1,468
Views
47
CrossRef citations to date
0
Altmetric
Review

Receptor-activating autoantibodies and disease: preeclampsia and beyond

&
Pages 659-674 | Published online: 10 Jan 2014

References

  • Davies TF, Ando T, Lin RY, Tomer Y, Latif R. Thyrotropin receptor-associated diseases: from adenomata to Graves disease. J. Clin. Invest.115(8), 1972–1983 (2005).
  • Michalek K, Morshed SA, Latif R, Davies TF. TSH receptor autoantibodies. Autoimmun. Rev.9(2), 113–116 (2009).
  • Jacobson DL, Gange SJ, Rose NR, Graham NM. Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin. Immunol. Immunopathol.84(3), 223–243 (1997).
  • Adams DD, Fastier FN, Howie JB, Kennedy TH, Kilpatrick JA, Stewart RD. Stimulation of the human thyroid by infusions of plasma containing LATS protector. J. Clin. Endocrinol. Metab.39(5), 826–832 (1974).
  • Costagliola S, Rodien P, Many MC, Ludgate M, Vassart G. Genetic immunization against the human thyrotropin receptor causes thyroiditis and allows production of monoclonal antibodies recognizing the native receptor. J. Immunol.160(3), 1458–1465 (1998).
  • Laurberg P, Bournaud C, Karmisholt J, Orgiazzi J. Management of Graves’ hyperthyroidism in pregnancy: focus on both maternal and foetal thyroid function, and caution against surgical thyroidectomy in pregnancy. Eur. J. Endocrinol./Eur. Federat. Endocrine Soc.160(1), 1–8 (2009).
  • Smith BR, Hall R. Thyroid-stimulating immunoglobulins in Graves’ disease. Lancet2(7878), 427–431 (1974).
  • Ajjan RA, Weetman AP. Techniques to quantify TSH receptor antibodies. Nat. Clin. Pract. Endocrinol. Metab.4(8), 461–468 (2008).
  • Sanders J, Evans M, Premawardhana LD et al. Human monoclonal thyroid stimulating autoantibody. Lancet362(9378), 126–128 (2003).
  • Smith BR, Bolton J, Young S et al. A new assay for thyrotropin receptor autoantibodies. Thyroid14(10), 830–835 (2004).
  • Nakatake N, Sanders J, Richards T et al. Estimation of serum TSH receptor autoantibody concentration and affinity. Thyroid16(11), 1077–1084 (2006).
  • El Fassi D, Banga JP, Gilbert JA, Padoa C, Hegedus L, Nielsen CH. Treatment of Graves’ disease with rituximab specifically reduces the production of thyroid stimulating autoantibodies. Clin. Immunol.130(3), 252–258 (2009).
  • Sanders J, Jeffreys J, Depraetere H et al. Characteristics of a human monoclonal autoantibody to the thyrotropin receptor: sequence structure and function. Thyroid14(8), 560–570 (2004).
  • Smith BR, Sanders J, Furmaniak J. TSH receptor antibodies. Thyroid17(10), 923–938 (2007).
  • Sanders J, Chirgadze DY, Sanders P et al. Crystal structure of the TSH receptor in complex with a thyroid-stimulating autoantibody. Thyroid17(5), 395–410 (2007).
  • Costagliola S, Many MC, Denef JF, Pohlenz J, Refetoff S, Vassart G. Genetic immunization of outbred mice with thyrotropin receptor cDNA provides a model of Graves’ disease. J. Clin. Invest.105(6), 803–811 (2000).
  • Nagayama Y, Kita-Furuyama M, Ando T et al. A novel murine model of Graves’ hyperthyroidism with intramuscular injection of adenovirus expressing the thyrotropin receptor. J. Immunol.168(6), 2789–2794 (2002).
  • Borda E, Pascual J, Cossio P, De La Vega M, Arana R, Sterin-Borda L. A circulating IgG in Chagas’ disease which binds to β-adrenoceptors of myocardium and modulates their activity. Clin. Exp. Immunol.57(3), 679–686 (1984).
