203
Views
49
CrossRef citations to date
0
Altmetric
Review

Anti-inflammatory mediators as physiological and pharmacological regulators of parturition

, , &
Pages 675-696 | Published online: 10 Jan 2014

References

  • Goldenberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and causes of preterm birth. Lancet371(9606), 75–84 (2008).
  • Sennstrom MB, Ekman G, Westergren-Thorsson G et al. Human cervical ripening, an inflammatory process mediated by cytokines. Mol. Hum. Reprod.6(4), 375–381 (2000).
  • Young A, Thomson AJ, Ledingham M, Jordan F, Greer IA, Norman JE. Immunolocalization of proinflammatory cytokines in myometrium, cervix, and fetal membranes during human parturition at term. Biol. Reprod.66(2), 445–449 (2002).
  • Osman I, Young A, Ledingham MA et al. Leukocyte density and pro-inflammatory cytokine expression in human fetal membranes, decidua, cervix and myometrium before and during labour at term. Mol. Hum. Reprod.9(1), 41–45 (2003).
  • Denison FC, Kelly RW, Calder AA, Riley SC. Cytokine secretion by human fetal membranes, decidua and placenta at term. Hum. Reprod.13(12), 3560–3565 (1998).
  • Olson DM. The role of prostaglandins in the initiation of parturition. Best Pract. Res. Clin. Obstet. Gynaecol.17(5), 717–730 (2003).
  • Yoshida M, Sagawa N, Itoh H et al. Prostaglandin F(2α), cytokines and cyclic mechanical stretch augment matrix metalloproteinase-1 secretion from cultured human uterine cervical fibroblast cells. Mol. Hum. Reprod.8(7), 681–687 (2002).
  • Xu P, Alfaidy N, Challis JR. Expression of matrix metalloproteinase (MMP)-2 and MMP-9 in human placenta and fetal membranes in relation to preterm and term labor. J. Clin. Endocrinol. Metab.87(3), 1353–1361 (2002).
  • Tribe RM, Moriarty P, Dalrymple A, Hassoni AA, Poston L. Interleukin-1β induces calcium transients and enhances basal and store operated calcium entry in human myometrial smooth muscle. Biol. Reprod.68(5), 1842–1849 (2003).
  • Barata H, Thompson M, Zielinska W et al. The role of cyclic-ADP-ribose-signaling pathway in oxytocin-induced Ca2+ transients in human myometrium cells. Endocrinology145(2), 881–889 (2004).
  • Pollard JK, Mitchell MD. Intrauterine infection and the effects of inflammatory mediators on prostaglandin production by myometrial cells from pregnant women. Am. J. Obstet. Gynecol.174(2), 682–686 (1996).
  • Bollapragada S, Youssef R, Jordan F, Greer I, Norman J, Nelson S. Term labor is associated with a core inflammatory response in human fetal membranes, myometrium, and cervix. Am. J. Obstet. Gynecol.200(1), 104 e101–e111 (2009).
  • Thomson AJ, Telfer JF, Young A et al. Leukocytes infiltrate the myometrium during human parturition: further evidence that labour is an inflammatory process. Hum. Reprod.14(1), 229–236 (1999).
  • Gomez-Lopez N, Estrada-Gutierrez G, Jimenez-Zamudio L, Vega-Sanchez R, Vadillo-Ortega F. Fetal membranes exhibit selective leukocyte chemotaxic activity during human labor. J. Reprod. Immunol.80(1–2), 122–131 (2009).
  • Osman I, Young A, Jordan F, Greer IA, Norman JE. Leukocyte density and proinflammatory mediator expression in regional human fetal membranes and decidua before and during labor at term. J. Soc. Gynecol. Investig.13(2), 97–103 (2006).
  • Thaxton JE, Romero R, Sharma S. TLR9 activation coupled to IL-10 deficiency induces adverse pregnancy outcomes. J. Immunol.183(2), 1144–1154 (2009).
  • Murphy SP, Hanna NN, Fast LD et al. Evidence for participation of uterine natural killer cells in the mechanisms responsible for spontaneous preterm labor and delivery. Am. J. Obstet. Gynecol.200(3), 308 e301–e309 (2009).
  • Yuan M, Jordan F, Mcinnes IB, Harnett MM, Norman JE. Leukocytes are primed in peripheral blood for activation during term and preterm labour. Mol. Hum. Reprod.15(11), 713–724 (2009).
  • Hayden MS, Ghosh S. Signaling to NF-κB. Genes Dev.18(18), 2195–2224 (2004).
  • Lindstrom TM, Bennett PR. The role of nuclear factor κ B in human labour. Reproduction130(5), 569–581 (2005).
  • Lappas M, Rice GE. The role and regulation of the nuclear factor κ B signalling pathway in human labour. Placenta28(5–6), 543–556 (2007).
  • Elliott CL, Allport VC, Loudon JA, Wu GD, Bennett PR. Nuclear factor-κ B is essential for up-regulation of interleukin-8 expression in human amnion and cervical epithelial cells. Mol. Hum. Reprod.7(8), 787–790 (2001).
  • Lappas M, Permezel M, Rice GE. N-acetyl-cysteine inhibits phospholipid metabolism, proinflammatory cytokine release, protease activity, and nuclear factor-κB deoxyribonucleic acid-binding activity in human fetal membranes in vitro. J. Clin. Endocrinol. Metab.88(4), 1723–1729 (2003).
  • Lindstrom TM, Bennett PR. 15-deoxy-{δ}12,14-prostaglandin j2 inhibits interleukin-1{β}-induced nuclear factor-{κ}b in human amnion and myometrial cells: mechanisms and implications. J. Clin. Endocrinol. Metab.90(6), 3534–3543 (2005).
  • Hayden MS, West AP, Ghosh S. NF-κB and the immune response. Oncogene25(51), 6758–6780 (2006).
  • Allport VC, Pieber D, Slater DM, Newton R, White JO, Bennett PR. Human labour is associated with nuclear factor-κB activity which mediates cyclo-oxygenase-2 expression and is involved with the ‘functional progesterone withdrawal’. Mol. Hum. Reprod.7(6), 581–586 (2001).
  • Lee Y, Allport V, Sykes A, Lindstrom T, Slater D, Bennett P. The effects of labour and of interleukin 1 β upon the expression of nuclear factor κ B related proteins in human amnion. Mol. Hum. Reprod.9(4), 213–218 (2003).
  • Lappas M, Rice GE. Transcriptional regulation of the processes of human labour and delivery. Placenta30(Suppl. A), S90–S95 (2009).
  • Vora S, Abbas A, Kim CJ et al. Nuclear factor-κ B localization and function within intrauterine tissues from term and preterm labor and cultured fetal membranes. Reprod. Biol. Endocrinol.8, 8 (2010).
  • Condon JC, Hardy DB, Kovaric K, Mendelson CR. Up-regulation of the progesterone receptor (PR)-C isoform in laboring myometrium by activation of nuclear factor-κB may contribute to the onset of labor through inhibition of PR function. Mol. Endocrinol.20(4), 764–775 (2006).
  • Yan X, Sun M, Gibb W. Localization of nuclear factor-κB (NF κB) and inhibitory factor-κ B (IκB) in human fetal membranes and decidua at term and preterm delivery. Placenta23(4), 288–293 (2002).
