147
Views
23
CrossRef citations to date
0
Altmetric
Review

Regulatory T-cell adoptive immunotherapy: potential for treatment of autoimmunity

, &
Pages 213-225 | Published online: 10 Jan 2014

References

  • Fujio K, Okamura T, Yamamoto K. The family of IL-10-secreting CD4+ T cells. Adv. Immunol.105, 99–130 (2010).
  • Saurer L, Mueller C. T cell-mediated immunoregulation in the gastrointestinal tract. Allergy64, 505–519 (2009).
  • Smith TR, Kumar V. Revival of CD8+ Treg-mediated suppression. Trends Immunol.29, 337–342 (2008).
  • Wildin RS, Ramsdell F, Peake J et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat. Genet.27, 18–20 (2001).
  • Gavin MA, Rasmussen JP, Fontenot JD et al. FoxP3-dependent programme of regulatory T-cell differentiation. Nature445, 771–775 (2007).
  • Fontenot JD, Gavin MA, Rudensky AY. FoxP3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol.4, 330–336 (2003).
  • Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor FoxP3. Science299, 1057–1061 (2003).
  • Pacholczyk R, Ignatowicz H, Kraj P, Ignatowicz L. Origin and T cell receptor diversity of FoxP3+CD4+CD25+ T cells. Immunity25, 249–259 (2006).
  • Hsieh CS, Zheng Y, Liang Y, Fontenot JD, Rudensky AY. An intersection between the self-reactive regulatory and nonregulatory T cell receptor repertoires. Nat. Immunol.7, 401–410 (2006).
  • Hsieh CS, Liang Y, Tyznik AJ, Self SG, Liggitt D, Rudensky AY. Recognition of the peripheral self by naturally arising CD25+ CD4+ T cell receptors. Immunity21, 267–277 (2004).
  • Thornton AM, Shevach EM. Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific. J. Immunol.164, 183–190 (2000).
  • Wing K, Onishi Y, Prieto-Martin P et al. CTLA-4 control over FoxP3+ regulatory T cell function. Science322, 271–275 (2008).
  • Fallarino F, Grohmann U, Hwang KW et al. Modulation of tryptophan catabolism by regulatory T cells. Nat. Immunol.4, 1206–1212 (2003).
  • Huang CT, Workman CJ, Flies D et al. Role of LAG-3 in regulatory T cells. Immunity21, 503–513 (2004).
  • Bopp T, Becker C, Klein M et al. Cyclic adenosine monophosphate is a key component of regulatory T cell-mediated suppression. J. Exp. Med.204, 1303–1310 (2007).
  • Deaglio S, Dwyer KM, Gao W et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med.204, 1257–1265 (2007).
  • Nakamura K, Kitani A, Fuss I et al. TGF-β 1 plays an important role in the mechanism of CD4+CD25+ regulatory T cell activity in both humans and mice. J. Immunol.172, 834–842 (2004).
  • McGeachy MJ, Stephens LA, Anderton SM. Natural recovery and protection from autoimmune encephalomyelitis: contribution of CD4+CD25+ regulatory cells within the central nervous system. J. Immunol.175, 3025–3032 (2005).
  • Collison LW, Workman CJ, Kuo TT et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature450, 566–569 (2007).
  • Pandiyan P, Zheng L, Ishihara S, Reed J, Lenardo MJ. CD4+CD25+FoxP3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat. Immunol.8, 1353–1362 (2007).
  • Shevach EM, Mechanisms of FoxP3+ T regulatory cell-mediated suppression. Immunity30, 636–645 (2009).
  • Waldmann H, Adams E, Fairchild P, Cobbold S. Infectious tolerance and the long-term acceptance of transplanted tissue. Immunol. Rev.212, 301–313 (2006).
  • Joffre O, Santolaria T, Calise D et al. Prevention of acute and chronic allograft rejection with CD4+CD25+FoxP3+ regulatory T lymphocytes. Nat. Med.14, 88–92 (2008).
