142
Views
32
CrossRef citations to date
0
Altmetric
Review

Superparamagnetic iron oxide nanoparticle ‘theranostics’ for multimodality tumor imaging, gene delivery, targeted drug and prodrug delivery

&
Pages 117-130 | Published online: 10 Jan 2014

References

  • Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics 2009. CA Cancer J. Clin.59(4), 225–249 (2009).
  • Sanvicens N, Marco MP. Multifunctional nanoparticles – properties and prospects for their use in human medicine. Trends Biotechnol.26(8), 425–433 (2008).
  • Petri-Fink A, Hofmann H. Superparamagnetic iron oxide nanoparticles (SPIONs): from synthesis to in vivo studies – a summary of the synthesis, characterization, in vitro, and in vivo investigations of SPIONs with particular focus on surface and colloidal properties. IEEE Trans. Nanobioscience6(4), 289–297 (2007).
  • Wagner V, Dullaart A, Bock AK, Zweck A. The emerging nanomedicine landscape. Nat. Biotechnol.24(10), 1211–1217 (2006).
  • Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol.13(1), 238–252 (1965).
  • Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano.3(1), 16–20 (2009).
  • Rao J. Shedding light on tumors using nanoparticles. ACS Nano.2(10), 1984–1986 (2008).
  • Leserman LD, Barbet J, Kourilsky F, Weinstein JN. Targeting to cells of fluorescent liposomes covalently coupled with monoclonal antibody or protein A. Nature288(5791), 602–604 (1980).
  • Heath TD, Fraley RT, Papahdjopoulos D. Antibody targeting of liposomes: cell specificity obtained by conjugation of F(ab´)2 to vesicle surface. Science210(4469), 539–541 (1980).
  • Gil PR, Parak WJ. Composite nanoparticles take aim at cancer. ACS Nano.2(11), 2200–2205 (2008).
  • Jain TK, Morales MA, Sahoo SK, Leslie-Pelecky DL, Labhasetwar V. Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol. Pharm.2(3), 194–205 (2005).
  • Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer5(3), 161–171 (2005).
  • Medarova Z, Pham W, Farrar C, Petkova V, Moore A. In vivo imaging of siRNA delivery and silencing in tumors. Nat. Med.13(3), 372–377 (2007).
  • Liong M, Lu J, Kovochich M et al. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano.2(5), 889–896 (2008).
  • Peng XH, Qian X, Mao H et al. Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int. J. Nanomedicine3(3), 311–321 (2008).
  • Natarajan A, Xiong CY, Gruettner C, DeNardo GL, DeNardo SJ. Development of multivalent radioimmunonanoparticles for cancer imaging and therapy. Cancer Biother. Radiopharm.23(1), 82–91 (2008).
  • Bonnemain B. Superparamagnetic agents in magnetic resonance imaging: physicochemical characteristics and clinical applications. A review. J. Drug Target6(3), 167–174 (1998).
  • Thorek DL, Chen AK, Czupryna J, Tsourkas A. Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann. Biomed. Eng.34(1), 23–38 (2006).
  • Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials26(18), 3995–4021 (2005).
  • Sjogren CE, Briley-Saebo K, Hanson M, Johansson C. Magnetic characterization of iron oxides for magnetic resonance imaging. Magn. Reson. Med.31(3), 268–272 (1994).
  • Laurent S, Forge D, Port M et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev.108(6), 2064–2110 (2008).
  • Lu AH, Salabas EL, Schuth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. Engl.46(8), 1222–1244 (2007).
  • Hyeon T, Lee SS, Park J, Chung Y, Na HB. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J. Am. Chem. Soc.123(51), 12798–12801 (2001).
  • Gaur U, Sahoo SK, De TK, Ghosh PC, Maitra A, Ghosh PK. Biodistribution of fluoresceinated dextran using novel nanoparticles evading reticuloendothelial system. Int. J. Pharm.202(1–2), 1–10 (2000).
