197
Views
19
CrossRef citations to date
0
Altmetric
Review

α1-antitrypsin deficiency and inflammation

, &
Pages 243-252 | Published online: 10 Jan 2014

References

  • Perlmutter DH, Cole FS, Kilbridge P, Rossing TH, Colten HR. Expression of α1-proteinase inhibitor gene in human monocytes and macrophages. Proc. Natl Acad. Sci. USA82(3), 795–799 (1995).
  • Cichy J, Potempa J, Travis J. Biosynthesis of α1-proteinase inhibitor by human lung-derived epithelial cells. J. Biol. Chem.272(13), 8250–8255 (1997).
  • Silverman GA, Bird PI, Carrell RW et al. The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition novel functions and a revised nomenclature. J. Biol. Chem.276(36), 33293–33296 (2001).
  • Lomas DA, Belorgey D, Mallya M et al. Molecular mousetraps and the serpinopathies. Biochem. Soc. Trans.33(Pt 2), 321–330 (2005).
  • Blanco I, Bustillo EF, Rodriguez C. Distribution of α1-antitrypsin PI*S and PI*Z frequencies in countries outside Europe: a metaanalysis. Clin. Genet.60(6), 431–441 (2001).
  • Sveger T. The natural history of liver disease in α1-antitrypsin deficient children. Acta. Paed. Scand.77(6), 847–851 (1988).
  • Hodges R, Millward-Sadler GH, Path MRC, Barbatis C, Wright R, Phil D. Heterozygous MZ α1-antitrypsin deficiency in adults with chronic active hepatitis and cryptogenic cirrhosis. N. Engl. J. Med.304(10), 557–560 (1981).
  • Eigenbrodt ML, McCashland TM, Dy RM, Clark J, Galati J. Heterogenous α1-antitrypsin phenotypes in patients with end stage liver disease. Am. J. Gastroenterol.92(4), 602–607 (1997).
  • Graziadei IW, Joseph JJ, Wiesner RH, Therneau TM, Batts KP, Porayko MK. Increased risk of chronic liver failure in adults with heterozygous α1-antitrypsin deficiency. Hepatology28(4), 1058–1063 (1998).
  • Lomas DA, Evans DL, Finch JT, Carrell RW. The mechanism of Z α1-antitrypsin accumulation in the liver. Nature357(6379), 605–607 (1992).
  • Mahadeva R, Dafforn TR, Carrell RW, Lomas DA. 6-mer peptide selectively anneals to a pathogenic serpin conformation and blocks polymerisation: implications for the prevention of Z α1-antitrypsin related cirrhosis. J. Biol. Chem.277(9), 6771–6774 (2002).
  • Tsutsui Y, Kuri B, Sengupta T, Wintrode PL. The structural basis of serpin polymerization studied by hydrogen/deuterium exchange and mass spectrometry. J. Biol. Chem.283(45), 30804–30811 (2008).
  • Yamasaki M, Li W, Johnson DJ, Huntington JA. Crystal structure of a stable dimer reveals the molecular basis of serpin polymerization. Nature455(7217), 1255–1258 (2008).
  • Mahadeva R, Chang WSW, Dafforn T et al. Heteropolymerisation of S, I and Z α1-antitrypsin and liver cirrhosis. J. Clin. Invest.103(7), 999–1006 (1999).
  • Dafforn TR, Mahadeva R, Elliott PR, Sivasothy P, Lomas DA. A kinetic mechanism for the polymerization of α1-antitrypsin. J. Biol. Chem.274(14), 9648–9555 (1999).
  • Blanco I, Fernandez-Bustillo E, de Serres FJ, Alkassam D, Rodriguez Menendez C. PI*S and PI*Z α1-antitrypsin deficiency: estimated prevalence and number of deficient subjects in Spain. Med. Clin. (Barc.)123(20), 761–765 (2004).
  • Teckman JH, Perlmutter DH. Retention of mutant α1-antitrypsin Z in the endoplasmic reticulum is associated with an autophagic response. Am. J. Physiol. Gastrointest. Liver Physiol.279(5), G961–G974 (2000).
  • Elliot PR, Stein PE, Bilton D, Carrell RW, Lomas DA. Structural explanation for the deficiency of S α1-antitrypsin. Nat. Struct. Biol.3(11), 910–911 (1996).
  • Eriksson S, Carlson J, Velez R. Risk of cirrhosis and primary liver cancer in α1-antitrypsin deficiency. N. Engl. J. Med.314(12), 736–739 (1986).
  • Pan S, Huang L, McPherson J et al. Single nucleotide polymorphism-mediated translational suppression of endoplasmic reticulum mannosidase I modifies the onset of end-stage liver disease in α1-antitrypsin deficiency. Hepatology50(1), 275–281 (2009).