  • Lim HW, Hillsamer P, Banham AH, Kim CH. Cutting edge: direct suppression of B cells by CD4+ CD25+ regulatory T cells. J. Immunol.175, 4180–4183 (2005).
  • Tiemessen MM, Jagger AL, Evans HG, van Herwijnen MJ, John S, Taams LS. CD4+CD25+FoxP3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proc. Natl Acad. Sci. USA104, 19446–19451 (2007).
  • Walker LS, Natural Treg in autoimmune diabetes: all present and correct? Expert Opin. Biol. Ther.8, 1691–1703 (2008).
  • Costantino CM, Baecher-Allan C, Hafler DA. Multiple sclerosis and regulatory T cells. J. Clin. Immunol.28, 697–706 (2008).
  • Flores-Borja F, Mauri C, Ehrenstein MR. Restoring the balance: harnessing regulatory T cells for therapy in rheumatoid arthritis. Eur. J. Immunol.38, 934–937 (2008).
  • Gerli R, Nocentini G, Alunno A et al. Identification of regulatory T cells in systemic lupus erythematosus. Autoimmun. Rev.8, 426–430 (2009).
  • Ehrenstein MR, Evans JG, Singh A et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFα therapy. J. Exp. Med.200, 277–285 (2004).
  • Huan J, Culbertson N, Spencer L et al. Decreased FoxP3 levels in multiple sclerosis patients. J. Neurosci. Res.81, 45–52 (2005).
  • Venken K, Hellings N, Thewissen M et al. Compromised CD4+ CD25 (high) regulatory T-cell function in patients with relapsing-remitting multiple sclerosis is correlated with a reduced frequency of FoxP3-positive cells and reduced FoxP3 expression at the single-cell level. Immunology123, 79–89 (2008).
  • Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J. Exp. Med.199, 971–979 (2004).
  • Bonelli M, Savitskaya A, Steiner CW, Rath E, Smolen JS, Scheinecker C. Phenotypic and functional analysis of CD4+ CD25- FoxP3+ T cells in patients with systemic lupus erythematosus. J. Immunol.182, 1689–1695 (2009).
  • Salomon B, Lenschow DJ, Rhee L et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity12, 431–440 (2000).
  • Morgan ME, Flierman R, van Duivenvoorde LM et al. Effective treatment of collagen-induced arthritis by adoptive transfer of CD25+ regulatory T cells. Arthritis Rheum.52, 2212–2221 (2005).
  • Kohm AP, Carpentier PA, Anger HA, Miller SD. Cutting edge: CD4+CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J. Immunol.169, 4712–4716 (2002).
  • Scalapino KJ, Tang Q, Bluestone JA, Bonyhadi ML, Daikh DI. Suppression of disease in New Zealand Black/New Zealand White lupus-prone mice by adoptive transfer of ex vivo expanded regulatory T cells. J. Immunol.177, 1451–1459 (2006).
  • Tang Q, Henriksen KJ, Bi M et al.In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J. Exp. Med.199, 1455–1465 (2004).
  • Tarbell KV, Yamazaki S, Olson K, Toy P, Steinman RM. CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J. Exp. Med.199, 1467–1477 (2004).
  • Tarbell KV, Petit L, Zuo X et al. Dendritic cell-expanded, islet-specific CD4+ CD25+ CD62L+ regulatory T cells restore normoglycemia in diabetic NOD mice. J. Exp. Med.204, 191–201 (2007).
  • Stephens LA, Malpass KH, Anderton SM. Curing CNS autoimmune disease with myelin-reactive FoxP3+ Treg. Eur. J. Immunol.39, 1108–1117 (2009).
  • Ménétrier-Caux C, Gobert M, Caux C. Differences in tumor regulatory T-cell localization and activation status impact patient outcome. Cancer Res.69, 7895–7898 (2009).
  • Masteller EL, Warner MR, Tang Q, Tarbell KV, McDevitt H, Bluestone JA. Expansion of functional endogenous antigen-specific CD4+CD25+ regulatory T cells from nonobese diabetic mice. J. Immunol.175, 3053–3059 (2005).