  • Zhang C, Wangler B, Morgenstern B et al. Silica and alkoxysilane-coated ultrasmall superparamagnetic iron oxide particles: a promising tool to label cells for magnetic resonance imaging. Langmuir23(3), 1427–1434 (2007).
  • Ma Y, Manolache S, Denes FS, Thamm DH, Kurzman ID, Vail DM. Plasma synthesis of carbon magnetic nanoparticles and immobilization of doxorubicin for targeted drug delivery. J. Biomater. Sci. Polym. Ed.15(8), 1033–1049 (2004).
  • Philipse AP, Vanbruggen MPB, Pathmamanoharan C. Magnetic silica dispersions – preparation and stability of surface-modified silica particles with a magnetic core. Langmuir10(1), 92–99 (1994).
  • Yang HH, Zhang SQ, Chen XL, Zhuang ZX, Xu JG, Wang XR. Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations. Anal. Chem.76(5), 1316–1321 (2004).
  • Ulman A. Formation and structure of self-assembled monolayers. Chem. Rev.96(4), 1533–1554 (1996).
  • Arbab AS, Wilson LB, Ashari P, Jordan EK, Lewis BK, Frank JA. A model of lysosomal metabolism of dextran coated superparamagnetic iron oxide (SPIO) nanoparticles: implications for cellular magnetic resonance imaging. NMR Biomed.18(6), 383–389 (2005).
  • Kaushik A, Khan R, Solanki PR et al. Iron oxide nanoparticles–chitosan composite based glucose biosensor. Biosens. Bioelectron.24(4), 676–683 (2008).
  • Cheong SJ, Lee CM, Kim SL et al. Superparamagnetic iron oxide nanoparticles-loaded chitosan–linoleic acid nanoparticles as an effective hepatocyte-targeted gene delivery system. Int. J. Pharm.372(1–2), 169–176 (2009).
  • Bee A, Massart R, Neveu S. Synthesis of very fine maghemite particles. J. Magn. Magn. Mater.149(1–2), 6–9 (1995).
  • Wang YX, Hussain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur. Radiol.11(11), 2319–2331 (2001).
  • Weissleder R, Lee AS, Khaw BA, Shen T, Brady TJ. Antimyosin-labeled monocrystalline iron oxide allows detection of myocardial infarct: MR antibody imaging. Radiology182(2), 381–385 (1992).
  • Sato T, Iijima T, Seki M, Inagaki N. Magnetic-properties of ultrafine ferrite particles. J. Magn. Magn. Mater.65(2–3), 252–256 (1987).
  • Lovely GR, Brown AP, Evans SD, Brydson R. HRTEM characterisation of surface effects in iron oxide nanoparticles. Electron Microscopy and Analysis 2003(179), 479–482 (2004).
  • Miser DE, Li P, Hajaligol MR. High-resolution TEM characterization of a nanoparticle iron oxide catalyst and reaction products. Abstr. Pap. Am. Chem. Soc.224, U47–U47 (2002).
  • Herrera LK, Cotte M, de Haro MCJ, Duran A, Justo A, Perez-Rodriguez JL. Characterization of iron oxide-based pigments by synchrotron-based micro x-ray diffraction. Applied Clay Science42(1–2), 57–62 (2008).
  • Di Marco M, Port M, Couvreur P, Dubernet C, Ballirano P, Sadun C. Structural characterization of ultrasmall superparamagnetic iron oxide (USPIO) particles in aqueous suspension by energy dispersive x-ray diffraction (EDXD). J. Am. Chem. Soc.128(31), 10054–10059 (2006).
  • Bonetti E, Savini L, Deriu A, Albanese G, Moya J. X-ray diffraction and Mossbauer spectroscopy of the core/shell iron/iron oxide system. J. Magn. Magn. Mater.262(1), 132–135 (2003).
  • Di Marco M, Sadun C, Port M, Guilbert I, Couvreur P, Dubernet C. Physicochemical characterization of ultrasmall superparamagnetic iron oxide particles (USPIO) for biomedical application as MRI contrast agents. Int. J. Nanomedicine2(4), 609–622 (2007).