  • Brown AG, Leite RS, Strauss JF 3rd. Mechanisms underlying “functional” progesterone withdrawal at parturition. Ann. NY Acad. Sci.1034, 36–49 (2004).
  • Pieber D, Allport VC, Hills F, Johnson M, Bennett PR. Interactions between progesterone receptor isoforms in myometrial cells in human labour. Mol. Hum. Reprod.7(9), 875–879 (2001).
  • Mitchell BF, Wong S. Changes in 17 β,20 α-hydroxysteroid dehydrogenase activity supporting an increase in the estrogen/progesterone ratio of human fetal membranes at parturition. Am. J. Obstet. Gynecol.168(5), 1377–1385 (1993).
  • Roth I, Corry DB, Locksley RM, Abrams JS, Litton MJ, Fisher SJ. Human placental cytotrophoblasts produce the immunosuppressive cytokine interleukin 10. J. Exp. Med.184(2), 539–548 (1996).
  • Hanna N, Hanna I, Hleb M et al. Gestational age-dependent expression of IL-10 and its receptor in human placental tissues and isolated cytotrophoblasts. J. Immunol.164(11), 5721–5728 (2000).
  • Lidstrom C, Matthiesen L, Berg G, Sharma S, Ernerudh J, Ekerfelt C. Cytokine secretion patterns of NK cells and macrophages in early human pregnancy decidua and blood: implications for suppressor macrophages in decidua. Am. J. Reprod. Immunol.50(6), 444–452 (2003).
  • Gotsch F, Romero R, Kusanovic JP et al. The anti-inflammatory limb of the immune response in preterm labor, intra-amniotic infection/inflammation, and spontaneous parturition at term: a role for interleukin-10. J. Matern. Fetal Neonatal Med.21(8), 529–547 (2008).
  • Maldonado-Perez D, Golightly E, Denison FC, Jabbour HN, Norman JE. A role for lipoxin A4 as anti-inflammatory and proresolution mediator in human parturition. FASEB J.25(2), 569–575 (2010).
  • Orsi NM, Tribe RM. Cytokine networks and the regulation of uterine function in pregnancy and parturition. J. Neuroendocrinol.20(4), 462–469 (2008).
  • Langhoff-Roos J, Kesmodel U, Jacobsson B, Rasmussen S, Vogel I. Spontaneous preterm delivery in primiparous women at low risk in Denmark: population based study. BMJ332(7547), 937–939 (2006).
  • Norman JE, Morris C, Chalmers J. The effect of changing patterns of obstetric care in Scotland (1980–2004) on rates of preterm birth and its neonatal consequences: perinatal database study. PLoS Med.6(9), e1000153 (2009).
  • Saigal S, Doyle LW. An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet371(9608), 261–269 (2008).
  • Mangham LJ, Petrou S, Doyle LW, Draper ES, Marlow N. The cost of preterm birth throughout childhood in England and Wales. Pediatrics123(2), e312–327 (2009).
  • Romero R, Espinoza J, Kusanovic JP et al. The preterm parturition syndrome. BJOG113(Suppl. 3), 17–42 (2006).
  • Goldenberg RL, Hauth JC, Andrews WW. Intrauterine infection and preterm delivery. N. Engl. J. Med.342(20), 1500–1507 (2000).
  • Thomakos N, Daskalakis G, Papapanagiotou A, Papantoniou N, Mesogitis S, Antsaklis A. Amniotic fluid interleukin-6 and tumor necrosis factor-α at mid-trimester genetic amniocentesis: relationship to intra-amniotic microbial invasion and preterm delivery. Eur. J. Obstet. Gynecol. Reprod. Biol.148(2), 147–151 (2010).
  • Yoon BH, Oh SY, Romero R et al. An elevated amniotic fluid matrix metalloproteinase-8 level at the time of mid-trimester genetic amniocentesis is a risk factor for spontaneous preterm delivery. Am. J. Obstet. Gynecol.185(5), 1162–1167 (2001).
  • Pirianov G, Waddington SN, Lindstrom TM, Terzidou V, Mehmet H, Bennett PR. The cyclopentenone 15-deoxy-δ 12,14-prostaglandin J(2) delays lipopolysaccharide-induced preterm delivery and reduces mortality in the newborn mouse. Endocrinology150(2), 699–706 (2009).
  • Robertson SA, Skinner RJ, Care AS. Essential role for IL-10 in resistance to lipopolysaccharide-induced preterm labor in mice. J. Immunol.177(7), 4888–4896 (2006).
  • Mcduffie RS Jr, Sherman MP, Gibbs RS. Amniotic fluid tumor necrosis factor-α and interleukin-1 in a rabbit model of bacterially induced preterm pregnancy loss. Am. J. Obstet. Gynecol.167(6), 1583–1588 (1992).
  • Gravett MG, Witkin SS, Haluska GJ, Edwards JL, Cook MJ, Novy MJ. An experimental model for intraamniotic infection and preterm labor in rhesus monkeys. Am. J. Obstet. Gynecol.171(6), 1660–1667 (1994).
  • Romero R, Tartakovsky B. The natural interleukin-1 receptor antagonist prevents interleukin-1-induced preterm delivery in mice. Am. J. Obstet. Gynecol.167(4 Pt 1), 1041–1045 (1992).
  • Sadowsky DW, Adams KM, Gravett MG, Witkin SS, Novy MJ. Preterm labor is induced by intraamniotic infusions of interleukin-1β and tumor necrosis factor-α but not by interleukin-6 or interleukin-8 in a nonhuman primate model. Am. J. Obstet. Gynecol.195(6), 1578–1589 (2006).
  • Shatrov JG, Birch SC, Lam LT, Quinlivan JA, Mcintyre S, Mendz GL. Chorioamnionitis and cerebral palsy: a meta-analysis. Obstet. Gynecol.116(2 Pt 1), 387–392 (2010).
  • Yoon BH, Romero R, Park JS et al. Fetal exposure to an intra-amniotic inflammation and the development of cerebral palsy at the age of three years. Am. J. Obstet. Gynecol.182(3), 675–681 (2000).
  • Youssef RE, Ledingham MA, Bollapragada SS et al. The role of Toll-like receptors (TLR-2 and -4) and triggering receptor expressed on myeloid cells 1 (TREM-1) in human term and preterm labor. Reprod. Sci.16(9), 843–856 (2009).
  • Kim YM, Romero R, Chaiworapongsa T et al. Toll-like receptor-2 and -4 in the chorioamniotic membranes in spontaneous labor at term and in preterm parturition that are associated with chorioamnionitis. Am. J. Obstet. Gynecol.191(4), 1346–1355 (2004).
  • Canavan TP, Simhan HN. Innate immune function of the human decidual cell at the maternal–fetal interface. J. Reprod. Immunol.74(1–2), 46–52 (2007).
  • Holmlund U, Cebers G, Dahlfors AR et al. Expression and regulation of the pattern recognition receptors Toll-like receptor-2 and Toll-like receptor-4 in the human placenta. Immunology107(1), 145–151 (2002).