  • Bayer AL, Yu A, Malek TR. Function of the IL-2R for thymic and peripheral CD4+CD25+ FoxP3+ T regulatory cells. J. Immunol.178, 4062–4071 (2007).
  • Liu W, Putnam AL, Xu-Yu Z et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J. Exp. Med.203, 1701–1711 (2006).
  • Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA. CD4+CD25high regulatory cells in human peripheral blood. J. Immunol.167, 1245–1253 (2001).
  • Gavin MA, Torgerson TR, Houston E et al. Single-cell analysis of normal and FoxP3-mutant human T cells: FoxP3 expression without regulatory T cell development. Proc. Natl Acad. Sci. USA103, 6659–6664 (2006).
  • Hoffmann P, Eder R, Boeld TJ et al. Only the CD45RA+ subpopulation of CD4+CD25high T cells gives rise to homogeneous regulatory T-cell lines upon in vitro expansion. Blood108, 4260–4267 (2006).
  • Fritzsching B, Oberle N, Pauly E et al. Naive regulatory T cells: a novel subpopulation defined by resistance toward CD95L-mediated cell death. Blood108, 3371–3378 (2006).
  • Valmori D, Merlo A, Souleimanian NE, Hesdorffer CS, Ayyoub M. A peripheral circulating compartment of natural naive CD4 Tregs. J. Clin. Invest.115, 1953–1962 (2005).
  • Seddiki N, Santner-Nanan B, Martinson J et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J. Exp. Med.203, 1693–1700 (2006).
  • Kleinewietfeld M, Starke M, Di Mitri D et al. CD49d provides access to “untouched” human FoxP3+ Treg free of contaminating effector cells. Blood113, 827–836 (2009).
  • Fisson S, Darrasse-Jèze G, Litvinova E et al. Continuous activation of autoreactive CD4+ CD25+ regulatory T cells in the steady state. J. Exp. Med.198, 737–746 (2003).
  • Walker LS, Chodos A, Eggena M, Dooms H, Abbas AK. Antigen-dependent proliferation of CD4+ CD25+ regulatory T cells in vivo. J. Exp. Med.198, 249–258 (2003).
  • Mondino A, Mueller DL. mTOR at the crossroads of T cell proliferation and tolerance. Semin. Immunol.19, 162–172 (2007).
  • Battaglia M, Stabilini A, Roncarolo MG. Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells. Blood105, 4743–4748 (2005).
  • Strauss L, Whiteside TL, Knights A, Bergmann C, Knuth A, Zippelius A. Selective survival of naturally occurring human CD4+CD25+FoxP3+ regulatory T cells cultured with rapamycin. J. Immunol.178, 320–329 (2007).
  • Singh N, Seki Y, Takami M et al. Enrichment of regulatory CD4(+)CD25(+) T cells by inhibition of phospholipase D signaling. Nat. Methods3, 629–636 (2006).
  • Coombes JL, Siddiqui KR, Arancibia-Cárcamo CV et al. A functionally specialized population of mucosal CD103+ DCs induces FoxP3+ regulatory T cells via a TGF-β and retinoic acid-dependent mechanism. J. Exp. Med.204, 1757–1764 (2007).
  • Cobbold SP, Castejon R, Adams E et al. Induction of FoxP3+ regulatory T cells in the periphery of T cell receptor transgenic mice tolerized to transplants. J. Immunol.172, 6003–6010 (2004).
  • Chen W, Jin W, Hardegen N et al. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor FoxP3. J. Exp. Med.198, 1875–1886 (2003).
  • Selvaraj RK, Geiger TL. Mitigation of experimental allergic encephalomyelitis by TGF-β induced FoxP3+ regulatory T lymphocytes through the induction of anergy and infectious tolerance. J. Immunol.180, 2830–2838 (2008).