  • Rose HH. Optics of high-performance electron microscopes. Science and Technology of Advanced Materials9(1), (2008).
  • Corot C, Robert P, Idee JM, Port M. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv. Drug Deliv. Rev.58(14), 1471–1504 (2006).
  • Kunzelmann U, Jacobasch HJ, Reinhard G. Investigations of the influence of vapor-phase inhibitors on the surface-charge of iron-oxide particles by z-potential measurements. Werkst. Korros.40(12), 723–728 (1989).
  • Lauterbu Pc. Image formation by induced local interactions – examples employing nuclear magnetic-resonance. Nature242(5394), 190–191 (1973).
  • Oksendal AN, Hals PA. Biodistribution and toxicity of MR imaging contrast media. J. Magn. Reson. Imaging3(1), 157–165 (1993).
  • Runge VM, Wells JW. Update – safety, new applications, new MR agents. Top. Magn. Reson. Imaging7(3), 181–195 (1995).
  • Shellock FG, Kanal E. Safety of magnetic resonance imaging contrast agents. J. Magn. Reson. Imaging10(3), 477–484 (1999).
  • Frangioni JV. New technologies for human cancer imaging. J. Clin. Oncol.26(24), 4012–4021 (2008).
  • Briley-Saebo KC, Geninatti-Crich S, Cormode DP et al. High-relaxivity gadolinium-modified high-density lipoproteins as magnetic resonance imaging contrast agents. J. Phys. Chem. B.113(18), 6283–6289 (2009).
  • Nelson KL, Runge VM. Basic principles of MR contrast. Top. Magn. Reson. Imaging7(3), 124–136 (1995).
  • Debbage P, Jaschke W. Molecular imaging with nanoparticles: giant roles for dwarf actors. Histochem. Cell Biol.130(5), 845–875 (2008).
  • Weissleder R, Elizondo G, Wittenberg J, Rabito CA, Bengele HH, Josephson L. Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology175(2), 489–493 (1990).
  • Bradbury M, Hricak H. Molecular MR imaging in oncology. Magn. Reson. Imaging Clin. N. Am.13(2), 225–240 (2005).
  • Weissleder R, Hahn PF, Stark DD et al. Superparamagnetic iron oxide: enhanced detection of focal splenic tumors with MR imaging. Radiology169(2), 399–403 (1988).
  • Weissleder R, Stark DD, Rummeny EJ, Compton CC, Ferrucci JT. Splenic lymphoma: ferrite-enhanced MR imaging in rats. Radiology166(2), 423–430 (1988).
  • Seneterre E, Taourel P, Bouvier Y et al. Detection of hepatic metastases: ferumoxides-enhanced MR imaging versus unenhanced MR imaging and CT during arterial portography. Radiology200(3), 785–792 (1996).
  • Anzai Y, Brunberg JA, Lufkin RB. Imaging of nodal metastases in the head and neck. JMRI-J. Magn. Reson. Imaging7(5), 774–783 (1997).
  • Bush CH, Mladinich CR, Montgomery WJ. Evaluation of an ultrasmall superparamagnetic iron oxide in MRI in a bone tumor model in rabbits. J. Magn. Reson. Imaging7(3), 579–584 (1997).
  • Enochs WS, Harsh G, Hochberg F, Weissleder R. Improved delineation of human brain tumors on MR images using a long-circulating, superparamagnetic iron oxide agent. J. Magn. Reson. Imaging9(2), 228–232 (1999).
  • Bremer C, Allkemper T, Baermig J, Reimer P. RES-specific imaging of the liver and spleen with iron oxide particles designed for blood pool MR-angiography. J. Magn. Reson. Imaging10(3), 461–467 (1999).
  • Maeda H, Sawa T, Konno T. Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J. Control Release74(1–3), 47–61 (2001).
  • Seppenwoolde JH, Viergever MA, Bakker CJ. Passive tracking exploiting local signal conservation: the white marker phenomenon. Magn. Reson. Med.50(4), 784–790 (2003).