  • Hassan SS, Romero R, Haddad R et al. The transcriptome of the uterine cervix before and after spontaneous term parturition. Am. J. Obstet. Gynecol.195(3), 778–786 (2006).
  • Wang H, Hirsch E. Bacterially-induced preterm labor and regulation of prostaglandin-metabolizing enzyme expression in mice: the role of Toll-like receptor 4. Biol. Reprod.69(6), 1957–1963 (2003).
  • Elovitz MA, Wang Z, Chien EK, Rychlik DF, Phillippe M. A new model for inflammation-induced preterm birth: the role of platelet-activating factor and Toll-like receptor-4. Am. J. Pathol.163(5), 2103–2111 (2003).
  • Patni S, Flynn P, Wynen LP et al. An introduction to Toll-like receptors and their possible role in the initiation of labour. BJOG114(11), 1326–1334 (2007).
  • Smith V, Devane D, Begley CM, Clarke M, Higgins S. A systematic review and quality assessment of systematic reviews of randomised trials of interventions for preventing and treating preterm birth. Eur. J. Obstet. Gynecol. Reprod. Biol.142(1), 3–11 (2009).
  • Libby P. Inflammatory mechanisms: the molecular basis of inflammation and disease. Nutr. Rev.65(12 Pt 2), S140–146 (2007).
  • Romero R, Gotsch F, Pineles B, Kusanovic JP. Inflammation in pregnancy: its roles in reproductive physiology, obstetrical complications, and fetal injury. Nutr. Rev.65(12 Pt 2), S194–S202 (2007).
  • Zuckerman H, Reiss U, Rubinstein I. Inhibition of human premature labor by indomethacin. Obstet. Gynecol.44(6), 787–792 (1974).
  • Niebyl JR, Blake DA, White RD et al. The inhibition of premature labor with indomethacin. Am. J. Obstet. Gynecol.136(8), 1014–1019 (1980).
  • Panter KR, Hannah ME, Amankwah KS, Ohlsson A, Jefferies AL, Farine D. The effect of indomethacin tocolysis in preterm labour on perinatal outcome: a randomised placebo-controlled trial. Br. J. Obstet. Gynaecol.106(5), 467–473 (1999).
  • Norton ME, Merrill J, Cooper BA, Kuller JA, Clyman RI. Neonatal complications after the administration of indomethacin for preterm labor. N. Engl. J. Med.329(22), 1602–1607 (1993).
  • Koren G, Florescu A, Costei AM, Boskovic R, Moretti ME. Nonsteroidal antiinflammatory drugs during third trimester and the risk of premature closure of the ductus arteriosus: a meta-analysis. Ann. Pharmacother.40(5), 824–829 (2006).
  • Loe SM, Sanchez-Ramos L, Kaunitz AM. Assessing the neonatal safety of indomethacin tocolysis: a systematic review with meta-analysis. Obstet. Gynecol.106(1), 173–179 (2005).
  • Kumazaki K, Nakayama M, Yanagihara I, Suehara N, Wada Y. Immunohistochemical distribution of Toll-like receptor 4 in term and preterm human placentas from normal and complicated pregnancy including chorioamnionitis. Hum. Pathol.35(1), 47–54 (2004).
  • Lorenz E, Hallman M, Marttila R, Haataja R, Schwartz DA. Association between the Asp299Gly polymorphisms in the Toll-like receptor 4 and premature births in the Finnish population. Pediatr. Res.52(3), 373–376 (2002).
  • Cook DN, Pisetsky DS, Schwartz DA. Toll-like receptors in the pathogenesis of human disease. Nat. Immunol.5(10), 975–979 (2004).
  • Adams Waldorf KM, Persing D, Novy MJ, Sadowsky DW, Gravett MG. Pretreatment with Toll-like receptor 4 antagonist inhibits lipopolysaccharide-induced preterm uterine contractility, cytokines, and prostaglandins in rhesus monkeys. Reprod. Sci.15(2), 121–127 (2008).
  • Li L, Kang J, Lei W. Role of Toll-like receptor 4 in inflammation-induced preterm delivery. Mol. Hum. Reprod.16(4), 267–272 (2010).
  • Koga K, Cardenas I, Aldo P et al. Activation of TLR3 in the trophoblast is associated with preterm delivery. Am. J. Reprod. Immunol.61(3), 196–212 (2009).
  • Ilievski V, Hirsch E. Synergy between viral and bacterial Toll-like receptors leads to amplification of inflammatory responses and preterm labor in the mouse. Biol. Reprod.83(5), 767–773 (2010).
  • Gupta SC, Sundaram C, Reuter S, Aggarwal BB. Inhibiting NF-κB activation by small molecules as a therapeutic strategy. Biochem. Biophys. Acta1799(10–12), 775–787 (2010).
  • Okamoto T. NF-κB and rheumatic diseases. Endocr. Metab. Immune Disord. Drug Targets6(4), 359–372 (2006).
  • Decramer M, Rutten-Van Molken M, Dekhuijzen PN et al. Effects of N-acetylcysteine on outcomes in chronic obstructive pulmonary disease (Bronchitis Randomized on NAC Cost-Utility Study, BRONCUS): a randomised placebo-controlled trial. Lancet365(9470), 1552–1560 (2005).
  • Demedts M, Behr J, Buhl R et al. High-dose acetylcysteine in idiopathic pulmonary fibrosis. N. Engl. J. Med.353(21), 2229–2242 (2005).
  • Atreya I, Atreya R, Neurath MF. NF-κB in inflammatory bowel disease. J. Intern. Med.263(6), 591–596 (2008).
  • Egan LJ, Sandborn WJ. Inhibition of nuclear factor κB by sulfasalazine: a new target for inflammatory bowel disease therapy? Gastroenterology115(5), 1295–1296 (1998).
  • Box SA, Pullar T. Sulphasalazine in the treatment of rheumatoid arthritis. Br. J. Rheumatol.36(3), 382–386 (1997).
  • Wahl C, Liptay S, Adler G, Schmid RM. Sulfasalazine: a potent and specific inhibitor of nuclear factor κ B. J. Clin. Invest.101(5), 1163–1174 (1998).
  • Weber CK, Liptay S, Wirth T, Adler G, Schmid RM. Suppression of NF-κB activity by sulfasalazine is mediated by direct inhibition of IκB kinases α and β. Gastroenterology119(5), 1209–1218 (2000).
  • Lappas M, Permezel M, Georgiou HM, Rice GE. Nuclear factor κ B regulation of proinflammatory cytokines in human gestational tissues in vitro. Biol. Reprod.67(2), 668–673 (2002).
  • Keelan JA, Khan S, Yosaatmadja F, Mitchell MD. Prevention of inflammatory activation of human gestational membranes in an ex vivo model using a pharmacological NF-κB inhibitor. J. Immunol.183(8), 5270–5278 (2009).
  • Peltier MR, Tee SC, Kinzler WL, Smulian JC. Effect of sulfasalazine on basal and bacteria-stimulated interleukin-8 production by endocervical epithelial cells. Am. J. Reprod. Immunol.61(3), 190–195 (2009).
  • Nath CA, Ananth CV, Smulian JC, Peltier MR. Can sulfasalazine prevent infection-mediated pre-term birth in a murine model? Am. J. Reprod. Immunol.63(2), 144–149 (2010).