  • Chappell S, Hadzic N, Stockley R, Guetta-Baranes T, Morgan K, Kalsheker N. A polymorphism of the α1-antitrypsin gene represents a risk factor for liver disease. Hepatology47(1), 127–132 (2008).
  • Wu Y, Whitman I, Molmenti E, Moore K, Hippenmeyer P, Perlmutter DH. A lag in intracellular degradation of mutant α1-antitrypsin correlates with liver disease phenotype in homozygous PiZZ α1-antitrypsin deficiency. Proc. Natl Acad. Sci. USA91(19), 9014–9018 (1994).
  • Perlmutter DH. Liver injury in α1-antitrypsin deficiency: an aggregated protein induces mitochondrial injury. J. Clin. Invest.110(11), 1579–1583 (2002).
  • Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: cell life and death decisions. J. Clin. Invest.115(10), 2656–2664 (2005).
  • Marciniak SJ, Ron D. Endoplasmic reticulum stress signaling in disease. Physiol. Rev.86(4), 1133–1149 (2006).
  • Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol.8(7), 519–529 (2007).
  • Graham KS, Le A, Sifers RN. Accumulation of the insoluble PiZ variant of human α1-antitrypsin within the hepatic endoplasmic reticulum does not elevate the steady-state level of grp78/BiP. J. Biol. Chem.265(33), 20463–20468 (1990).
  • Hidvegi T, Schmidt BZ, Hale P, Perlmutter DH. Accumulation of mutant α1-antitrypsin Z in the endoplasmic reticulum activates caspases-4 and -12, NF-κB, and BAP31 but not the unfolded protein response. J. Biol. Chem.280(47), 39002–39015 (2005).
  • Davies MJ, Lomas DA. The molecular aetiology of the serpinopathies. Int. J. Biochem. Cell Biol.40(6–7), 1273–1286 (2008).
  • Kamimoto T, Shoji S, Mizushima N et al. Intracellular inclusions containing mutant α1-antitrypsin Z are propagated in the absence of autophagic activity. J. Biol. Chem.281(7), 4467–4476 (2006).
  • Kroeger H, Miranda E, Macleod I et al. Endoplasmic reticulum-associated degradation (ERAD) and autophagy cooperate to degrade polymerogenic mutant serpins. J. Biol. Chem.284(34), 22793–22802 (2009).
  • Kruse KB, Brodsky JL, McCracken AA. Characterization of an ERAD gene as VPS30/ATG6 reveal two alternative and functionally distinct quality control pathways: one for soluble Z variant of human α1-proteinase inhibitor (A1PiZ) and another for aggregates of A1PiZ. Mol. Biol. Cell17(1), 203–212 (2006).
  • Kruse KB, Dear A, Kaltenbrun ER et al. Mutant fibrinogen cleared from the endoplasmic reticulum via endoplasmic reticulum associated protein degradation and autophagy: an explanation of liver disease. Am. J. Pathol.168(4), 1299–1308 (2006).
  • Hidvegi T, Ewing M, Hale P et al. An autophagy-enhancing drug promotes degradation of mutant α1-antitrypsin Z and reduces hepatic fibrosis. Science329(5988), 229–232 (2010).
  • Terman A, Brunk UT. Aging as a catabolic malfunction. Int. J. Biochem. Cell Biol.36(12), 2365–2375 (2004).
  • Davies MJ, Miranda E, Kaufman RJ, Marciniak SJ, Lomas DA. Neuroserpin polymers activate NF-κB by a calcium-signaling pathway that is independent of the unfolded protein response. J. Biol. Chem.284(27), 18202–18209 (2008).
  • Pahl HL, Baeuerle PA. The ER-overload response: activation of NF-κB. Trends Biochem. Sci.22(2), 63–67 (1997).
  • Roach JC, Glusman G, Rowen L et al. The evolution of vertebrate Toll-like receptors. Proc. Natl Acad. Sci. USA102(27), 9577–9582 (2005).
  • Perlmutter DH. Autophagic disposal of the aggregation-prone protein that causes liver inflammation and carcinogenesis in α1-antitrypsin deficiency. Cell Death Differ.16(1), 39–45 (2009).
  • Lindblad D, Blomenkamp K, Teckman J. α1-antitrypsin mutant Z protein content in individual hepatocytes correlates with cell death in a mouse model. Hepatology46(4), 1228–1235 (2007).
  • Teckman JH, An JK, Blomenkamp K, Schmidt B, Perlmutter D. Mitochondrial autophagy an injury in the liver in α1-antitrypsin deficiency. Am. J. Physiol. Gastrointest. Liver Physiol.286(5), G851–G862 (2004).