  • Seppenwoolde JH, Vincken KL, Bakker CJ. White-marker imaging – separating magnetic susceptibility effects from partial volume effects. Magn. Reson. Med.58(3), 605–609 (2007).
  • Mani V, Briley-Saebo KC, Itskovich VV, Samber DD, Fayad ZA. Gradient echo acquisition for superparamagnetic particles with positive contrast (GRASP): sequence characterization in membrane and glass superparamagnetic iron oxide phantoms at 1.5T and 3T. Magn. Reson. Med.55(1), 126–135 (2006).
  • Stuber M GW, Schaer M, Bulte JW, Kraichman DL. Shedding light on the dark spot with IRON: a method that generates positive contrast in the presence of superparamagnetic nanoparticles. In: Proceedings of the International Society of Magnetic Resonance in Medicine, Miami Beach, FL, USA (Abstract 2608) (2005).
  • Dahnke H LW, Frank JA, Schaeffter T. Optimal positive contrast of labeled cells via conventional 3D imaging. In: Proceedings of the International Society of Magnetic Resonance in Medicine, Seattle, WA, USA (Abstract 361) (2006).
  • Liu W, Dahnke H, Jordan EK, Schaeffter T, Frank JA. In vivo MRI using positive-contrast techniques in detection of cells labeled with superparamagnetic iron oxide nanoparticles. NMR Biomed.21(3), 242–250 (2008).
  • Mani V, Adler E, Briley-Saebo KC et al. Serial in vivo positive contrast MRI of iron oxide-labeled embryonic stem cell-derived cardiac precursor cells in a mouse model of myocardial infarction. Magn. Reson. Med.60(1), 73–81 (2008).
  • Ter-Pogossian MM. PET, SPECT, and NMRI: competing or complementary disciplines? J. Nucl. Med.26(12), 1487–1498 (1985).
  • Chen TJ, Cheng TH, Chen CY et al. Targeted Herceptin-dextran iron oxide nanoparticles for noninvasive imaging of HER2/neu receptors using MRI. J. Biol. Inorg. Chem.14(2), 253–260 (2009).
  • Serda RE, Adolphi NL, Bisoffi M, Sillerud LO. Targeting and cellular trafficking of magnetic nanoparticles for prostate cancer imaging. Mol. Imaging6(4), 277–288 (2007).
  • Tiefenauer LX, Tschirky A, Kuhne G, Andres RY. In vivo evaluation of magnetite nanoparticles for use as a tumor contrast agent in MRI. Magn. Reson. Imaging14(4), 391–402 (1996).
  • Yang L, Mao H, Wang YA et al. Single chain epidermal growth factor receptor antibody conjugated nanoparticles for in vivo tumor targeting and imaging. Small5(2), 235–243 (2009).
  • Yang Y, Jiang JS, Du B, Gan ZF, Qian M, Zhang P. Preparation and properties of a novel drug delivery system with both magnetic and biomolecular targeting. J. Mater. Sci. Mater. Med.20(1), 301–307 (2009).
  • Sun C, Veiseh O, Gunn J et al.In vivo MRI detection of gliomas by chlorotoxin-conjugated superparamagnetic nanoprobes. Small4(3), 372–379 (2008).
  • Zhang C, Jugold M, Woenne EC et al. Specific targeting of tumor angiogenesis by RGD-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 1.5-T magnetic resonance scanner. Cancer Res.67(4), 1555–1562 (2007).
  • Wang AZ, Bagalkot V, Vasilliou CC et al. Superparamagnetic iron oxide nanoparticle-aptamer bioconjugates for combined prostate cancer imaging and therapy. ChemMedChem3(9), 1311–1315 (2008).
  • Lee D, Lockey R, Mohapatra S. Folate receptor-mediated cancer cell specific gene delivery using folic acid-conjugated oligochitosans. J. Nanosci. Nanotechnol.6(9–10), 2860–2866 (2006).