  • Godebu E, Summers-Torres D, Lin MM, Baaten BJ, Bradley LM. Polyclonal adaptive regulatory CD4 cells that can reverse Type I diabetes become oligoclonal long-term protective memory cells. J. Immunol.181, 1798–1805 (2008).
  • Weber SE, Harbertson J, Godebu E et al. Adaptive islet-specific regulatory CD4 T cells control autoimmune diabetes and mediate the disappearance of pathogenic Th1 cells in vivo. J. Immunol.176, 4730–4739 (2006).
  • Huter EN, Stummvoll GH, DiPaolo RJ, Glass DD, Shevach EM. Cutting edge: antigen-specific TGF β-induced regulatory T cells suppress Th17-mediated autoimmune disease. J. Immunol.181, 8209–8213 (2008).
  • Long SA, Walker MR, Rieck M et al. Functional islet-specific Treg can be generated from CD4+CD25- T cells of healthy and Type 1 diabetic subjects. Eur. J. Immunol.39, 612–620 (2009).
  • Lal G, Zhang N, van der Touw W et al. Epigenetic regulation of FoxP3 expression in regulatory T cells by DNA methylation. J. Immunol.182, 259–273 (2009).
  • Thornton AM, Korty PE, Tran DQ et al. Expression of Helios, an ikaros transcription factor family member, differentiates thymic-derived from peripherally induced FoxP3+ T regulatory cells. J. Immunol.184(7), 3433–3441 (2010).
  • Stanislawski T, Voss RH, Lotz C et al. Circumventing tolerance to a human MDM2-derived tumor antigen by TCR gene transfer. Nat. Immunol.2, 962–970 (2001).
  • Wright GP, Notley CA, Xue SA et al. Adoptive therapy with redirected primary regulatory T cells results in antigen-specific suppression of arthritis. Proc. Natl Acad. Sci. USA6(45), 19078–19083 (2009).
  • Brusko TM, Koya RC, Zhu S et al. Human antigen-specific regulatory T cells generated by T cell receptor gene transfer. PLoS One.5, e11726 (2010).
  • Amrani A, Verdaguer J, Serra P, Tafuro S, Tan R, Santamaria P. Progression of autoimmune diabetes driven by avidity maturation of a T-cell population. Nature406, 739–742 (2000).
  • Kurokawa M, Kato T, Masuko-Hongo K et al. Characterisation of T cell clonotypes that accumulated in multiple joints of patients with rheumatoid arthritis. Ann. Rheum. Dis.58, 546–553 (1999).
  • Luo W, Ma L, Wen Q, Wang N, Zhou MQ, Wang XN. Analysis of the interindividual conservation of T cell receptor α- and β-chain variable regions gene in the peripheral blood of patients with systemic lupus erythematosus. Clin. Exp. Immunol.154, 316–324 (2008).
  • Somoza N, Vargas F, Roura-Mir C et al. Pancreas in recent onset insulin-dependent diabetes mellitus. Changes in HLA, adhesion molecules and autoantigens, restricted T cell receptor V β usage, and cytokine profile. J. Immunol.153, 1360–1377 (1994).
  • Hafler DA, Duby AD, Lee SJ, Benjamin D, Seidman JG, Weiner HL. Oligoclonal T lymphocytes in the cerebrospinal fluid of patients with multiple sclerosis. J. Exp. Med.167, 1313–1322 (1988).
  • Voss RH, Kuball J, Engel R et al. Redirection of T cells by delivering a transgenic mouse-derived MDM2 tumor antigen-specific TCR and its humanized derivative is governed by the CD8 coreceptor and affects natural human TCR expression. Immunol. Res.34, 67–87 (2006).
  • Bouneaud C, Kourilsky P, Bousso P. Impact of negative selection on the T cell repertoire reactive to a self-peptide: a large fraction of T cell clones escapes clonal deletion. Immunity13, 829–840 (2000).
  • Sadovnikova E, Stauss HJ. Peptide-specific cytotoxic T lymphocytes restricted by nonself major histocompatibility complex class I molecules: reagents for tumor immunotherapy. Proc. Natl Acad. Sci. USA93, 13114–13118 (1996).
