Human rhinovirus infection up-regulates MMP-9 production in airway epithelial cells via NF-{kappa}B. Am. J. Respir. Cell Mol. Biol. 43(2), 201–209 (2010).
  • Almansa R, Socias L, Andaluz-Ojeda D et al. Viral infection is associated with an increased proinflammatory response in chronic obstructive pulmonary disease. Viral Immunol. 25(4), 249–253 (2012).
  • Wu Q, Case SR, Minor MN et al. A novel function of MUC18: amplification of lung inflammation during bacterial infection. Am. J. Pathol. 182(3), 819–827 (2013).
  • Scherr A, Graf R, Bain M et al. Pancreatic stone protein predicts positive sputum bacteriology in exacerbations of COPD. Chest 143(2), 379–387 (2012).
  • Peng C, Tian C, Zhang Y, Yang X, Feng Y, Fan H. C-reactive protein levels predict bacterial exacerbation in patients with chronic obstructive pulmonary disease. Am. J. Med. Sci. 345(3), 190–194 (2013).
  • Tokman S, Schuetz P, Bent S. Procalcitonin-guided antibiotic therapy for chronic obstructive pulmonary disease exacerbations. Expert Rev. Anti .Infect .Ther. 9(6), 727–735 (2011).
  • Savarimuthu Francis SM, Tan ME, Fung PR et al. Peripheral compartment innate immune response to Haemophilus influenzae and Streptococcus pneumoniae in chronic obstructive pulmonary disease patients. Innate. Immun. 19(4), 428–437 (2012).
  • Wells JM, Washko GR, Han MK et al. Pulmonary arterial enlargement and acute exacerbations of COPD. N. Engl. J. Med. 367(10), 913–921 (2012).
  • Murphy PB, Kumar A, Reilly C et al. Neural respiratory drive as a physiological biomarker to monitor change during acute exacerbations of COPD. Thorax 66(7), 602–608 (2011).
  • Bafadhel M, Mckenna S, Terry S et al. Blood eosinophils to direct corticosteroid treatment of exacerbations of chronic obstructive pulmonary disease: a randomized placebo-controlled trial. Am. J. Respir. Crit. Care Med. 186(1), 48–55 (2012).
  • Wedzicha JA, Rabe KF, Martinez FJ et al. Efficacy of roflumilast in the chronic obstructive pulmonary disease frequent exacerbator phenotype. Chest 143(5), 1302–1311 (2012).
  • Suissa S, Dell'aniello S, Ernst P. Long-term natural history of chronic obstructive pulmonary disease: severe exacerbations and mortality. Thorax 67(11), 957–963 (2012).
  • Lee SJ, Lee SH, Kim YE et al. Clinical Features according to the Frequency of Acute Exacerbation in COPD. Tuberc. Respir. Dis. 72(4), 367–373 (2012).
  • Hurst JR, Vestbo J, Anzueto A et al. Susceptibility to exacerbation in chronic obstructive pulmonary disease. N. Engl. J. Med. 363(12), 1128–1138 (2010).
  • Duvoix A, Dickens J, Haq I et al. Blood fibrinogen as a biomarker of chronic obstructive pulmonary disease. Thorax 68(7), 670–676 (2012).
  • Valipour A, Schreder M, Wolzt M et al. Circulating vascular endothelial growth factor and systemic inflammatory markers in patients with stable and exacerbated chronic obstructive pulmonary disease. Clin. Sci. (Lond.) 115(7), 225–232 (2008).
  • Agusti A, Edwards LD, Rennard SI et al. Persistent systemic inflammation is associated with poor clinical outcomes in COPD: a novel phenotype. PLoS ONE 7(5), e37483 (2012).
  • Hodge S, Matthews G, Dean MM et al. Therapeutic role for mannose-binding lectin in cigarette smoke-induced lung inflammation? Evidence from a murine model. Am. J. Respir. Cell. Mol. Biol. 42(2), 235–242 (2010).
  • Yang IA, Seeney SL, Wolter JM et al. Mannose-binding lectin gene polymorphism predicts hospital admissions for COPD infections. Genes. Immun. 4, 269–274 (2003).