  • Ostensen M, Forger F. Management of RA medications in pregnant patients. Nat. Rev. Rheumatol.5(7), 382–390 (2009).
  • Rahimi R, Nikfar S, Rezaie A, Abdollahi M. Pregnancy outcome in women with inflammatory bowel disease following exposure to 5-aminosalicylic acid drugs: a meta-analysis. Reprod. Toxicol.25(2), 271–275 (2008).
  • Millea PJ. N-acetylcysteine: multiple clinical applications. Am. Fam. Physician80(3), 265–269 (2009).
  • Origuchi T, Migita K, Nakashima T et al. Regulation of cyclooxygenase-2 expression in human osteoblastic cells by N-acetylcysteine. J. Lab. Clin. Med.136(5), 390–394 (2000).
  • Martinez-Losa M, Cortijo J, Juan G et al. Inhibitory effects of N-acetylcysteine on the functional responses of human eosinophils in vitro. Clin. Exp. Allergy.37(5), 714–722 (2007).
  • De Flora S, Grassi C, Carati L. Attenuation of influenza-like symptomatology and improvement of cell-mediated immunity with long-term N-acetylcysteine treatment. Eur. Respir. J.10(7), 1535–1541 (1997).
  • Riggs BS, Bronstein AC, Kulig K, Archer PG, Rumack BH. Acute acetaminophen overdose during pregnancy. Obstet. Gynecol.74(2), 247–253 (1989).
  • Rizk AY, Bedaiwy MA, Al-Inany HG. N-acetyl-cysteine is a novel adjuvant to clomiphene citrate in clomiphene citrate-resistant patients with polycystic ovary syndrome. Fertil. Steril.83(2), 367–370 (2005).
  • Amin AF, Shaaban OM, Bediawy MA. N-acetyl cysteine for treatment of recurrent unexplained pregnancy loss. Reprod. Biomed. Online17(5), 722–726 (2008).
  • Rumiris D, Purwosunu Y, Wibowo N, Farina A, Sekizawa A. Lower rate of preeclampsia after antioxidant supplementation in pregnant women with low antioxidant status. Hypertens. Pregnancy25(3), 241–253 (2006).
  • Buhimschi IA, Buhimschi CS, Weiner CP. Protective effect of N-acetylcysteine against fetal death and preterm labor induced by maternal inflammation. Am. J. Obstet. Gynecol.188(1), 203–208 (2003).
  • Beloosesky R, Gayle DA, Ross MG. Maternal N-acetylcysteine suppresses fetal inflammatory cytokine responses to maternal lipopolysaccharide. Am. J. Obstet. Gynecol.195(4), 1053–1057 (2006).
  • Chang EY, Zhang J, Sullivan S, Newman R, Singh I. N-acetylcysteine attenuates the maternal and fetal proinflammatory response to intrauterine LPS injection in an animal model for preterm birth and brain injury. J. Matern. Fetal. Neonatal. Med.24(5), 732–740 (2011).
  • Shahin AY, Hassanin IM, Ismail AM, Kruessel JS, Hirchenhain J. Effect of oral N-acetyl cysteine on recurrent preterm labor following treatment for bacterial vaginosis. Int. J. Gynaecol. Obstet.104(1), 44–48 (2009).
  • Kondo Y, Fukuda K, Adachi T, Nishida T. Inhibition by a selective IκB kinase-2 inhibitor of interleukin-1-induced collagen degradation by corneal fibroblasts in three-dimensional culture. Invest. Ophthalmol. Vis. Sci.49(11), 4850–4857 (2008).
  • Podolin PL, Callahan JF, Bolognese BJ et al. Attenuation of murine collagen-induced arthritis by a novel, potent, selective small molecule inhibitor of IκB Kinase 2, TPCA-1 (2-[(aminocarbonyl)amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide), occurs via reduction of proinflammatory cytokines and antigen-induced T cell proliferation. J. Pharmacol. Exp. Ther.312(1), 373–381 (2005).
  • De Silva D, Mitchell MD, Keelan JA. Inhibition of choriodecidual cytokine production and inflammatory gene expression by selective I-κB kinase (IKK) inhibitors. Br. J. Pharmacol.160(7), 1808–1822 (2010).
  • Osting VC, Carter JD. A safety assessment of tumor necrosis factor antagonists during pregnancy. Expert Opin. Drug Saf.9(3), 421–429 (2010).
  • Schnitzler F, Fidder H, Ferrante M et al. Outcome of pregnancy in women with inflammatory bowel disease treated with antitumor necrosis factor therapy. Inflamm. Bowel. Dis. DOI: 10.1002/ibd.21583 (2011) (Epub ahead of print).
  • Silver RM, Lohner WS, Daynes RA, Mitchell MD, Branch DW. Lipopolysaccharide-induced fetal death: the role of tumor-necrosis factor α. Biol. Reprod.50(5), 1108–1112 (1994).
  • Gendron RL, Nestel FP, Lapp WS, Baines MG. Lipopolysaccharide-induced fetal resorption in mice is associated with the intrauterine production of tumour necrosis factor-α. J. Reprod. Fertil.90(2), 395–402 (1990).
  • Xu DX, Chen YH, Wang H, Zhao L, Wang JP, Wei W. Tumor necrosis factor α partially contributes to lipopolysaccharide-induced intra-uterine fetal growth restriction and skeletal development retardation in mice. Toxicol. Lett.163(1), 20–29 (2006).
  • Fidel PL Jr, Romero R, Cutright J et al. Treatment with the interleukin-I receptor antagonist and soluble tumor necrosis factor receptor Fc fusion protein does not prevent endotoxin-induced preterm parturition in mice. J. Soc. Gynecol. Investig.4(1), 22–26 (1997).
  • Holmgren C, Esplin MS, Hamblin S, Molenda M, Simonsen S, Silver R. Evaluation of the use of anti-TNF-α in an LPS-induced murine model. J. Reprod. Immunol.78(2), 134–139 (2008).
  • Zelinkova Z, De Haar C, De Ridder L et al. High intra-uterine exposure to infliximab following maternal anti-TNF treatment during pregnancy. Aliment. Pharmacol. Ther.33(9), 1053–1058 (2011).
  • Dinarello CA. Blocking interleukin-1β in acute and chronic autoinflammatory diseases. J. Intern. Med.269(1), 16–28 (2011).
  • Romero R, Sepulveda W, Mazor M et al. The natural interleukin-1 receptor antagonist in term and preterm parturition. Am. J. Obstet. Gynecol.167(4 Pt 1), 863–872 (1992).
  • Yoshimura K, Hirsch E. Effect of stimulation and antagonism of interleukin-1 signaling on preterm delivery in mice. J. Soc. Gynecol. Investig.12(7), 533–538 (2005).
  • Reznikov LL, Fantuzzi G, Selzman CH et al. Utilization of endoscopic inoculation in a mouse model of intrauterine infection-induced preterm birth: role of interleukin 1β. Biol. Reprod.60(5), 1231–1238 (1999).
  • Hirsch E, Muhle RA, Mussalli GM, Blanchard R. Bacterially induced preterm labor in the mouse does not require maternal interleukin-1 signaling. Am. J. Obstet. Gynecol.186(3), 523–530 (2002).