  • Stella B, Arpicco S, Peracchia MT et al. Design of folic acid-conjugated nanoparticles for drug targeting. J. Pharm. Sci.89(11), 1452–1464 (2000).
  • Ginobbi P, Geiser TA, Ombres D, Citro G. Folic acid-polylysine carrier improves efficacy of c-myc antisense oligodeoxynucleotides on human melanoma (M14) cells. Anticancer Res.17(1A), 29–35 (1997).
  • Low PS, Henne WA, Doorneweerd DD. Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc. Chem. Res.41(1), 120–129 (2008).
  • Landmark KJ, Dimaggio S, Ward J et al. Synthesis, characterization, and in vitro testing of superparamagnetic iron oxide nanoparticles targeted using folic acid-conjugated dendrimers. ACS Nano.2(4), 773–783 (2008).
  • Li X, Du X, Huo T, Liu X, Zhang S, Yuan F. Specific targeting of breast tumor by octreotide-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 3.0-tesla magnetic resonance scanner. Acta Radiol.1–12 (2009).
  • Yang L, Mao H, Cao Z et al. Molecular imaging of pancreatic cancer in a preclinical animal tumor model using targeted multifunctional nanoparticles. Gastroenterology (2009).
  • Kresse M, Wagner S, Pfefferer D, Lawaczeck R, Elste V, Semmler W. Targeting of ultrasmall superparamagnetic iron oxide (USPIO) particles to tumor cells in vivo by using transferrin receptor pathways. Magn. Reson. Med.40(2), 236–242 (1998).
  • Hogemann-Savellano D, Bos E, Blondet C et al. The transferrin receptor: a potential molecular imaging marker for human cancer. Neoplasia5(6), 495–506 (2003).
  • Ledezma CJ, Chen W, Sai V et al. 18F-FDOPA PET/MRI fusion in patients with primary/recurrent gliomas: initial experience. Eur. J. Radiol. (2008).
  • Ruf J, Lopez Hanninen E, Bohmig M et al. Impact of FDG-PET/MRI image fusion on the detection of pancreatic cancer. Pancreatology6(6), 512–519 (2006).
  • Malesci A, Balzarini L, Chiti A, Lucignani. Pancreatic cancer or chronic pancreatitis? An answer from PET/MRI image fusion. Eur. J. Nucl. Med. Mol. Imaging31(9), 1352 (2004).
  • Lemke AJ, Niehues SM, Amthauer H, Rohlfing T, Hosten N, Felix R. Clinical use of digital retrospective image fusion of CT, MRI, FDG-PET and SPECT – fields of indications and results. Rofo176(12), 1811–1818 (2004).
  • Nakano Y, Fujibuchi T, Isobe T et al. Assessment of whole body PET/MRI fusion imaging using automated software: usefulness of partial body fusion. Nippon Hoshasen Gijutsu Gakkai Zasshi62(6), 822–831 (2006).
  • Lewin M, Carlesso N, Tung CH et al. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat. Biotechnol.18(4), 410–414 (2000).
  • Yang F, Li Y, Chen Z, Zhang Y, Wu J, Gu N. Superparamagnetic iron oxide nanoparticle-embedded encapsulated microbubbles as dual contrast agents of magnetic resonance and ultrasound imaging. Biomaterials (2009).
  • Senzer N, Nemunaitis J. A review of contusugene ladenovec (Advexin) p53 therapy. Curr. Opin. Mol. Ther.11(1), 54–61 (2009).
  • Morse M. Technology evaluation: Rexin-G, Epeius Biotechnologies. Curr. Opin. Mol. Ther.7(2), 164–169 (2005).
  • Brower V. Cancer gene therapy steadily advances. J. Natl Cancer Inst.100(18), 1276–1278 (2008).
  • Mazda O, Kishida T. Molecular therapeutics of cancer by means of electroporation-based transfer of siRNAs and EBV-based expression vectors. Front Biosci. (Elite Ed), 1, 316–331 (2009).