  • Goetz JG, Nabi IR. Interaction of the smooth endoplasmic reticulum and mitochondria. Biochem. Soc. Trans.34(Pt 3), 370–373 (2006).
  • Egger L, Madden DT, Rhême C, Rao RV, Bredesen DE. Endoplasmic reticulum stress-induced cell death mediated by the proteasome. Cell Death Differ.14(6), 1172–1180 (2007).
  • Lawless MW, Greene CM, Mulgrew A et al. Activation of endoplasmic reticulum-specific stress responses associated with the conformational disease Z α1-antitrypsin deficiency. J. Immunol.172(9), 5722–5726 (2004).
  • MacNee W. Pathogenesis of chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc.2(4), 258–266 (2005).
  • Houghton AM, Quintero PA, Perkins DL et al. Elastin fragments drive disease progression in a murine model of emphysema. J. Clin. Invest.116(3), 753–759 (2006).
  • Lomas DA, Evans DL, Stone SR, Chang WSW, Carrell RW. Effect of the Z mutation on the physical and inhibitory properties of α1-antitrypsin. Biochemistry32(2), 500–508 (1993).
  • Shapiro SD. Proteinases in chronic obstructive pulmonary disease. Biochem. Soc. Trans.30(2), 98–102 (2002).
  • Elliott PR, Bilton B, Lomas DA. Lung polymers in Z α1-antitrypsin deficiency-related emphysema. Am. J. Respir. Cell Mol. Biol.18(5), 670–674 (1998).
  • Mahadeva R, Atkinso C, Li Z et al. Polymers of Z α1-antitrypsin co-localize with neutrophils in emphysematous alveoli and are chemotactic in vivo. Am. J. Pathol.166(2), 377–386 (2005).
  • Parmar JS, Mahadeva R, Reed BJ et al. Polymers of α1-antitrypsin are chemotactic for human neutrophils: a new paradigm for the pathogenesis of emphysema. Am. J. Respir. Cell Biol.26(6), 723–730 (2002).
  • Mulgrew AT, Taggart CC, Lawless MW et al. Z α1-antitrypsin polymerizes in the lung and acts as a neutrophil chemoattractant. Chest125(5), 1952–1957 (2004).
  • Gooptu B, Lomas DA. Polymers and inflammation: disease mechanisms of the serpinopathies. J. Exp. Med.205(7), 1529–1534 (2008).
  • Zhang B, Qu F, Guo W et al. α1-antitrypsin protects β-cells from apoptosis. Diabetes56(5), 1316–1323 (2007).
  • Petrache I, Fijalkowska I, Medler TR et al. α1-antitrypsin inhibits caspase-3 activity preventing lung endothelial cell apoptosis. Am. J. Pathol.169(4), 1155–1166 (2006).
  • Petrache I, Fijalkowska I, Zhen L et al. A novel antiapoptotic role for α1-antitrypsin in the prevention of pulmonary emphysema. Am. J. Respir. Crit. Care Med.173(11), 1222–1228 (2006).
  • Carroll TP, Greene CM, O’Connor CA, Nolan AM, O’Neill SJ, McElvaney NG. Evidence for unfolded protein response activation in monocytes from individuals with α1-antitrypsin deficiency. J. Immunol.184(8), 4538–4546 (2010).
  • Calfon M, Zeng H, Yoneda T et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature415(6867), 92–96 (2002).
  • Lomas DA. The selective advantage of α1-antitrypsin deficiency. Am. J. Respir. Crit. Care Med.173(10), 1072–1077 (2006).
  • Malerba M, Ricciardolo F, Radaeli A et al. Neutrophilic inflammation and IL-8 levels in induced sputum of α1-antitrypsin Pi*MZ subjects. Thorax61(2), 129–133 (2006).
  • Zaman MM, Gelrud A, Junaidi O et al. Interleukin 8 secretion from monocytes of subjects heterozygous for the δF508 cystic fibrosis transmembrane conductance regulator gene mutation is altered. Clin. Diagn. Lab. Immunol.11(5), 819–824 (2004).
  • Gross B, Grebe M, Wencker M, Stoller JK, Bjursten LM, Janciauskiene S. New findings in PiZZ α1-antitrypsin deficiency-related panniculitis. Demonstration of skin polymers and high dosing requirements of intravenous augmentation therapy. Dermatology218(4), 370–375 (2009).
  • Mahr AD, Neogi T, Merkel PA. Epidemiology of Wegener’s granulomatosis: Lessons from descriptive studies and analyses of genetic and environmental risk determinants. Clin. Exp. Rheumatol.24(2 Suppl. 41), S82–S91 (2006).