  • Hirsch E, Filipovich Y, Mahendroo M. Signaling via the type I IL-1 and TNF receptors is necessary for bacterially induced preterm labor in a murine model. Am. J. Obstet. Gynecol.194(5), 1334–1340 (2006).
  • Catalano RD, Lannagan TR, Gorowiec M, Denison FC, Norman JE, Jabbour HN. Prokineticins: novel mediators of inflammatory and contractile pathways at parturition? Mol. Hum. Reprod.16(5), 311–319 (2010).
  • Denison FC, Battersby S, King AE, Szuber M, Jabbour HN. Prokineticin-1: a novel mediator of the inflammatory response in third-trimester human placenta. Endocrinology149(7), 3470–3477 (2008).
  • Gorowiec MR, Catalano RD, Norman JE, Denison FC, Jabbour HN. Prokineticin 1 (PROK1) induces inflammatory response in human myometrium: a potential role in initiating term and preterm parturition. Am. J. Pathol. (2011) (In Press).
  • Gilroy DW, Lawrence T, Perretti M, Rossi AG. Inflammatory resolution: new opportunities for drug discovery. Nat. Rev. Drug. Discov.3(5), 401–416 (2004).
  • Serhan CN, Chiang N, Van Dyke TE. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat. Rev. Immunol.8(5), 349–361 (2008).
  • Fiorentino DF, Bond MW, Mosmann TR. Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J. Exp. Med.170(6), 2081–2095 (1989).
  • Sabat R, Grutz G, Warszawska K et al. Biology of interleukin-10. Cytokine Growth Factor Rev.21(5), 331–344 (2010).
  • Fiorentino DF, Zlotnik A, Mosmann TR, Howard M, O’Garra A. IL-10 inhibits cytokine production by activated macrophages. J. Immunol.147(11), 3815–3822 (1991).
  • De Waal Malefyt R, Abrams J, Bennett B, Figdor CG, De Vries JE. Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J. Exp. Med.174(5), 1209–1220 (1991).
  • Buchwald UK, Geerdes-Fenge HF, Vockler J, Ziege S, Lode H. Interleukin-10: effects on phagocytosis and adhesion molecule expression of granulocytes and monocytes in a comparison with prednisolone. Eur. J. Med. Res.4(3), 85–94 (1999).
  • Hart PH, Hunt EK, Bonder CS, Watson CJ, Finlay-Jones JJ. Regulation of surface and soluble TNF receptor expression on human monocytes and synovial fluid macrophages by IL-4 and IL-10. J. Immunol.157(8), 3672–3680 (1996).
  • Jenkins JK, Malyak M, Arend WP. The effects of interleukin-10 on interleukin-1 receptor antagonist and interleukin-1 β production in human monocytes and neutrophils. Lymphokine Cytokine Res.13(1), 47–54 (1994).
  • Wang P, Wu P, Siegel MI, Egan RW, Billah MM. Interleukin (IL)-10 inhibits nuclear factor κ B (NF κ B) activation in human monocytes. IL-10 and IL-4 suppress cytokine synthesis by different mechanisms. J. Biol. Chem.270(16), 9558–9563 (1995).
  • Yoshidome H, Kato A, Edwards MJ, Lentsch AB. Interleukin-10 inhibits pulmonary NF-κB activation and lung injury induced by hepatic ischemia–reperfusion. Am. J. Physiol.277(5 Pt 1), L919–L923 (1999).
  • Al-Ashy R, Chakroun I, El-Sabban ME, Homaidan FR. The role of NF-κB in mediating the anti-inflammatory effects of IL-10 in intestinal epithelial cells. Cytokine36(1–2), 1–8 (2006).
  • Buruiana FE, Sola I, Alonso-Coello P. Recombinant human interleukin 10 for induction of remission in Crohn’s disease. Cochrane Database Syst. Rev.11, CD005109 (2010).
  • Kimball AB, Kawamura T, Tejura K et al. Clinical and immunologic assessment of patients with psoriasis in a randomized, double-blind, placebo-controlled trial using recombinant human interleukin 10. Arch. Dermatol.138(10), 1341–1346 (2002).
  • Nelson DR, Lauwers GY, Lau JY, Davis GL. Interleukin 10 treatment reduces fibrosis in patients with chronic hepatitis C: a pilot trial of interferon nonresponders. Gastroenterology118(4), 655–660 (2000).
  • Asadullah K, Sterry W, Volk HD. Interleukin-10 therapy – review of a new approach. Pharmacol. Rev.55(2), 241–269 (2003).
  • Thaxton JE, Sharma S. Interleukin-10: a multi-faceted agent of pregnancy. Am. J. Reprod. Immunol.63(6), 482–491 (2010).
  • Kalkunte S, Nevers T, Norris WE, Sharma S. Vascular IL-10: a protective role in preeclampsia. J. Reprod. Immunol.88(2), 165–169 (2011).
  • Greig PC, Herbert WN, Robinette BL, Teot LA. Amniotic fluid interleukin-10 concentrations increase through pregnancy and are elevated in patients with preterm labor associated with intrauterine infection. Am. J. Obstet. Gynecol.173(4), 1223–1227 (1995).
  • Dudley DJ, Hunter C, Mitchell MD, Varner MW. Amniotic fluid interleukin-10 (IL-10) concentrations during pregnancy and with labor. J. Reprod. Immunol.33(2), 147–156 (1997).
  • Hennessy A, Pilmore HL, Simmons LA, Painter DM. A deficiency of placental IL-10 in preeclampsia. J. Immunol.163(6), 3491–3495 (1999).
  • Hill JA, Polgar K, Anderson DJ. T-helper 1-type immunity to trophoblast in women with recurrent spontaneous abortion. JAMA273(24), 1933–1936 (1995).
  • Makhseed M, Raghupathy R, El-Shazly S, Azizieh F, Al-Harmi JA, Al-Azemi MM. Pro-inflammatory maternal cytokine profile in preterm delivery. Am. J. Reprod. Immunol.49(5), 308–318 (2003).
  • Fortunato SJ, Menon R, Lombardi SJ. Interleukin-10 and transforming growth factor-β inhibit amniochorion tumor necrosis factor-α production by contrasting mechanisms of action: therapeutic implications in prematurity. Am. J. Obstet. Gynecol.177(4), 803–809 (1997).
  • Brown NL, Alvi SA, Elder MG, Bennett PR, Sullivan MH. The regulation of prostaglandin output from term intact fetal membranes by anti-inflammatory cytokines. Immunology99(1), 124–133 (2000).
  • Fortunato SJ, Menon R, Lombardi SJ, Lafleur B. Interleukin-10 inhibition of gelatinases in fetal membranes: therapeutic implications in preterm premature rupture of membranes. Obstet. Gynecol.98(2), 284–288 (2001).
  • Sato TA, Keelan JA, Mitchell MD. Critical paracrine interactions between TNF-α and IL-10 regulate lipopolysaccharide-stimulated human choriodecidual cytokine and prostaglandin E2 production. J. Immunol.170(1), 158–166 (2003).