  • Lin CL, Siu LK, Lin JC et al. Mannose-binding lectin gene polymorphism contributes to recurrence of infective exacerbation in patients with COPD. Chest 139(1), 43–51 (2011).
  • Eagan TM, Aukrust P, Bakke PS et al. Systemic mannose-binding lectin is not associated with chronic obstructive pulmonary disease. Respir. Med. 104(2), 283–290 (2010).
  • Albert RK, Connett J, Curtis JL et al. Mannose-binding lectin deficiency and acute exacerbations of chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 7, 767–777 (2012).
  • Vanfleteren LEGW, Spruit MA, Groenen M et al. Clusters of comorbidities based on validated objective measurements and systemic inflammation in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 187(7), 728–735 (2013).
  • Divo M, Cote C, De Torres JP et al. Comorbidities and risk of mortality in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 186(2), 155–161 (2012).
  • Kessler R, Faller M, Weitzenblum E et al. "Natural history" of pulmonary hypertension in a series of 131 patients with chronic obstructive lung disease. Am. J. Respir. Crit. Care Med. 164(2), 219–224 (2001).
  • Shaw JG, Dent AG, Passmore LH et al. Genetic influences on right ventricular systolic pressure (RVSP) in chronic obstructive pulmonary disease (COPD). BMC Pulm. Med. 12, 25 (2012).
  • Castaldi PJ, Hersh CP, Reilly JJ, Silverman EK. Genetic associations with hypoxemia and pulmonary arterial pressure in COPD. Chest 135(3), 737–744 (2009).
  • Chaouat A, Savale L, Chouaid C et al. Role for interleukin-6 in COPD-related pulmonary hypertension. Chest 136(3), 678–687 (2009).
  • Wells JM, Washko GR, Han MK et al. Pulmonary arterial enlargement and acute exacerbations of COPD. N. Engl. J. Med. 367(10), 913–921 (2012).
  • Boschetto P, Beghe B, Fabbri LM, Ceconi C. Link between chronic obstructive pulmonary disease and coronary artery disease: implication for clinical practice. Respirology 17(3), 422–431 (2012).
  • Maclay JD, Macnee W. Cardiovascular disease in COPD: mechanisms. Chest 143(3), 798–807 (2013).
  • Macnee W, Maclay J, Mcallister D. Cardiovascular injury and repair in chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 5(8), 824–833 (2008).
  • Barr RG, Ahmed FS, Carr JJ et al. Subclinical atherosclerosis, airflow obstruction and emphysema: the MESA Lung Study. Eur. Respir. J. 39(4), 846–854 (2012).
  • Mcallister DA, Maclay JD, Mills NL et al. Arterial stiffness is independently associated with emphysema severity in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 176(12), 1208–1214 (2007).
  • Lindberg A, Larsson LG, Muellerova H, Ronmark E, Lundback B. Up-to-date on mortality in COPD – report from the OLIN COPD study. BMC. Pulm. Med. 12, 1 (2012).
  • Arcari A, Magnacca S, Bracone F et al. Relation between pulmonary function and 10-year risk for cardiovascular disease among healthy men and women in Italy: the Moli-sani Project. Eur. J. Prev. Cardiol. 20(5), 862–871. (2012).
  • Feary JR, Rodrigues LC, Smith CJ, Hubbard RB, Gibson JE. Prevalence of major comorbidities in subjects with COPD and incidence of myocardial infarction and stroke: a comprehensive analysis using data from primary care. Thorax 65(11), 956–962 (2010).
  • Calverley PM, Anderson JA, Celli B et al. Salmeterol and fluticasone propionate and survival in chronic obstructive pulmonary disease. N. Engl. J. Med. 356(8), 775–789 (2007).
  • Tashkin DP, Celli B, Senn S et al. A 4-year trial of tiotropium in chronic obstructive pulmonary disease. N. Engl. J. Med. 359(15), 1543–1554 (2008).
  • Greenland P, Labree L, Azen SP, Doherty TM, Detrano RC. Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. JAMA 291(2), 210–215 (2004).
  • Detrano R, Guerci AD, Carr JJ et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N. Engl. J. Med. 358(13), 1336–1345 (2008).