  • Li YS, Davidson E, Reid CN, McHale AP. Optimising ultrasound-mediated gene transfer (sonoporation) in vitro and prolonged expression of a transgene in vivo: potential applications for gene therapy of cancer. Cancer Lett.273(1), 62–69 (2009).
  • Uchida M, Li XW, Mertens P, Alpar HO. Transfection by particle bombardment: delivery of plasmid DNA into mammalian cells using gene gun. Biochim. Biophys. Acta (2009).
  • Innocentin S, Guimaraes V, Miyoshi A et al.Lactococcus lactis expressing either staphylococcus aureusfibronectin-binding protein A or Listeria monocytogenes internalin A can efficiently internalize and deliver DNA in human epithelial cells. Appl. Environ. Microbiol. (2009).
  • Crombez L, Morris MC, Dufort S et al. Targeting cyclin B1 through peptide-based delivery of siRNA prevents tumour growth. Nucleic Acids Res. (2009).
  • Song E, Zhu P, Lee SK et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat. Biotechnol.23(6), 709–717 (2005).
  • Jere D, Arote R, Jiang HL, Kim YK, Cho MH, Cho CS. Bioreducible polymers for efficient gene and siRNA delivery. Biomed. Mater.4(2), 25020 (2009).
  • Chen JL, Hu Y, Shuai WP, Chen HL, Liang WQ, Gao JQ. Telomerase-targeting antisense oligonucleotides carried by polycation liposomes enhance the growth inhibition effect on tumor cells. J. Biomed. Mater. Res. B. Appl. Biomater.89(2), 362–368 (2009).
  • Li Z, Xiang J, Zhang W et al. Nanoparticle delivery of anti-metastatic NM23-H1 gene improves chemotherapy in a mouse tumor model. Cancer Gene Ther.16(5), 423–429 (2009).
  • Kaul G, Amiji M. Tumor-targeted gene delivery using poly(ethylene glycol)-modified gelatin nanoparticles: in vitro and in vivo studies. Pharm. Res.22(6), 951–961 (2005).
  • He XX, Wang K, Tan W et al. Bioconjugated nanoparticles for DNA protection from cleavage. J. Am. Chem. Soc.125(24), 7168–7169 (2003).
  • He XX, Wang KM, Li D et al. A novel DNA-enrichment technology based on amino-modified functionalized silica nanoparticles. J. Dispers. Sci. Technol.24(3–4), 633–640 (2003).
  • Dellian M, Yuan F, Trubetskoy VS, Torchilin VP, Jain RK. Vascular permeability in a human tumour xenograft: molecular charge dependence. Br. J. Cancer82(9), 1513–1518 (2000).
  • Derfus AM, Chen AA, Min DH, Ruoslahti E, Bhatia SN. Targeted quantum dot conjugates for siRNA delivery. Bioconjug. Chem.18(5), 1391–1396 (2007).
  • Lee JH, Lee K, Moon SH, Lee Y, Park TG, Cheon J. All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. Angew. Chem. Int. Ed. Engl.48(23), 4174–4179 (2009).
  • Yang LZC, Sajja HK, Mao H et al. Development of receptor targeted magnetic iron oxide nanoparticles for efficieny drug delivery and tumor imaging. J. Biomed. Nanotechnol.4, 1–11 (2008).
  • Cengelli F, Grzyb JA, Montoro A, Hofmann H, Hanessian S, Juillerat-Jeanneret L. Surface-functionalized ultrasmall superparamagnetic nanoparticles as magnetic delivery vectors for camptothecin. ChemMedChem4(6), 988–997 (2009).
  • Hwu JR, Lin YS, Josephrajan T et al. Targeted paclitaxel by conjugation to iron oxide and gold nanoparticles. J. Am. Chem. Soc.131(1), 66–68 (2009).
  • Kohler N, Sun C, Wang J, Zhang M. Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells. Langmuir21(19), 8858–8864 (2005).