  • Pomini F, Caruso A, Challis JR. Interleukin-10 modifies the effects of interleukin-1β and tumor necrosis factor-α on the activity and expression of prostaglandin H synthase-2 and the NAD+-dependent 15-hydroxyprostaglandin dehydrogenase in cultured term human villous trophoblast and chorion trophoblast cells. J. Clin. Endocrinol. Metab.84(12), 4645–4651 (1999).
  • Roth I, Fisher SJ. IL-10 is an autocrine inhibitor of human placental cytotrophoblast MMP-9 production and invasion. Dev. Biol.205(1), 194–204 (1999).
  • Bayraktar M, Peltier M, Vetrano A et al. IL-10 modulates placental responses to TLR ligands. Am. J. Reprod. Immunol.62(6), 390–399 (2009).
  • Terrone DA, Rinehart BK, Granger JP, Barrilleaux PS, Martin JN Jr, Bennett WA. Interleukin-10 administration and bacterial endotoxin-induced preterm birth in a rat model. Obstet. Gynecol.98(3), 476–480 (2001).
  • Rodts-Palenik S, Wyatt-Ashmead J, Pang Y et al. Maternal infection-induced white matter injury is reduced by treatment with interleukin-10. Am. J. Obstet. Gynecol.191(4), 1387–1392 (2004).
  • Pang Y, Rodts-Palenik S, Cai Z, Bennett WA, Rhodes PG. Suppression of glial activation is involved in the protection of IL-10 on maternal E. coli induced neonatal white matter injury. Brain Res. Dev. Brain Res.157(2), 141–149 (2005).
  • Sadowsky DW, Novy MJ, Witkin SS, Gravett MG. Dexamethasone or interleukin-10 blocks interleukin-1β-induced uterine contractions in pregnant rhesus monkeys. Am. J. Obstet. Gynecol.188(1), 252–263 (2003).
  • Gomez-Lopez N, Guilbert LJ, Olson DM. Invasion of the leukocytes into the fetal–maternal interface during pregnancy. J. Leukoc. Biol.88(4), 625–633 (2010).
  • Fuchs F, Stakemann G. Treatment of threatened premature labor with large doses of progesterone. Am. J. Obstet. Gynecol.79, 172–176 (1960).
  • Da Fonseca EB, Bittar RE, Carvalho MH, Zugaib M. Prophylactic administration of progesterone by vaginal suppository to reduce the incidence of spontaneous preterm birth in women at increased risk: a randomized placebo-controlled double-blind study. Am. J. Obstet. Gynecol.188(2), 419–424 (2003).
  • Meis PJ, Klebanoff M, Thom E et al. Prevention of recurrent preterm delivery by 17 α-hydroxyprogesterone caproate. N. Engl. J. Med.348(24), 2379–2385 (2003).
  • Dodd JM, Flenady VJ, Cincotta R, Crowther CA. Progesterone for the prevention of preterm birth: a systematic review. Obstet. Gynecol.112(1), 127–134 (2008).
  • Norman JE, Mackenzie F, Owen P et al. Progesterone for the prevention of preterm birth in twin pregnancy (STOPPIT): a randomised, double-blind, placebo-controlled study and meta-analysis. Lancet373(9680), 2034–2040 (2009).
  • Briery CM, Veillon EW, Klauser CK et al. Progesterone does not prevent preterm births in women with twins. South Med. J.102(9), 900–904 (2009).
  • Combs CA, Garite T, Maurel K, Das A, Porto M. Failure of 17-hydroxyprogesterone to reduce neonatal morbidity or prolong triplet pregnancy: a double-blind, randomized clinical trial. Am. J. Obstet. Gynecol.203(3), 248 e1–e9 (2010).
  • Briery CM, Veillon EW, Klauser CK et al. Women with preterm premature rupture of the membranes do not benefit from weekly progesterone. Am. J. Obstet. Gynecol.204(1), 54 e1–e5 (2011).
  • Elovitz M, Wang Z. Medroxyprogesterone acetate, but not progesterone, protects against inflammation-induced parturition and intrauterine fetal demise. Am. J. Obstet. Gynecol.190(3), 693–701 (2004).
  • Elovitz MA, Mrinalini C. Can medroxyprogesterone acetate alter Toll-like receptor expression in a mouse model of intrauterine inflammation? Am. J. Obstet. Gynecol.193(3 Pt 2), 1149–1155 (2005).
  • Kalkhoven E, Wissink S, Van Der Saag PT, Van Der Burg B. Negative interaction between the RelA(p65) subunit of NF-κB and the progesterone receptor. J. Biol. Chem.271(11), 6217–6224 (1996).
  • Luo G, Abrahams VM, Tadesse S et al. Progesterone inhibits basal and TNF-α-induced apoptosis in fetal membranes: a novel mechanism to explain progesterone-mediated prevention of preterm birth. Reprod. Sci.17(6), 532–539 (2010).
  • Shields AD, Wright J, Paonessa DJ et al. Progesterone modulation of inflammatory cytokine production in a fetoplacental artery explant model. Am. J. Obstet. Gynecol.193(3 Pt 2), 1144–1148 (2005).
  • Gotkin JL, Celver J, Mcnutt P et al. Progesterone reduces lipopolysaccharide induced interleukin-6 secretion in fetoplacental chorionic arteries, fractionated cord blood, and maternal mononuclear cells. Am. J. Obstet. Gynecol.195(4), 1015–1019 (2006).
  • Schwartz N, Xue X, Elovitz MA, Dowling O, Metz CN. Progesterone suppresses the fetal inflammatory response ex vivo. Am. J. Obstet. Gynecol.201(2), 211 e211–219 (2009).
  • Norman JE, Yuan M, Anderson L et al. Effect of prolonged in vivo administration of progesterone expression, peripheral blood leukocyte activation and circulating steroid hormone levels. Reprod. Sci.18(5), 435–446 (2011).
  • Dodd JM, Crowther CA. The role of progesterone in prevention of preterm birth. Int. J. Womens Health1, 73–84 (2010).
  • Scher JU, Pillinger MH. 15d-PGJ2: the anti-inflammatory prostaglandin? Clin. Immunol.114(2), 100–109 (2005).
  • Gilroy DW, Colville-Nash PR, Willis D, Chivers J, Paul-Clark MJ, Willoughby DA. Inducible cyclooxygenase may have anti-inflammatory properties. Nat. Med.5(6), 698–701 (1999).
  • Ward C, Dransfield I, Murray J, Farrow SN, Haslett C, Rossi AG. Prostaglandin D2 and its metabolites induce caspase-dependent granulocyte apoptosis that is mediated via inhibition of I κ B α degradation using a peroxisome proliferator-activated receptor-γ-independent mechanism. J. Immunol.168(12), 6232–6243 (2002).
  • Rajakariar R, Hilliard M, Lawrence T et al. Hematopoietic prostaglandin D2 synthase controls the onset and resolution of acute inflammation through PGD2 and 15-deoxyΔ12 14 PGJ2. Proc. Natl Acad. Sci. USA104(52), 20979–20984 (2007).
  • Rossi A, Kapahi P, Natoli G et al. Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IκB kinase. Nature403(6765), 103–108 (2000).
  • Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK. The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation. Nature391(6662), 79–82 (1998).