  • Jahns R, Boivin V, Lohse MJ. β(1)-Adrenergic receptor function, autoimmunity, and pathogenesis of dilated cardiomyopathy. Trends Cardiovasc. Med.16(1), 20–24 (2006).
  • Limas CJ, Goldenberg IF, Limas C. Autoantibodies against β-adrenoceptors in human idiopathic dilated cardiomyopathy. Circ. Res.64(1), 97–103 (1989).
  • Magnusson Y, Marullo S, Hoyer S et al. Mapping of a functional autoimmune epitope on the β 1-adrenergic receptor in patients with idiopathic dilated cardiomyopathy. J. Clin. Invest.86(5), 1658–1663 (1990).
  • Wallukat G, Morwinski M, Kowal K, Forster A, Boewer V, Wollenberger A. Autoantibodies against the β-adrenergic receptor in human myocarditis and dilated cardiomyopathy: β-adrenergic agonism without desensitization. Eur. Heart. J.12(Suppl. D), 178–181 (1991).
  • Magnusson Y, Wallukat G, Waagstein F, Hjalmarson A, Hoebeke J. Autoimmunity in idiopathic dilated cardiomyopathy. Characterization of antibodies against the β 1-adrenoceptor with positive chronotropic effect. Circulation89(6), 2760–2767 (1994).
  • Magnusson Y, Hjalmarson A, Hoebeke J. β 1-adrenoceptor autoimmunity in cardiomyopathy. Int. J. Cardiol.54(2), 137–141 (1996).
  • Mobini R, Fu M, Wallukat G, Magnusson Y, Hjalmarson A, Hoebeke J. A monoclonal antibody directed against an autoimmune epitope on the human β 1-adrenergic receptor recognized in idiopathic dilated cardiomyopathy. Hybridoma19(2), 135–142 (2000).
  • Nikolaev VO, Boivin V, Stork S et al. A novel fluorescence method for the rapid detection of functional β 1-adrenergic receptor autoantibodies in heart failure. J. Am. Coll. Cardiol.50(5), 423–431 (2007).
  • Wallukat G, Nissen E, Morwinski R, Muller J. Autoantibodies against the β- and muscarinic receptors in cardiomyopathy. Herz25(3), 261–266 (2000).
  • Munoz-Saravia SG, Haberland A, Wallukat G, Schimke I. Chronic Chagas’ heart disease: a disease on its way to becoming a worldwide health problem: epidemiology, etiopathology, treatment, pathogenesis and laboratory medicine. Heart Fail. Rev. DOI: 10.1007/s10741-010-9211-5 (2010) (Epub ahead of print).
  • Wallukat G, Munoz Saravia SG, Haberland A et al. Distinct patterns of autoantibodies against G-protein-coupled receptors in Chagas’ cardiomyopathy and megacolon. Their potential impact for early risk assessment in asymptomatic Chagas’ patients. J. Am. Coll. Cardiol.55(5), 463–468 (2010).
  • Jahns R, Boivin V, Schwarzbach V, Ertl G, Lohse MJ. Pathological autoantibodies in cardiomyopathy. Autoimmunity41(6), 454–461 (2008).
  • Ferrari I, Levin MJ, Wallukat G et al. Molecular mimicry between the immunodominant ribosomal protein P0 of Trypanosoma cruzi and a functional epitope on the human β 1-adrenergic receptor. J. Exp. Med.182(1), 59–65 (1995).
  • Wallukat G, Wollenberger A. Effects of the serum γ globulin fraction of patients with allergic asthma and dilated cardiomyopathy on chronotropic β adrenoceptor function in cultured neonatal rat heart myocytes. Biomedica Biochimica Acta46(8–9), S634–S639 (1987).
  • Jahns R, Boivin V, Hein L et al. Direct evidence for a β 1-adrenergic receptor-directed autoimmune attack as a cause of idiopathic dilated cardiomyopathy. J. Clin. Invest.113(10), 1419–1429 (2004).