  • Thomas S, Stauss HJ, Morris EC. Molecular immunology lessons from therapeutic T-cell receptor gene transfer. Immunology129, 170–177 (2010).
  • Szymczak AL, Workman CJ, Wang Y et al. Correction of multi-gene deficiency in vivo using a single ‘self-cleaving’ 2A peptide-based retroviral vector. Nat. Biotechnol.22, 589–594 (2004).
  • Setoguchi K, Misaki Y, Araki Y et al. Antigen-specific T cells transduced with IL-10 ameliorate experimentally induced arthritis without impairing the systemic immune response to the antigen. J. Immunol.165, 5980–5986 (2000).
  • Fujio K, Okamoto A, Araki Y et al. Gene therapy of arthritis with TCR isolated from the inflamed paw. J. Immunol.177, 8140–8147 (2006).
  • Fujio K, Okamoto A, Tahara H et al. Nucleosome-specific regulatory T cells engineered by triple gene transfer suppress a systemic autoimmune disease. J. Immunol.173, 2118–2125 (2004).
  • Jaeckel E, von Boehmer H, Manns MP. Antigen-specific FoxP3-transduced T-cells can control established Type 1 diabetes. Diabetes54, 306–310 (2005).
  • Allan SE, Passerini L, Bacchetta R et al. The role of 2 FoxP3 isoforms in the generation of human CD4+ Tregs. J. Clin. Invest.115, 3276–3284 (2005).
  • Yagi H, Nomura T, Nakamura K et al. Crucial role of FoxP3 in the development and function of human CD25+CD4+ regulatory T cells. Int. Immunol.16, 1643–1656 (2004).
  • Allan SE, Alstad AN, Merindol N et al. Generation of potent and stable human CD4+ T regulatory cells by activation-independent expression of FoxP3. Mol. Ther.16, 194–202 (2008).
  • Koenen HJ, Smeets RL, Vink PM, van Rijssen E, Boots AM, Joosten I. Human CD25highFoxP3pos regulatory T cells differentiate into IL-17-producing cells. Blood112, 2340–2352 (2008).
  • Beriou G, Costantino CM, Ashley CW et al. IL-17-producing human peripheral regulatory T cells retain suppressive function. Blood113, 4240–4249 (2009).
  • Zhou X, Bailey-Bucktrout SL, Jeker LT et al. Instability of the transcription factor FoxP3 leads to the generation of pathogenic memory T cells in vivo.Nat. Immunol.10, 1000–1007 (2009).
  • Hoffmann P, Boeld TJ, Eder R et al. Loss of FoxP3 expression in natural human CD4+CD25+ regulatory T cells upon repetitive in vitro stimulation. Eur. J. Immunol.39, 1088–1097 (2009).
  • Morgan RA, Dudley ME, Wunderlich JR et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science314, 126–129 (2006).
  • Coenen JJ, Koenen HJ, van Rijssen E, Hilbrands LB, Joosten I. Rapamycin, and not cyclosporin A, preserves the highly suppressive CD27+ subset of human CD4+CD25+ regulatory T cells. Blood107, 1018–1023 (2006).
  • Newrzela S, Cornils K, Li Z et al. Resistance of mature T cells to oncogene transformation. Blood112, 2278–2286 (2008).
  • Suchin EJ, Langmuir PB, Palmer E, Sayegh MH, Wells AD, Turka LA. Quantifying the frequency of alloreactive T cells in vivo: new answers to an old question. J. Immunol.166, 973–981 (2001).
  • Davies JL, Kawaguchi Y, Bennett ST et al. A genome-wide search for human Type 1 diabetes susceptibility genes. Nature371, 130–136 (1994).
  • Rigby AS, Silman AJ, Voelm L et al. Investigating the HLA component in rheumatoid arthritis: an additive (dominant) mode of inheritance is rejected, a recessive mode is preferred. Genet. Epidemiol.8, 153–175 (1991).