  • Mitchell MD, Kraemer DL, Strickland DM. The human placenta: a major source of prostaglandin D2. Prostaglandins Leukot. Med.8(4), 383–387 (1982).
  • Norwitz ER, Starkey PM, Lopez Bernal A. Prostaglandin D2 production by term human decidua: cellular origins defined using flow cytometry. Obstet. Gynecol.80(3 Pt 1), 440–445 (1992).
  • Helliwell RJ, Keelan JA, Marvin KW et al. Gestational age-dependent up-regulation of prostaglandin D synthase (PGDS) and production of PGDS-derived antiinflammatory prostaglandins in human placenta. J. Clin. Endocrinol. Metab.91(2), 597–606 (2006).
  • Ackerman WE 4th, Zhang XL, Rovin BH, Kniss DA. Modulation of cytokine-induced cyclooxygenase 2 expression by PPARG ligands through NFκB signal disruption in human WISH and amnion cells. Biol. Reprod.73(3), 527–535 (2005).
  • Lappas M, Permezel M, Rice GE. 15-deoxy-Δ(12,14)-prostaglandin J(2) and troglitazone regulation of the release of phospholipid metabolites, inflammatory cytokines and proteases from human gestational tissues. Placenta27(11–12), 1060–1072 (2006).
  • Wang X, Wang Y, Zhao X, Andersson R, Song Z, Yang D. Potential effects of peroxisome proliferator-activated receptor activator on LPS-induced lung injury in rats. Pulm. Pharmacol. Ther.22(4), 318–325 (2009).
  • Kawahito Y, Kondo M, Tsubouchi Y et al. 15-deoxy-δ(12,14)-PGJ(2) induces synoviocyte apoptosis and suppresses adjuvant-induced arthritis in rats. J. Clin. Invest.106(2), 189–197 (2000).
  • Wada K, Nakajima A, Blumberg RS. PPARγ and inflammatory bowel disease: a new therapeutic target for ulcerative colitis and Crohn’s disease. Trends. Mol. Med.7(8), 329–331 (2001).
  • Serhan CN, Hamberg M, Samuelsson B. Trihydroxytetraenes: a novel series of compounds formed from arachidonic acid in human leukocytes. Biochem. Biophys. Res. Commun.118(3), 943–949 (1984).
  • Serhan CN, Hamberg M, Samuelsson B. Lipoxins: novel series of biologically active compounds formed from arachidonic acid in human leukocytes. Proc. Natl Acad. Sci. USA81(17), 5335–5339 (1984).
  • Lee TH, Horton CE, Kyan-Aung U, Haskard D, Crea AE, Spur BW. Lipoxin A4 and lipoxin B4 inhibit chemotactic responses of human neutrophils stimulated by leukotriene B4 and N-formyl-L-methionyl-L-leucyl-L-phenylalanine. Clin. Sci. (Lond.)77(2), 195–203 (1989).
  • Colgan SP, Serhan CN, Parkos CA, Delp-Archer C, Madara JL. Lipoxin A4 modulates transmigration of human neutrophils across intestinal epithelial monolayers. J. Clin. Invest.92(1), 75–82 (1993).
  • Papayianni A, Serhan CN, Brady HR. Lipoxin A4 and B4 inhibit leukotriene-stimulated interactions of human neutrophils and endothelial cells. J. Immunol.156(6), 2264–2272 (1996).
  • Filep JG, Khreiss T, Jozsef L. Lipoxins and aspirin-triggered lipoxins in neutrophil adhesion and signal transduction. Prostaglandins Leukot. Essent. Fatty Acids73(3–4), 257–262 (2005).
  • El Kebir D, Jozsef L, Khreiss T et al. Aspirin-triggered lipoxins override the apoptosis-delaying action of serum amyloid A in human neutrophils: a novel mechanism for resolution of inflammation. J. Immunol.179(1), 616–622 (2007).
  • Maddox JF, Serhan CN. Lipoxin A4 and B4 are potent stimuli for human monocyte migration and adhesion: selective inactivation by dehydrogenation and reduction. J. Exp. Med.183(1), 137–146 (1996).
  • Maddox JF, Hachicha M, Takano T, Petasis NA, Fokin VV, Serhan CN. Lipoxin A4 stable analogs are potent mimetics that stimulate human monocytes and THP-1 cells via a G-protein-linked lipoxin A4 receptor. J. Biol. Chem.272(11), 6972–6978 (1997).
  • Simoes RL, Niconi-De-Almeida Y, Da-Fe AR, Barja-Fidalgo C, Fierro IM. A synthetic analog of 15-epi-lipoxin A4 inhibits human monocyte apoptosis: involvement of ERK-2 and PI3-kinase. Prostaglandins Lip. Mediat.91(1–2), 10–17 (2010).
  • Godson C, Mitchell S, Harvey K, Petasis NA, Hogg N, Brady HR. Cutting edge: lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages. J. Immunol.164(4), 1663–1667 (2000).
  • Filep JG, Zouki C, Petasis NA, Hachicha M, Serhan CN. Anti-inflammatory actions of lipoxin A(4) stable analogs are demonstrable in human whole blood: modulation of leukocyte adhesion molecules and inhibition of neutrophil-endothelial interactions. Blood94(12), 4132–4142 (1999).
  • Ho KJ, Spite M, Owens CD et al. Aspirin-triggered lipoxin and resolvin E1 modulate vascular smooth muscle phenotype and correlate with peripheral atherosclerosis. Am. J. Pathol.177(4), 2116–2123 (2010).
  • Sodin-Semrl S, Taddeo B, Tseng D, Varga J, Fiore S. Lipoxin A4 inhibits IL-1 β-induced IL-6, IL-8, and matrix metalloproteinase-3 production in human synovial fibroblasts and enhances synthesis of tissue inhibitors of metalloproteinases. J. Immunol.164(5), 2660–2666 (2000).
  • Gewirtz AT, Collier-Hyams LS, Young AN et al. Lipoxin a4 analogs attenuate induction of intestinal epithelial proinflammatory gene expression and reduce the severity of dextran sodium sulfate-induced colitis. J. Immunol.168(10), 5260–5267 (2002).
  • Chiang N, Arita M, Serhan CN. Anti-inflammatory circuitry: lipoxin, aspirin-triggered lipoxins and their receptor ALX. Prostaglandins Leukot. Essent. Fatty Acids73(3–4), 163–177 (2005).
  • Levy BD, Clish CB, Schmidt B, Gronert K, Serhan CN. Lipid mediator class switching during acute inflammation: signals in resolution. Nat. Immunol.2(7), 612–619 (2001).
  • Wu SH, Liao PY, Dong L, Chen ZQ. Signal pathway involved in inhibition by lipoxin A(4) of production of interleukins induced in endothelial cells by lipopolysaccharide. Inflamm. Res.57(9), 430–437 (2008).
  • Li G, Wu P, Xu Y et al. The effect of Lipoxin A4 on the interaction between macrophage and osteoblast: possible role in the treatment of aseptic loosening. BMC Musculoskelet. Disord.10, 57 (2009).
  • Decker Y, Mcbean G, Godson C. Lipoxin A4 inhibits IL-1β-induced IL-8 and ICAM-1 expression in 1321N1 human astrocytoma cells. Am. J. Physiol. Cell. Physiol.296(6), C1420–C1427 (2009).