  • Shemesh J, Henschke CI, Shaham D et al. Ordinal scoring of coronary artery calcifications on low-dose CT scans of the chest is predictive of death from cardiovascular disease. Radiology 257(2), 541–548 (2010).
  • Ghoorah K, De Soyza A, Kunadian V. Increased cardiovascular risk in patients with chronic obstructive pulmonary disease and the potential mechanisms linking the two conditions: a review. Cardiol. Rev. (2012).
  • Clegg A, Young J, Iliffe S, Rikkert MO, Rockwood K. Frailty in elderly people. The Lancet 381(9868), 752–762 (2013).
  • Fried LP, Tangen CM, Walston J, Newman AB. Frailty in older adults: evidence for a phenotype. J. Gerontol. 56A(3), M146–M156 (2001).
  • Waschki B, Kirsten A, Holz O et al. Physical activity is the strongest predictor of all-cause mortality in patients with copd: a prospective cohort study. CHEST J. 140(2), 331–342 (2011).
  • Collard RM, Boter H, Schoevers RA, Oude Voshaar RC. Prevalence of frailty in community-dwelling older persons: a systematic review. J. Am. Geriatr. Soc. 60(8), 1487–1492 (2012).
  • Buist AS, Mcburnie MA, Vollmer WM et al. International variation in the prevalence of COPD (the BOLD Study): a population-based prevalence study. Lancet 370(9589), 741–750 (2007).
  • Hubbard RE, Andrew MK, Fallah N, Rockwood K. Comparison of the prognostic importance of diagnosed diabetes, co-morbidity and frailty in older people. Diab. Med. 27(5), 603–606 (2010).
  • Makary MA, Segev DL, Pronovost PJ et al. Frailty as a predictor of surgical outcomes in older patients. J. Am. Coll. Surg. 210(6), 901–908 (2010).
  • Singh M, Alexander K, Roger VL et al. Frailty and its potential relevance to cardiovascular care. Mayo Clin. Proc. 83(10), 1146–1153 (2008).
  • Galizia G, Cacciatore F, Testa G et al. Role of clinical frailty on long-term mortality of elderly subjects with and without chronic obstructive pulmonary disease. Aging Clin. Exp. Res. 23(2), 118–125 (2011).
  • Vaz Fragoso CA, Enright PL, Mcavay G, Van Ness PH, Gill TM. Frailty and respiratory impairment in older persons. Am. J. Med. 125(1), 79–86 (2012).
  • Yang IA, Relan V, Wright CM et al. Common pathogenic mechanisms and pathways in the development of COPD and lung cancer. Expert Opin. Ther. Targets 15(4), 439–456 (2011).
  • Houghton AM. Mechanistic links between COPD and lung cancer. Nat. Rev. Cancer 13(4), 233–245 (2013).
  • Smith BM, Pinto L, Ezer N, Sverzellati N, Muro S, Schwartzman K. Emphysema detected on computed tomography and risk of lung cancer: a systematic review and meta-analysis. Lung Cancer 77(1), 58–63 (2012).
  • Aberle DR, Adams AM, Berg CD et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 365(5), 395–409 (2011).
  • Tammemagi MC, Katki HA, Hocking WG et al. Selection criteria for lung-cancer screening. N. Engl. J. Med. 368(8), 728–736 (2013).
  • Marshall HM, Bowman RV, Crossin J et al. Queensland lung cancer screening study: rationale, design and methods. Intern. Med. J .43(2), 174–182 (2013).
  • Tammemagi MC, Lam SC, Mcwilliams AM, Sin DD. Incremental value of pulmonary function and sputum DNA image cytometry in lung cancer risk prediction. Cancer Prev. Res. (Phila.) 4(4), 552–561 (2011).
  • Horvath I, Lazar Z, Gyulai N, Kollai M, Losonczy G. Exhaled biomarkers in lung cancer. Eur. Respir. J. 34(1), 261–275 (2009).
  • Collins PF, Elia M, Stratton RJ. Nutritional support and functional capacity in chronic obstructive pulmonary disease: a systematic review and meta-analysis. Respirology 18(4), 616–629 (2013).
  • Donaldson AV, Maddocks M, Martolini D, Polkey MI, Man WD. Muscle function in COPD: a complex interplay. Int. J. Chron. Obstruct. Pulmon. Dis. 7, 523–535 (2012).