  • Jahns R, Boivin V, Lohse MJ. β 1-adrenergic receptor-directed autoimmunity as a cause of dilated cardiomyopathy in rats. Int. J. Cardiol.112(1), 7–14 (2006).
  • Christ T, Wettwer E, Dobrev D et al. Autoantibodies against the β 1 adrenoceptor from patients with dilated cardiomyopathy prolong action potential duration and enhance contractility in isolated cardiomyocytes. J. Mol. Cell. Cardiol.33(8), 1515–1525 (2001).
  • Deubner N, Berliner D, Schlipp A et al. Cardiac β 1-adrenoceptor autoantibodies in human heart disease: rationale and design of the Etiology, Titre-Course, and Survival (ETiCS) Study. Eur. J. Heart Fail.12(7), 753–762 (2010).
  • Fu ML, Herlitz H, Wallukat G et al. Functional autoimmune epitope on α 1-adrenergic receptors in patients with malignant hypertension. Lancet344(8938), 1660–1663 (1994).
  • Luther HP, Homuth V, Wallukat G. α 1-adrenergic receptor antibodies in patients with primary hypertension. Hypertension29(2), 678–682 (1997).
  • Wenzel K, Haase H, Wallukat G et al. Potential relevance of α(1)-adrenergic receptor autoantibodies in refractory hypertension. PLoS ONE3(11), e3742 (2008).
  • Yan L, Xu Y, Yao H et al. The effects of autoantibodies against the second extracellular loop of α(1)-adrenoceptor on vasoconstriction. Basic Res. Cardiol.104(5), 581–589 (2009).
  • Wenzel K, Wallukat G, Qadri F et al. α 1A-adrenergic receptor-directed autoimmunity induces left ventricular damage and diastolic dysfunction in rats. PLoS ONE5(2), e9409 (2010).
  • Karczewski P, Haase H, Hempel P, Bimmler M. Agonistic antibody to the α 1-adrenergic receptor mobilizes intracellular calcium and induces phosphorylation of a cardiac 15-kDa protein. Mol. Cell. Biochem.333(1–2), 233–242 (2009).
  • Young BC, Levine RJ, Karumanchi SA. Pathogenesis of preeclampsia. Ann. Rev. Pathol.5, 173–192 (2010).
  • Roberts JM, Cooper DW. Pathogenesis and genetics of pre-eclampsia. Lancet357, 53–56 (2001).
  • Xia Y, Zhou CC, Ramin SM, Kellems RE. Angiotensin receptors, autoimmunity, and preeclampsia. J. Immunol.179(6), 3391–3395 (2007).
  • Lamarca BD, Gilbert J, Granger JP. Recent progress toward the understanding of the pathophysiology of hypertension during preeclampsia. Hypertension51(4), 982–988 (2008).
  • Xia Y, Kellems RE. Is preeclampsia an autoimmune disease? Clin. Immunol.133(1), 1–12 (2009).
  • Wenzel K, Rajakumar A, Haase H et al. Angiotensin II type 1 receptor antibodies and increased angiotensin II sensitivity in pregnant rats. Hypertension58(1), 77–84 (2011).
  • Herse F, Verlohren S, Wenzel K et al. Prevalence of agonistic autoantibodies against the angiotensin II type 1 receptor and soluble fms-like tyrosine kinase 1 in a gestational age-matched case study. Hypertension53(2), 393–398 (2009).
  • Wallukat G, Homuth V, Fischer T et al. Patients with preeclampsia develop agonistic autoantibodies against the angiotensin AT1 receptor. J. Clin. Invest.103(7), 945–952 (1999).
  • Dechend R, Viedt C, Muller DN et al. AT1 receptor agonistic antibodies from preeclamptic patients stimulate NADPH oxidase. Circulation107(12), 1632–1639 (2003).
  • Dechend R, Homuth V, Wallukat G et al. AT(1) receptor agonistic antibodies from preeclamptic patients cause vascular cells to express tissue factor. Circulation101(20), 2382–2387 (2000).