  • Babincova M, Cicmanec P, Altanerova V, Altaner C, Babinec P. AC-magnetic field controlled drug release from magnetoliposomes: design of a method for site-specific chemotherapy. Bioelectrochemistry55(1–2), 17–19 (2002).
  • Liu TY, Hu SH, Liu KH, Shaiu RS, Liu DM, Chen SY. Instantaneous drug delivery of magnetic/thermally sensitive nanospheres by a high-frequency magnetic field. Langmuir24(23), 13306–13311 (2008).
  • Hu SH, Tsai CH, Liao CF, Liu DM, Chen SY. Controlled rupture of magnetic polyelectrolyte microcapsules for drug delivery. Langmuir24(20), 11811–11818 (2008).
  • Babincova MPC, Babinec P, Altanerova V, Altaner C. Magnetoliposomes mediated local electromagnetic hyperthermia. Radio. Eng.9, 12–13 (2000).
  • Gupta AK, Wells S. Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies. IEEE Trans. Nanobioscience3(1), 66–73 (2004).
  • Weissleder R, Stark DD, Engelstad BL et al. Superparamagnetic iron oxide: pharmacokinetics and toxicity. AJR Am. J. Roentgenol.152(1), 167–173 (1989).
  • Raynal I, Prigent P, Peyramaure S, Najid A, Rebuzzi C, Corot C. Macrophage endocytosis of superparamagnetic iron oxide nanoparticles: mechanisms and comparison of ferumoxides and ferumoxtran-10. Invest. Radiol.39(1), 56–63 (2004).
  • Chouly C, Pouliquen D, Lucet I, Jeune JJ, Jallet P. Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. J. Microencapsul.13(3), 245–255 (1996).
  • Villanueva A, Canete M, Roca AG et al. The influence of surface functionalization on the enhanced internalization of magnetic nanoparticles in cancer cells. Nanotechnology20(11), 115103 (2009).
  • Matuszewski L, Persigehl T, Wall A et al. Cell tagging with clinically approved iron oxides: feasibility and effect of lipofection, particle size, and surface coating on labeling efficiency. Radiology235(1), 155–161 (2005).
  • Rogers WJ, Basu P. Factors regulating macrophage endocytosis of nanoparticles: implications for targeted magnetic resonance plaque imaging. Atherosclerosis178(1), 67–73 (2005).
  • Simberg D, Duza T, Park JH et al. Biomimetic amplification of nanoparticle homing to tumors. Proc. Natl Acad. Sci. USA104(3), 932–936 (2007).
  • Neuwelt EA, Hamilton BE, Varallyay CG et al. Ultrasmall superparamagnetic iron oxides (USPIOs): a future alternative magnetic resonance (MR) contrast agent for patients at risk for nephrogenic systemic fibrosis (NSF)? Kidney Int.75(5), 465–474 (2009).
  • Briley-Saebo K, Bjornerud A, Grant D, Ahlstrom H, Berg T, Kindberg GM. Hepatic cellular distribution and degradation of iron oxide nanoparticles following single intravenous injection in rats: implications for magnetic resonance imaging. Cell. Tissue Res.316(3), 315–323 (2004).
  • Singh A, Patel T, Hertel J, Bernardo M, Kausz A, Brenner L. Safety of ferumoxytol in patients with anemia and CKD. Am. J. Kidney Dis.52(5), 907–915 (2008).
  • Gojova A, Guo B, Kota RS, Rutledge JC, Kennedy IM, Barakat AI. Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: effect of particle composition. Environ. Health Perspect.115(3), 403–409 (2007).
  • Apopa PL, Qian Y, Shao R et al. Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling. Part Fibre Toxicol.6, 1 (2009).
  • Jain TK, Reddy MK, Morales MA, Leslie-Pelecky DL, Labhasetwar V. Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol. Pharm.5(2), 316–327 (2008).
  • Pisanic TR 2nd, Blackwell JD, Shubayev VI, Finones RR, Jin S. Nanotoxicity of iron oxide nanoparticle internalization in growing neurons. Biomaterials28(16), 2572–2581 (2007).