  • Ting SM, Toth T, Caskey F. α1-antitrypsin (A1AT) deficiency presenting with IgA nephropathy and nephrotic syndrome: is renal involvement caused by A1AT deposition? Clin. Nephrol.70(2), 159–162 (2008).
  • Blanco I, Canto H, Flores J et al. Long-term augmentation therapy with α1-antitrypsin in an MZ-AAT severe persistent asthma. Monaldi Arch Chest Dis.69(4), 178–182 (2008).
  • Miranda E, Perez J, Ekeowa UI et al. A novel monoclonal antibody to characterize pathogenic polymers in liver disease associated with α1-antitrypsin deficiency. Hepatology52(3), 1078–1088 (2010).
  • Segelmark M, Elzouki AN, Wieslander J, Eriksson S. The PiZ gene of α1-antitrypsin as a determinant of outcome in PR3-ANCA-positive vasculitis. Kidney Int.48(3), 844–850 (1995).
  • Morris HL, Wood AM, Morgan MD et al. α1-antitrypsin polymers prime neutrophils and are proinflammatory. Presented at: American Society of Nephrology Renal Week. Denver, CO, USA, 16–21 November 2010.
  • Renesto P, Si-Tahar M, Moniatte M et al. Specific inhibition of thrombin-induced cell activation by the neutrophil proteinases elastase, cathepsin G, and proteinase 3: evidence for distinct cleavage sites within the aminoterminal domain of the thrombin receptor. Blood89(6), 1944–1953 (1997).
  • Padrines M, Wolf M, Walz A, Baggiolini M. Interleukin-8 processing by neutrophil elastase, cathepsin G and proteinase-3. FEBS Lett.352(2), 231–235 (1994).
  • Coeshott C, Ohnemus C, Pilyavskaya A et al. Converting enzyme-independent release of tumor necrosis factor α and IL-1β from a stimulated human monocytic cell line in the presence of activated neutrophils or purified proteinase 3. Proc. Natl Acad. Sci. USA96(11), 6261–6266 (1999).
  • Csernok E, Szymkowiak CH, Mistry N, Daha MR, Gross WL, Kekow J. Transforming growth factor-beta (TGF-β) expression and interaction with proteinase 3 (PR3) in anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis. Clin. Exp. Immunol.105(1), 104–111 (1996).
  • Miranda E, Romisch K, Lomas DA. Mutants of neuroserpin that cause dementia accumulate as polymers within the endoplasmic reticulum. J. Biol. Chem.279(27), 28283–28291 (2004).
  • Miranda E, MacLeod I, Davies MJ et al. The intracellular accumulation of polymeric neuroserpin explains the severity of the dementia FENIB. Hum. Mol. Genet.17(11), 1527–1539 (2008).
  • Stoller JK, Aboussouan LS. α1-antitrypsin deficiency. Lancet365(9478), 2225–2236 (2005).
  • Stoller JK, Aboussouan LS. α1-antitrypsin deficiency. 5: intravenous augmentation therapy: current understanding. Thorax59(8), 708–712 (2004).
  • Burrows JA, Willis LK, Perlmutter DH. Chemical chaperones mediate increased secretion of mutant α1-antitrypsin Z: a potential pharmacological strategy for prevention of liver injury and emphysema. Proc. Natl Acad. Sci. USA97(4), 1796–1801 (2000).
  • Teckman JH. Lack of effect of oral 4-phenylbutyrate on serum α1-antitrypsin in patients with α-1-antitrypsin deficiency: a preliminary study. J. Pediatr. Gastroenterol. Nutr.39(1), 34–37 (2004).
  • Mallya M, Phillips R, Saldanha SA et al. Small molecules block the polymerization of Z α1-antitrypsin and increase the clearance of intracellular aggregates. J. Med. Chem.50(22), 5357–5363 (2007).
  • Kaushal S, Annamali M, Blomenkam K et al. Rapamycin reduces intrahepatic α1-antitrypsin mutant Z protein polymers and liver injury in a mouse model. Exp. Biol. Med.235(6), 700–709 (2010).
  • Ekeowa UI, Freeke J, Miranda E et al. Defining the mechanism of polymerization in the serpinopathies. Proc. Natl Acad. Sci. USA107(40), 17146–17151 (2010).
  • Lomas DA, Finch JT, Seyama K, Nukiwa T, Carrell RW. α1-antitrypsin Siiyama (Ser53→Phe); further evidence for intracellular loop sheet polymerisation. J. Biol. Chem.268(21), 15333–15335 (1993).
  • Gooptu B, Ekeowa UI, Lomas DA. Mechanisms of emphysema in α1-antitrypsin deficiency: molecular and cellular insights. Eur. Respir. J.34(2), 475–488 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.