  • Gregersen PK, Silver J, Winchester RJ. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum.30, 1205–1213 (1987).
  • van der Helm-van Mil AH, Kern M, Gregersen PK, Huizinga TW. Variation in radiologic joint destruction in rheumatoid arthritis differs between monozygotic and dizygotic twins and pairs of unrelated patients. Arthritis Rheum.54, 2028–2030 (2006).
  • Moreno I, Valenzuela A, García A, Yélamos J, Sánchez B, Hernánz W. Association of the shared epitope with radiological severity of rheumatoid arthritis. J. Rheumatol.23, 6–9 (1996).
  • Forabosco P, Gorman JD, Cleveland C et al. Meta-analysis of genome-wide linkage studies of systemic lupus erythematosus. Genes Immun.7, 609–614 (2006).
  • Fernando MM, Stevens CR, Walsh EC et al. Defining the role of the MHC in autoimmunity: a review and pooled analysis. PLoS Genet.4, e1000024 (2008).
  • Congia M, Patel S, Cope AP, De Virgiliis S, Sønderstrup G. T cell epitopes of insulin defined in HLA-DR4 transgenic mice are derived from preproinsulin and proinsulin. Proc. Natl Acad. Sci. USA95, 3833–3838 (1998).
  • Rudy G, Stone N, Harrison LC et al. Similar peptides from two β cell autoantigens, proinsulin and glutamic acid decarboxylase, stimulate T cells of individuals at risk for insulin-dependent diabetes. Mol. Med.1, 625–633 (1995).
  • Kent SC, Chen Y, Bregoli L et al. Expanded T cells from pancreatic lymph nodes of Type 1 diabetic subjects recognize an insulin epitope. Nature435, 224–228 (2005).
  • Alleva DG, Crowe PD, Jin L et al. A disease-associated cellular immune response in Type 1 diabetics to an immunodominant epitope of insulin. J. Clin. Invest.107, 173–180 (2001).
  • Nepom GT, Lippolis JD, White FM et al. Identification and modulation of a naturally processed T cell epitope from the diabetes-associated autoantigen human glutamic acid decarboxylase 65 (hGAD65). Proc. Natl Acad. Sci. USA98, 1763–1768 (2001).
  • Atkinson MA, Bowman MA, Campbell L, Darrow BL, Kaufman DL, Maclaren NK. Cellular immunity to a determinant common to glutamate decarboxylase and coxsackie virus in insulin-dependent diabetes. J. Clin. Invest.94, 2125–2129 (1994).
  • Endl J, Otto H, Jung G et al. Identification of naturally processed T cell epitopes from glutamic acid decarboxylase presented in the context of HLA-DR alleles by T lymphocytes of recent onset IDDM patients. J. Clin. Invest.99, 2405–2415 (1997).
  • Boyton RJ, Lohmann T, Londei M et al. Glutamic acid decarboxylase T lymphocyte responses associated with susceptibility or resistance to Type I diabetes: analysis in disease discordant human twins, non-obese diabetic mice and HLA-DQ transgenic mice. Int. Immunol.10, 1765–1776 (1998).
  • Herman AE, Tisch RM, Patel SD et al. Determination of glutamic acid decarboxylase 65 peptides presented by the Type I diabetes-associated HLA-DQ8 class II molecule identifies an immunogenic peptide motif. J. Immunol.163, 6275–6282 (1999).
  • Reijonen H, Elliott JF, van Endert P, Nepom G. Differential presentation of glutamic acid decarboxylase 65 (GAD65) T cell epitopes among HLA-DRB1*0401-positive individuals. J. Immunol.163, 1674–1681 (1999).
  • Peakman M, Stevens EJ, Lohmann T et al. Naturally processed and presented epitopes of the islet cell autoantigen IA-2 eluted from HLA-DR4. J. Clin. Invest.104, 1449–1457 (1999).