  • Laurin C, Moullec G, Bacon SL, Lavoie KL. Impact of anxiety and depression on chronic obstructive pulmonary disease exacerbation risk. Am. J. Respir. Crit. Care Med. 185(9), 918–923 (2012).
  • Van De Bool C, Steiner MC, Schols AM. Nutritional targets to enhance exercise performance in chronic obstructive pulmonary disease. Curr. Opin. Clin. Nutr. Metab. Care 15(6), 553–560 (2012).
  • Wilk JB, Chen TH, Gottlieb DJ et al. A genome-wide association study of pulmonary function measures in the Framingham Heart Study. PLoS Genet. 5(3), e1000429 (2009).
  • Pillai SG, Ge D, Zhu G et al. A genome-wide association study in chronic obstructive pulmonary disease (COPD): identification of two major susceptibility loci. PLoS Genet. 5(3), e1000421 (2009).
  • Cho MH, Boutaoui N, Klanderman BJ et al. Variants in FAM13A are associated with chronic obstructive pulmonary disease. Nat. Genet. 42(3), 200–202 (2010).
  • Wilk JB, Shrine NR, Loehr LR et al. Genome-wide association studies identify CHRNA5/3 and HTR4 in the development of airflow obstruction. Am. J. Respir. Crit. Care Med. 186(7), 622–632 (2012).
  • Liu JZ, Tozzi F, Waterworth DM et al. Meta-analysis and imputation refines the association of 15q25 with smoking quantity. Nat. Genet. 42(5), 436–440 (2010).
  • The Tobacco and Genetics Consortium. Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat. Genet. 42(5), 441–447 (2010).
  • Thorgeirsson TE, Gudbjartsson DF, Surakka I et al. Sequence variants at CHRNB3-CHRNA6 and CYP2A6 affect smoking behavior. Nat. Genet. 42(5), 448–453 (2010).
  • Siedlinski M, Cho MH, Bakke P et al. Genome-wide association study of smoking behaviours in patients with COPD. Thorax 66(10), 894–902 (2011).
  • Milara J, Armengot M, Banuls P et al. Roflumilast N-oxide, a PDE4 inhibitor, improves cilia motility and ciliated human bronchial epithelial cells compromised by cigarette smoke in vitro. Br. J. Pharmacol. 166(8), 2243–2262 (2012).
  • Comer DM, Kidney JC, Ennis M, Elborn JS. Airway epithelial cell apoptosis and inflammation in COPD, smokers and nonsmokers. Eur. Respir. J. 41(5), 1058–1067 (2013).
  • Volckens J, Dailey L, Walters G, Devlin RB. Direct particle-to-cell deposition of coarse ambient particulate matter increases the production of inflammatory mediators from cultured human airway epithelial cells. Environ. Sci. Technol. 43(12), 4595–4599 (2009).
  • Li J, Ghio AJ, Cho SH, Brinckerhoff CE, Simon SA, Liedtke W. Diesel exhaust particles activate the matrix-metalloproteinase-1 gene in human bronchial epithelia in a beta-arrestin-dependent manner via activation of RAS. Environ. Health Perspect. 117(3), 400–409 (2009).
  • Jardim MJ, Fry RC, Jaspers I, Dailey L, Diaz-Sanchez D. Disruption of microRNA expression inhuman airway cells by diesel exhaust particles is linked to tumorigenesis-associated pathways. Environ. Health Perspect. 117(11), 1745–1751 (2009).
  • Hackett T-L, Singhera GK, Shaheen F et al. Intrinsic phenotypic differences of asthmatic epithelium and its inflammatory responses to respiratory syncytial virus and air pollution. Am. J. Respir. Cell. Mol. Biol. 45(5), 1090–1100 (2011).
  • Hyseni X, Soukup JM, Huang Y-CT. Pollutant particles induce arginase II in human bronchial epithelial cells. J. Toxicol. Environ. Health A 75(11), 624–636 (2012).
  • Hawley B, Volckens J. Proinflammatory effects of cookstove emissions on human bronchial epithelial cells. Indoor Air 23(1), 4–13 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.