  • Hilger I, Fruhauf S, Linss W et al. Cytotoxicity of selected magnetic fluids on human adenocarcinoma cells. J. Magn. Magn. Mater.261(1–2), 7–12 (2003).
  • Berry CC, Wells S, Charles S, Curtis ASG. Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro.Biomaterials24(25), 4551–4557 (2003).
  • Weng KC, Noble CO, Papahadjopoulos-Sternberg B et al. Targeted tumor cell internalization and imaging of multifunctional quantum dot-conjugated immunoliposomes in vitro and in vivo.Nano. Lett.8(9), 2851–2857 (2008).
  • Kumar R, Roy I, Ohulchanskyy TY et al. Covalently dye-linked, surface-controlled, and bioconjugated organically modified silica nanoparticles as targeted probes for optical imaging. ACS Nano.2(3), 449–456 (2008).
  • Lee KJ, Nallathamby PD, Browning LM, Osgood CJ, Xu XH. In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano.1(2), 133–143 (2007).
  • Skrabalak SE, Au L, Lu X, Li X, Xia Y. Gold nanocages for cancer detection and treatment. Nanomed2(5), 657–668 (2007).
  • Yamada S, Fujita S, Uchimura E, Miyake M, Miyake J. Reverse transfection using gold nanoparticles. Methods Mol. Biol.544, 609–616 (2009).
  • Hainfeld JF, Slatkin DN, Smilowitz HM. The use of gold nanoparticles to enhance radiotherapy in mice. Phys. Med. Biol.49(18), N309–315 (2004).
  • Yang DP, Cui DX. Advances and prospects of gold nanorods. Chem. Asian J.3(12), 2010–2022 (2008).
  • Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater.4(6), 435–446 (2005).
  • Rzigalinski BA, Strobl JS. Cadmium-containing nanoparticles: perspectives on pharmacology and toxicology of quantum dots. Toxicol. Appl. Pharmacol. (2009).
  • Li CZ, Male KB, Hrapovic S, Luong JHT. Fluorescence properties of gold nanorods and their application for DNA biosensing. Chem. Commun.(31), 3924–3926 (2005).
  • Kuhn S, Hakanson U, Rogobete L, Sandoghdar V. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett.97(1), (2006).
  • Nikoobakht B, El-Sayed MA. Surface-enhanced Raman scattering studies on aggregated gold nanorods. J. Phys. Chem. A107(18), 3372–3378 (2003).
  • Nie S, Emory SR. Probing single molecules and single nanoparticles by surface-enhanced raman scattering. Science275(5303), 1102–1106 (1997).
  • Eghtedari M, Liopo AV, Copland JA, Oraevsky AA, Motamedi M. Engineering of hetero-functional gold nanorods for the in vivo molecular targeting of breast cancer cells. Nano Lett.9(1), 287–291 (2009).
  • Guo R, Li R, Li X, Zhang L, Jiang X, Liu B. Dual-functional alginic acid hybrid nanospheres for cell imaging and drug delivery. Small5(6), 709–717 (2009).
  • Wu G, Mikhailovsky A, Khant HA, Fu C, Chiu W, Zasadzinski JA. Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells. J. Am. Chem. Soc.130(26), 8175–8177 (2008).
  • Pissuwan D, Valenzuela SM, Cortie MB. Therapeutic possibilities of plasmonically heated gold nanoparticles. Trends Biotechnol.24(2), 62–67 (2006).
  • Mukherjee P, Bhattacharya R, Wang P et al. Antiangiogenic properties of gold nanoparticles. Clin Cancer Res.11(9), 3530–3534 (2005).
  • Chen BA, Dai YY, Wang XM et al. Synergistic effect of the combination of nanoparticulate Fe3O4 and Au with daunomycin on K562/A02 cells. Int. J. Nanomedicine3(3), 343–350 (2008).
  • Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM. Gold nanoparticles: a new x-ray contrast agent. Br. J. Radiol.79(939), 248–253 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.