  • Bobst SM, Day MC, Gilstrap LC 3rd, Xia Y, Kellems RE. Maternal autoantibodies from preeclamptic patients activate angiotensin receptors on human mesangial cells and induce interleukin-6 and plasminogen activator inhibitor-1 secretion. Am. J. Hypertens.18(3), 330–336 (2005).
  • Xia Y, Wen H, Bobst S, Day MC, Kellems RE. Maternal autoantibodies from preeclamptic patients activate angiotensin receptors on human trophoblast cells. J. Soc. Gynecol. Invest.10(2), 82–93 (2003).
  • Zhou CC, Ahmad S, Mi T et al. Autoantibody from women with preeclampsia induces soluble Fms-like tyrosine kinase-1 production via angiotensin type 1 receptor and calcineurin/nuclear factor of activated T-cells signaling. Hypertension51(4), 1010–1019 (2008).
  • Zhou CC, Irani RA, Zhang Y et al. Angiotensin receptor agonistic autoantibody-mediated tumor necrosis factor-α induction contributes to increased soluble endoglin production in preeclampsia. Circulation121(3), 436–444 (2010).
  • Yang X, Wang F, Chang H et al. Autoantibody against AT1 receptor from preeclamptic patients induces vasoconstriction through angiotensin receptor activation. J. Hypertens.26(8), 1629–1635 (2008).
  • Zhou CC, Zhang Y, Irani RA et al. Angiotensin receptor agonistic autoantibodies induce pre-eclampsia in pregnant mice. Nat. Med.14(8), 855–862 (2008).
  • Siddiqui AH, Irani RA, Blackwell SC, Ramin SM, Kellems RE, Xia Y. Angiotensin receptor agonistic autoantibody is highly prevalent in preeclampsia: correlation with disease severity. Hypertension55(2), 386–393 (2010).
  • Kaufmann P, Black S, Huppertz B. Endovascular trophoblast invasion: implications for the pathogenesis of intrauterine growth retardation and preeclampsia. Biol. Reproduct.69(1), 1–7 (2003).
  • Barker DJ. In utero programming of chronic disease. Clin. Sci. (Lond.)95(2), 115–128 (1998).
  • Godfrey KM, Barker DJ. Fetal nutrition and adult disease. Am. J. Clin. Nutrit.71(Suppl. 5), S1344–S1352 (2000).
  • Baum M, Ortiz L, Quan A. Fetal origins of cardiovascular disease. Curr. Opin. Pediat.15(2), 166–170 (2003).
  • Irani RA, Zhang Y, Blackwell SC et al. The detrimental role of angiotensin receptor agonistic autoantibodies in intrauterine growth restriction seen in preeclampsia. J. Exp. Med.206(12), 2809–2822 (2009).
  • Gadonski G, Lamarca BB, Sullivan E, Bennett W, Chandler D, Granger JP. Hypertension produced by reductions in uterine perfusion in the pregnant rat: role of interleukin 6. Hypertension48(4), 711–716 (2006).
  • Gilbert JS, Ryan MJ, Lamarca BB, Sedeek M, Murphy SR, Granger JP. Pathophysiology of hypertension during preeclampsia: linking placental ischemia with endothelial dysfunction. Am. J. Physiol. Heart Circ. Physiol.294(2), H541–H550 (2008).
  • Parrish MR, Murphy SR, Rutland S et al. The effect of immune factors, tumor necrosis factor-α, and agonistic autoantibodies to the angiotensin II type I receptor on soluble fms-like tyrosine-1 and soluble endoglin production in response to hypertension during pregnancy. Am. J. Hypertens.23(8), 911–916 (2010).
  • Li Z, Zhang Y, Ying Ma J et al. Recombinant vascular endothelial growth factor 121 attenuates hypertension and improves kidney damage in a rat model of preeclampsia. Hypertension50(4), 686–692 (2007).
  • LaMarca B, Wallukat G, Llinas M, Herse F, Dechend R, Granger JP. Autoantibodies to the angiotensin type I receptor in response to placental ischemia and tumor necrosis factor α in pregnant rats. Hypertension52(6), 1168–1172 (2008).
