149
Views
11
CrossRef citations to date
0
Altmetric
Review

Cannabinoids, multiple sclerosis and neuroprotection

, , &
Pages 645-660 | Published online: 10 Jan 2014

References

  • Charcot J. Histologie de la sclérose en plaque. Gazette des Hôpitaux41, 554–566 (1868).
  • Pretorius PM, Quaghebeur G. The role of MRI in the diagnosis of MS. Clin. Radiol.58, 434–448 (2003).
  • Compston A, Coles A. Multiple sclerosis. Lancet372, 1502–1517 (2008).
  • Weiner HL. The challenge of multiple sclerosis: how do we cure a chronic heterogeneous disease? Ann. Neurol.65, 239–248 (2009).
  • Murray TJ. Diagnosis and treatment of multiple sclerosis. BMJ332, 525–527 (2006).
  • Trapp BD, Nave KA. Multiple sclerosis: an immune or neurodegenerative disorder? Annu. Rev. Neurosci.31, 247–269 (2008).
  • Mechoulam R, Gaoni Y. The absolute configuration of Δ-1-tetrahydrocannabinol, the major active constituent of hashish. Tetrahedron Lett.12, 1109–1111 (1967).
  • Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature346, 561–564 (1990).
  • Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature365, 61–65 (1993).
  • Devane WA, Hanus L, Breuer A et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science258, 1946–1949 (1992).
  • Sugiura T, Oka S, Gokoh M, Kishimoto S, Waku K. New perspectives in the studies on endocannabinoid and cannabis: 2-arachidonoylglycerol as a possible novel mediator of inflammation. J. Pharmacol. Sci.96, 367–375 (1995).
  • Hillard CJ, Wilkinson DM, Edgemond WS, Campbell WB. Characterization of the kinetics and distribution of N-arachidonylethanolamine (anandamide) hydrolysis by rat brain. Biochem. Biophys. Acta1257, 249–256 (1995).
  • Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature384, 83–87 (1996).
  • Bjartmar C, Trapp BD. Axonal and neuronal degeneration in multiple sclerosis: mechanisms and functional consequences. Curr. Opin. Neurol.14, 271–278 (2001).
  • Frischer JM, Bramow S, Dal-Bianco A et al. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain132, 1175–1189 (2009).
  • Gonsette RE. Neurodegeneration in multiple sclerosis: the role of oxidative stress and excitotoxicity. J. Neurol. Sci.274, 48–53 (2008).
  • Bjartmar C, Wujek JR, Trapp BD. Axonal loss in the pathology of MS: consequences for understanding the progressive phase of the disease. J. Neurol. Sci.206, 165–171 (2003).
  • Jones MV, Nguyen TT, DeBoy CA et al. Behavioral and pathological outcomes in MOG 35–55 experimental autoimmune encephalomyelitis. J. Neuroimmunol.199, 83–93 (2008).
  • Bennett JL, Stüve O. Update on inflammation, neurodegeneration, and immunoregulation in multiple sclerosis: therapeutic implications. Clin. Neuropharmacol.32, 121–132 (2009).
  • Charil A, Filippi M. Inflammatory demyelination and neurodegeneration in early multiple sclerosis. J. Neurol. Sci.259, 7–15 (2007).
  • Brück W. The pathology of multiple sclerosis is the result of focal inflammatory demyelination with axonal damage. J. Neurol.252(Suppl. 5), 3–9 (2005).
  • Konerk B, Storch MK, Weissert R et al. Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am. J. Pathol.157, 267–276 (2000).
  • Hobom M, Storch MK, Weissert R et al. Mechanisms and time course of neuronal degeneration in experimental autoimmune encephalomyelitis. Brain Pathol.14, 148–157 (2004).
  • Brown DA, Sawchenko PE. Time course and distribution of inflammatory and neurodegenerative events suggest structural bases for the pathogenesis of experimental autoimmune encephalomyelitis. J. Comp. Neurol.502, 236–260 (2007).
  • Hampton DW, Anderson J, Pryce G et al. An experimental model of secondary progressive multiple sclerosis that shows regional variation in gliosis, remyelination, axonal and neuronal loss. J. Neuroimmunol.201–202, 200–211 (2008).
  • Stangel M. Neuroprotection and neuroregeneration in multiple sclerosis. J. Neurol.255(Suppl. 6), 77–81 (2008).
  • Geurts JJ, Barkhof F. Grey matter pathology in multiple sclerosis. Lancet Neurol.7, 841–851 (2008).
  • Kutzelnigg A, Lassmann H. Cortical lesions and brain atrophy in MS. J. Neurol. Sci.233, 55–59 (2005).
  • Vercellino M, Masera S, Lorenzatti M et al. Demyelination, inflammation, and neurodegeneration in multiple sclerosis deep gray matter. J. Neuropathol. Exp. Neurol.68, 489–502 (2009).
  • Calabrese M, Atzori M, Bernardi V et al. Cortical atrophy is relevant in multiple sclerosis at clinical onset. J. Neurol.254, 1212–1220 (2007).