  • Kure I, Nishiumi S, Nishitani Y et al. Lipoxin A(4) reduces lipopolysaccharide-induced inflammation in macrophages and intestinal epithelial cells through inhibition of nuclear factor-κB activation. J. Pharmacol. Exp. Ther.332(2), 541–548 (2009).
  • Sobrado M, Pereira MP, Ballesteros I et al. Synthesis of lipoxin A4 by 5-lipoxygenase mediates PPARγ-dependent, neuroprotective effects of rosiglitazone in experimental stroke. J. Neurosci.29(12), 3875–3884 (2009).
  • Li Y, Cai L, Wang H et al. Pleiotropic regulation of macrophage polarization and tumorigenesis by formyl peptide receptor-2. Oncogene DOI:10.1038/onc.2011.112 (2011) (Epub ahead of print).
  • Levy BD, De Sanctis GT, Devchand PR et al. Multi-pronged inhibition of airway hyper-responsiveness and inflammation by lipoxin A(4). Nat. Med.8(9), 1018–1023 (2002).
  • Ye XH, Wu Y, Guo PP et al. Lipoxin A4 analogue protects brain and reduces inflammation in a rat model of focal cerebral ischemia reperfusion. Brain Res.1323, 174–183 (2010).
  • Conte FP, Menezes-De-Lima O Jr, Verri WA Jr, Cunha FQ, Penido C, Henriques MG. Lipoxin A(4) attenuates zymosan-induced arthritis by modulating endothelin-1 and its effects. Br. J. Pharmacol.161(4), 911–924 (2010).
  • Brown NL, Slater DM, Alvi SA, Elder MG, Sullivan MH, Bennett PR. Expression of 5-lipoxygenase and 5-lipoxygenase-activating protein in human fetal membranes throughout pregnancy and at term. Mol. Hum. Reprod.5(7), 668–674 (1999).
  • Lei ZM, Rao CV. The expression of 15-lipoxygenase gene and the presence of functional enzyme in cytoplasm and nuclei of pregnancy human myometria. Endocrinology130(2), 861–870 (1992).
  • Smith GC, Wu WX, Nathanielsz PW. Lipoxygenase gene expression in baboon intrauterine tissues in late pregnancy and parturition. Mol. Hum. Reprod.7(6), 587–594 (2001).
  • Hutchinson JL, Rajagopal SP, Sales KJ, Jabbour HN. Molecular regulators of resolution of inflammation – potential therapeutic targets in the reproductive system. Reproduction142(1), 15–28 (2011).
  • Serhan CN, Clish CB, Brannon J, Colgan SP, Chiang N, Gronert K. Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from Ω-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing. J. Exp. Med.192(8), 1197–1204 (2000).
  • Bannenberg GL, Chiang N, Ariel A et al. Molecular circuits of resolution: formation and actions of resolvins and protectins. J. Immunol.174(7), 4345–4355 (2005).
  • Oh SF, Pillai PS, Recchiuti A, Yang R, Serhan CN. Pro-resolving actions and stereoselective biosynthesis of 18S E-series resolvins in human leukocytes and murine inflammation. J. Clin. Invest.121(2), 569–581 (2011).
  • Duffield JS, Hong S, Vaidya VS et al. Resolvin D series and protectin D1 mitigate acute kidney injury. J. Immunol.177(9), 5902–5911 (2006).
  • Arita M, Yoshida M, Hong S et al. Resolvin E1, an endogenous lipid mediator derived from Ω-3 eicosapentaenoic acid, protects against 2,4,6-trinitrobenzene sulfonic acid-induced colitis. Proc. Natl Acad. Sci. USA102(21), 7671–7676 (2005).
  • Allen KG, Harris MA. The role of n-3 fatty acids in gestation and parturition. Exp. Biol. Med. (Maywood)226(6), 498–506 (2001).
  • Leon H, Shibata MC, Sivakumaran S, Dorgan M, Chatterley T, Tsuyuki RT. Effect of fish oil on arrhythmias and mortality: systematic review. BMJ337, a2931 (2008).
  • Fleischhauer FJ, Yan WD, Fischell TA. Fish oil improves endothelium-dependent coronary vasodilation in heart transplant recipients. J. Am. Coll. Cardiol.21(4), 982–989 (1993).
  • Stenson WF, Cort D, Rodgers J et al. Dietary supplementation with fish oil in ulcerative colitis. Ann. Intern. Med.116(8), 609–614 (1992).
  • Macdonald A. Ω-3 fatty acids as adjunctive therapy in Crohns disease. Gastroenterol. Nurs.29(4), 295–301; quiz 302–293 (2006).
  • Galarraga B, Ho M, Youssef HM et al. Cod liver oil (n-3 fatty acids) as an non-steroidal anti-inflammatory drug sparing agent in rheumatoid arthritis. Rheumatology (Oxford)47(5), 665–669 (2008).
  • Geusens P, Wouters C, Nijs J, Jiang Y, Dequeker J. Long-term effect of Ω-3 fatty acid supplementation in active rheumatoid arthritis. A 12-month, double-blind, controlled study. Arthritis. Rheum.37(6), 824–829 (1994).
  • Olsen SF, Sorensen JD, Secher NJ et al. Randomised controlled trial of effect of fish-oil supplementation on pregnancy duration. Lancet339(8800), 1003–1007 (1992).
  • Borod E, Atkinson R, Barclay WR, Carlson SE. Effects of third trimester consumption of eggs high in docosahexaenoic acid on docosahexaenoic acid status and pregnancy. Lipids34(Suppl.), S231 (1999).
  • Olsen SF, Secher NJ, Tabor A, Weber T, Walker JJ, Gluud C. Randomised clinical trials of fish oil supplementation in high risk pregnancies. Fish Oil Trials In Pregnancy (FOTIP) Team. BJOG107(3), 382–395 (2000).
  • Makrides M, Duley L, Olsen SF. Marine oil, and other prostaglandin precursor, supplementation for pregnancy uncomplicated by preeclampsia or intrauterine growth restriction. Cochrane Database Syst. Rev.3, CD003402 (2006).
  • Horvath A, Koletzko B, Szajewska H. Effect of supplementation of women in high-risk pregnancies with long-chain polyunsaturated fatty acids on pregnancy outcomes and growth measures at birth: a meta-analysis of randomized controlled trials. Br. J. Nutr.98(2), 253–259 (2007).
  • Lappas M, Mitton A, Lim R, Barker G, Riley C, Permezel M. SIRT1 is a novel regulator of key pathways of human labor. Biol. Reprod.84(1), 167–178 (2011).
  • Lappas M, Permezel M. The anti-inflammatory and antioxidative effects of nicotinamide, a vitamin B(3) derivative, are elicited by FoxO3 in human gestational tissues: implications for preterm birth. J. Nutr. Biochem. DOI:10.1016/j.jnutbio.2010.10.009 (2011) (Epub ahead of print).
  • Vadillo-Ortega F, Perichart-Perera O, Espino S et al. Effect of supplementation during pregnancy with L-arginine and antioxidant vitamins in medical food on preeclampsia in high risk population: randomised controlled trial. BMJ342, d2901 (2011).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.