  • Lamarca B, Parrish M, Ray LF et al. Hypertension in response to autoantibodies to the angiotensin II type I receptor (AT1-AA) in pregnant rats: role of endothelin-1. Hypertension54(4), 905–909 (2009).
  • Lamarca B, Wallace K, Herse F et al. Hypertension in response to placental ischemia during pregnancy: role of B lymphocytes. Hypertension57(4), 865–871 (2011).
  • Wallace K, Richards S, Dhillon P et al. CD4+ T-helper cells stimulated in response to placental ischemia mediate hypertension during pregnancy. Hypertension57(5), 949–955 (2011).
  • Dechend R, Gratze P, Wallukat G et al. Agonistic autoantibodies to the AT1 receptor in a transgenic rat model of preeclampsia. Hypertension45(4), 742–746 (2005).
  • Zhang SL, Du YH, Wang J et al. Endothelial dysfunction induced by antibodies against angiotensin AT1 receptor in immunized rats. Acta Pharmacol. Sin.31(10), 1381–1388 (2010).
  • Irani RA, Zhang Y, Zhou CC et al. Autoantibody-mediated angiotensin receptor activation contributes to preeclampsia through tumor necrosis factor-α signaling. Hypertension55(5), 1246–1253 (2010).
  • Zhou CC, Irani RA, Dai Y et al. Autoantibody-mediated IL-6-dependent endothelin-1 elevation underlies pathogenesis in a mouse model of preeclampsia. J. Immunol.186(10), 6024–6034 (2011).
  • Zhou CC, Irani RA, Zhang Y et al. Angiotensin receptor agonistic autoantibody-mediated tumor necrosis factor-α induction contributes to increased soluble endoglin production in preeclampsia. Circulation121(3), 436–444 (2010).
  • Parrish MR, Wallace K, Tam Tam KB et al. Hypertension in response to AT1-AA: Role of reactive oxygen species in pregnancy-induced hypertension. Am. J. Hypertens.24(7), 835–840 (2011).
  • Parrish MR, Ryan MJ, Glover P et al. Angiotensin II type 1 autoantibody induced hypertension during pregnancy is associated with renal endothelial dysfunction. Gender Med.8(3), 184–188.
  • LaMarca B, Wallace K, Granger J. Role of angiotensin II type I receptor agonistic autoantibodies (AT1-AA) in preeclampsia. Curr. Opin. Pharmacol.11(2), 175–179 (2011).
  • Dragun D, Brasen JH, Schonemann C et al. Patients with steroid refractory acute vascular rejection develop agonistic antibodies targeting angiotensin II type 1 receptor. Transplant. Proc.35(6), 2104–2105 (2003).
  • Dragun D, Muller DN, Brasen JH et al. Angiotensin II type 1-receptor activating antibodies in renal-allograft rejection. N. Engl. J. Med.352(6), 558–569 (2005).
  • Dragun D. Agonistic antibody-triggered stimulation of Angiotensin II type 1 receptor and renal allograft vascular pathology. Nephrol. Dial. Transplant.22(7), 1819–1822 (2007).
  • Fu ML, Herlitz H, Schulze W et al. Autoantibodies against the angiotensin receptor (AT1) in patients with hypertension. J. Hypertens.18(7), 945–953 (2000).
  • Wei F, Jia XJ, Yu SQ et al. Candesartan versus imidapril in hypertension: a randomised study to assess effects of anti-AT1 receptor autoantibodies. Heart97(6), 479–484 (2011).
  • Sun YX, Zhang HY, Wei YM, Zhu F, Wang M, Liao YH. The mechanism of signal transduction during vascular smooth muscle cell proliferation induced by autoantibodies against angiotensin AT1 receptor from hypertension. Chinese Med. J.121(1), 43–48 (2008).
  • Liao YH, Wei YM, Wang M, Wang ZH, Yuan HT, Cheng LX. Autoantibodies against AT1-receptor and α1-adrenergic receptor in patients with hypertension. Hypertens. Res.25(4), 641–646 (2002).