  • Charil A, Dagher A, Lerch JP, Zijdenbos AP, Worsley KJ, Evans AC. Focal cortical atrophy in multiple sclerosis: relation to lesion load and disability. Neuroimage34, 509–517 (2007).
  • Rocca MA, Pagani E, Ghezzi A et al. Functional cortical changes in patients with multiple sclerosis and nonspecific findings on conventional magnetic resonance imaging scans of the brain. Neuroimage19, 826–836 (2003).
  • Rocca MA, Colombo B, Falini A et al. Cortical adaptation in patients with MS: a cross-sectional functional MRI study of disease phenotypes. Lancet Neurol.4, 618–626 (2005).
  • Ciccarelli O, Toosy AT, Marsden JF et al. Functional response to active and passive ankle movements with clinical correlations in patients with primary progressive multiple sclerosis. J. Neurol.253, 882–891 (2006).
  • Bö L, Vedeler CA, Nyland H, Trapp BD, Mörk SJ. Intracortical multiple sclerosis lesions are not associated with increased lymphocyte infiltration. Mult. Scler.9, 323–331 (2003).
  • Brink BP, Veerhuis R, Breij EC et al. The pathology of multiple sclerosis is location-dependent: no significant complement activation is detected in purely cortical lessions. J. Neuropathol. Exp. Neurol.64, 147–155 (2005).
  • van Horssen J, Brink BP, de Vries HE, van der Valk P, Bö L. The blood–brain barrier in cortical multiple sclerosis lesions. J. Neuropathol. Exp. Neurol.66, 321–328 (2007).
  • Misawa S, Kuwabara S, Mori M, Hayakawa S, Sawai S, Hattori T. Peripheral nerve demyelination in multiple sclerosis. Clin. Neurophysiol.119, 1829–1833 (2008).
  • Li DKB, Paty DW. The UBC MS/MRI Analysis Research Group and the PRISM study group. Magnetic resonance imaging results of the PRISM trial: a randomized, double-blind, placebo-controlled study of interferon-b 1a in relapsing–remitting multiple sclerosis. Ann. Neurol.46, 197–206 (1999).
  • Polman CH, O’Connor PW, Harvrdova E et al. AFFIRM Investigators. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med.354, 899–910 (2006).
  • Rudick RA, Stuart WH, Calabresi PA et al. SENTINEL investigators. Natalizumab plus interferon β-1a for relapsing multiple sclerosis. N. Engl. J. Med.354, 911–923 (2006).
  • Geurts JJ, Wolswijk G, Bö L et al. Expression patterns of group III metabotropic glutamate receptors mGluR4 and mGluR8 in multiple sclerosis lesions. J. Neuroimmunol.158, 182–190 (2005).
  • Geurts JJ, Wolswijk G, Bö L et al. Altered expression patterns of group I and II metabotropic glutamate receptors in multiple sclerosis. Brain126, 1755–1766 (2003).
  • Newcombe J, Uddin A, Dove R, et al. Glutamate receptor expression in multiple sclerosis. Brain Pathol.18, 52–61 (2008).
  • Domercq M, Etxebarria E, Perez-Samartin A, Matute C. Excitotoxic oligodendrocyte death and axonal damage induced by glutamate transporter inhibition. Glia52, 36–46 (2005).
  • Rosin C, Bates T, Skaper S. Excitatory amino acid induced oligodendrocyte cell death in vitro: receptor-dependent and –independent mechanisms. J. Neurochem.90, 1173–1185 (2004).
  • Sarchielli P, Greco L, Floridi A et al. Excitatory amino acids and multiple sclerosis: evidence from cerebroespinal fluid. Arch. Neurol.60, 1082–1088 (2003).
  • Andrews H, Nichols P, Bates D et al. Mitochondrial dysfunction plays a key role in progressive axonal loss in multiple sclerosis. Med. Hypotheses64, 669–677 (2005).
  • Kalman B, Laitinen K, Komoly S. The involvement of mitochondria in the pathogenesis of multiple sclerosis. J. Neuroimmunol.188, 1–12 (2007).
  • Craner MJ, Newcombe J, Black JA et al. Molecular changes in neurons in multiple sclerosis : altered axonal expression of Nav1.2 and Nav1.6 sodium channels and Na+/Ca2+ exchanger. Proc. Natl Acad. Sci. USA101, 8168–8173 (2004).
  • Craner MJ, Hains BC, Lo AC, Black JA, Waxman SG. Co-localization of sodium channel Nav1.6 and the sodium-calcium exchanger at sites of axonal injury in the spinal cord in EAE. Brain127, 294–303 (2004).
  • Ercolini AM, Miller SD. Mechanisms of immunopathology in murine models of central nervous system demyelinating disease. J. Immunol.176, 3293–3298 (2006).
  • Bitsch A, Kuhlmann T, Da Costa C et al. Tumour necrosis factor a mRNA expression in early multiple sclerosis lesions: correlation with demyelinating activity and oligodendrocyte pathology. Glia29, 366–375 (2000).
  • Andrews T, Shang P, Bhat N, Bhat N. TNF-α potentiates IFN-β-induced cell death in oligodendrocyte progenitors. J. Neurosci. Res.54, 574–583 (1998).