  • Honeyman MC, Stone NL, Harrison LC. T-cell epitopes in Type 1 diabetes autoantigen tyrosine phosphatase IA-2: potential for mimicry with rotavirus and other environmental agents. Mol. Med.4, 231–239 (1998).
  • Hawkes CJ, Schloot NC, Marks J et al. T-cell lines reactive to an immunodominant epitope of the tyrosine phosphatase-like autoantigen IA-2 in Type 1 diabetes. Diabetes49, 356–366 (2000).
  • Ota K, Matsui M, Milford EL, Mackin GA, Weiner HL, Hafler DA. T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature346, 183–187 (1990).
  • Trotter JL, Pelfrey CM, Trotter AL et al. T cell recognition of myelin proteolipid protein and myelin proteolipid protein peptides in the peripheral blood of multiple sclerosis and control subjects. J. Neuroimmunol.84, 172–178 (1998).
  • Forsthuber TG, Shive CL, Wienhold W et al. T cell epitopes of human myelin oligodendrocyte glycoprotein identified in HLA-DR4 (DRB1*0401) transgenic mice are encephalitogenic and are presented by human B cells. J. Immunol.167, 7119–7125 (2001).
  • van Noort JM, van Sechel AC, Bajramovic JJ et al. The small heat-shock protein α B-crystallin as candidate autoantigen in multiple sclerosis. Nature375, 798–801 (1995).
  • Ousman SS, Tomooka BH, van Noort JM et al. Protective and therapeutic role for αB-crystallin in autoimmune demyelination. Nature448, 474–479 (2007).
  • Londei M, Savill CM, Verhoef A et al. Persistence of collagen type II-specific T-cell clones in the synovial membrane of a patient with rheumatoid arthritis. Proc. Natl Acad. Sci. USA86, 636–640 (1989).
  • Kim HY, Kim WU, Cho ML et al. Enhanced T cell proliferative response to type II collagen and synthetic peptide CII (255–274) in patients with rheumatoid arthritis. Arthritis Rheum.42, 2085–2093 (1999).
  • Dzhambazov B, Holmdahl M, Yamada H et al. The major T cell epitope on type II collagen is glycosylated in normal cartilage but modified by arthritis in both rats and humans. Eur. J. Immunol.35, 357–366 (2005).
  • Verheijden GF, Rijnders AW, Bos E et al. Human cartilage glycoprotein-39 as a candidate autoantigen in rheumatoid arthritis. Arthritis Rheum.40, 1115–1125 (1997).
  • Cope AP, Patel SD, Hall F et al. T cell responses to a human cartilage autoantigen in the context of rheumatoid arthritis-associated and nonassociated HLA-DR4 alleles. Arthritis Rheum.42, 1497–1507 (1999).
  • Feitsma AL, van der Voort EI, Franken KL et al. Identification of citrullinated vimentin peptides as T cell epitopes in HLA-DR4-positive patients with rheumatoid arthritis. Arthritis Rheum.62, 117–125 (2010).
  • Kaliyaperumal A, Mohan C, Wu W, Datta SK. Nucleosomal peptide epitopes for nephritis-inducing T helper cells of murine lupus. J. Exp. Med.183, 2459–2469 (1996).
  • Lu L, Kaliyaperumal A, Boumpas DT, Datta SK. Major peptide autoepitopes for nucleosome-specific T cells of human lupus. J. Clin. Invest.104, 345–355 (1999).
  • Riemekasten G, Weiss C, Schneider S et al. T cell reactivity against the SmD1 (83–119) C terminal peptide in patients with systemic lupus erythematosus. Ann. Rheum. Dis.61, 779–785 (2002).
  • O’Brien RM, Cram DS, Coppel RL, Harrison LC. T-cell epitopes on the 70-kDa protein of the (U1)RNP complex in autoimmune rheumatologic disorders. J. Autoimmun.3, 747–757 (1990).
  • Fatenejad S, Bennett M, Moslehi J, Craft J. Influence of antigen organization on the development of lupus autoantibodies. Arthritis Rheum.41, 603–612 (1998).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.