  • Dragun D. The role of angiotensin II type 1 receptor-activating antibodies in renal allograft vascular rejection. Pediat. Nephrol. (Berlin, Germany)22(7), 911–914 (2007).
  • Reinsmoen NL, Lai CH, Heidecke H et al. Anti-angiotensin type 1 receptor antibodies associated with antibody mediated rejection in donor HLA antibody negative patients. Transplantation90(12), 1473–1477 (2010).
  • Riemekasten G, Philippe A, Nather M et al. Involvement of functional autoantibodies against vascular receptors in systemic sclerosis. Ann. Rheum. Dis.70(3), 530–536 (2010).
  • Walllukat GDM, Muller J, Bartel S, Schulze W, Hetzer R. Agonistic autoantibodies against the endothelin 1 ETA- and α 1-adrenergic receptor in the sera of patients with idiopathic pulmonary arterial hypertension. Circulation116(II), 503 (2007).
  • Dandel MWG, Englert A, Lehmkul HB, Hetzer R. Potential pathogenetic involvement of agonistic autoantibodies against α-1 adrenergic and endothelin-1 receptors in pulmonary arterial hypertension. Circulation118, S1072 (2008).
  • Dandel MWG, Englert A, Lehmkul HB, Hetzer R. Agonistic autoantibodies against α-1 adrenergic and endothelin-1 receptors in sera of patients with pulmonary arterial hypertension: potential involvement in the pathogenesis of the disease. J. Heart Lung Transplant.28(2), S249 (2009).
  • Dragun D, Philippe A, Catar R, Hegner B. Autoimmune mediated G-protein receptor activation in cardiovascular and renal pathologies. Thrombo. Haemost.101(4), 643–648 (2009).
  • Walther T, Wallukat G, Jank A et al. Angiotensin II type 1 receptor agonistic antibodies reflect fundamental alterations in the uteroplacental vasculature. Hypertension46(6), 1275–1279 (2005).
  • Chen CR, Pichurin P, Nagayama Y, Latrofa F, Rapoport B, Mclachlan SM. The thyrotropin receptor autoantigen in Graves disease is the culprit as well as the victim. J. Clin. Invest.111(12), 1897–1904 (2003).
  • Mizutori Y, Chen CR, Latrofa F, Mclachlan SM, Rapoport B. Evidence that shed thyrotropin receptor A subunits drive affinity maturation of autoantibodies causing Graves’ disease. J. Clin. Endocrinol. Metab.94(3), 927–935 (2009).
  • Gigler A, Dorsch S, Hemauer A et al. Generation of neutralizing human monoclonal antibodies against parvovirus B19 proteins. J. Virol.73(3), 1974–1979 (1999).
  • Stepan H, Wallukat G, Schultheiss HP, Faber R, Walther T. Is parvovirus B19 the cause for autoimmunity against the angiotensin II type receptor? J. Reprod. Immunol.73(2), 130–134 (2007).
  • Bai M. Dimerization of G-protein-coupled receptors: roles in signal transduction. Cell. Signalling16(2), 175–186 (2004).
  • Breitwieser GE. G protein-coupled receptor oligomerization: implications for G protein activation and cell signaling. Cir. Res.94(1), 17–27 (2004).
  • Terrillon S, Bouvier M. Roles of G-protein-coupled receptor dimerization. EMBO Reports5(1), 30–34 (2004).
  • Abdalla S, Lother H, Quitterer U. AT1-receptor heterodimers show enhanced G-protein activation and altered receptor sequestration. Nature407(6800), 94–98 (2000).
  • Abdalla S, Lother H, El Massiery A, Quitterer U. Increased AT(1) receptor heterodimers in preeclampsia mediate enhanced angiotensin II responsiveness. Nat. Med.7(9), 1003–1009 (2001).
  • Szkudlinski MW, Fremont V, Ronin C, Weintraub BD. Thyroid-stimulating hormone and thyroid-stimulating hormone receptor structure-function relationships. Physiol. Rev.82(2), 473–502 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.