  • Boullerne A, Nedelkoska L, Benjamins J. Role of calcium in nitric oxide-induced cytotoxicity: EGTA protects mouse oligodendrocytes. J. Neurosci. Res.63, 124–135 (2001).
  • Williams A, Piaton G, Lubetzki C. Astrocytes – friends or foes in multiple sclerosis? Glia55, 1300–1312 (2007).
  • Srinivasan R, Sailasuta N, Hurd R, Nelson S, Pelletier D. Evidence of elevated glutamate in multiple sclerosis using magnetic resonance spectrocopy at 3T. Brain128, 1016–1025 (2005).
  • Vercellino M, Merola A, Piacentino C et al. Altered glutamate reuptake in relapsing–remitting and secondary progressive multiple sclerosis cortex: correlation with microglia infiltration, demyelination, and neuronal and synaptic damage. J. Neuropathol. Exp. Neurol.66, 732–739 (2007).
  • Ouardouz M, Coderre E, Basak A et al. Glutamate receptors on myelinated spinal cord axons: I. GluR6 kainate receptors. Ann. Neurol.65, 151–159 (2009).
  • Smith T, Groom A, Zhu B et al. Autoimmune encephalomyelitis ameliorated by AMPA antagonists. Nat. Med.6, 62–66 (2000).
  • Stys P. General mechanisms of axonal damage and its prevention. J. Neurol. Sci.233, 3–13 (2005).
  • Lo A. Advancement of therapies for neuroprotection in multiple sclerosis. Expert Rev. Neurother.8, 1355–1366 (2008).
  • Gilgun-Sherki Y, Panet H, Melamed E et al. Riluzole suppresses experimental autoimmune encephalmyelitis: implications for the treatment of multiple sclerosis. Brain. Res.989, 196–204 (2003).
  • Zhuang H, Kim YS, Namiranina K et al. Prostaglandins of J series control heme oxygenase expression: potential significance in modulating neuroinflammation. Ann. NY Acad. Sci.993, 208–216 (2003).
  • Carlson NG, Rose JW. Antioxidants in multiple sclerosis: do they have a role in therapy? CNS Drugs20, 433–441 (2006).
  • Ni J, Shu YY, Zhu YN et al. COX-2 inhibitors ameliorate experimental autoimmune encephalomyelitis through modulating IFN-γ and IL-10 production by inhibiting T-bet expression. J. Neuroimmunol.186, 94–103 (2007).
  • Miyamoto K, Miyake S, Mizuno M, Oka N, Kusunoki S, Yamamura T. Selective COX-2 inhibitor celecoxib prevents experimental autoimmune encephalomyelitis through COX-2-independent pathway. Brain129, 1984–1992 (2006).
  • Muthian G, Raikwar HP, Johnson C et al. COX-2 inhibitors modulate IL-12 signaling through JAK-STAT pathway leading to Th1 response in experimental allergic encephalomyelitis. J. Clin. Immunol.26, 73–85 (2006).
  • Waxman S. Sodium channels as molecular targets in multiple sclerosis. J. Rehabil Res. Dev.39, 233–242 (2002).
  • Cid C, Alvarez-Cermeno J, Regidor I et al. Caspase inhibitors protect against neuronal apoptosis induced by cerebrospinal fluid from multiple sclerosis patients. J. Neuroimmunol.136, 119–124 (2003).
  • Fernández-Ruiz J, González S, Romero J, Ramos JA. Cannabinoids in neurodegeneration and neuroprotection. In: Cannabinoids as Therapeutics (MDT). Mechoulam R (Ed.). Birkhaúser Verlag, Switerland, 79–109 (2005).
  • Mechoulam R, Shohami E. Endocannabinoids and traumatic brain injury. Mol. Neurobiol.36, 68–74 (2007).
  • Galve-Roperh I, Aguado T, Palazuelos J, Guzmán M. Mechanisms of control of neuron survival by the endocannabinoid system. Curr. Pharm. Des.14, 2279–2288 (2008).
  • de Lago E, Fernández-Ruiz J. Cannabinoids and neuroprotection in motor-related disorders. CNS Neurol. Disord. Drug Targets6, 377–387 (2007).
  • Sinor AD, Irvin SM, Geenberg DA. Endocannabinoids protect cerebral cortical neurons from in vitro ischemia in rats. Neurosci. Lett.278, 157–160 (2000).
  • Panikashvili D, Simeonidou C, Ben-Shabat S et al. An endogenous cannabinoid (2-AG) is neuroprotective after brain injury. Nature413, 527–531 (2001).
  • Hampson AJ, Grimaldi M, Axelrod J, Wink D. Cannabidiol and (-)Δ9-tetrahydrocannabinol are neuroprotective antioxidants. Proc. Natl Acad. Sci. USA95, 8268–8273 (1998).
  • Marsicano G, Moosmann B, Hermann H, Lutz B, Behl C. Neuroprotective properties of cannabinoids agonist oxidative stress: role of the cannabinoid receptor CB1. J. Neurochem.80, 448–456 (2002).
  • Hampson AJ, Grimaldi M. Cannabinoid receptor activation and elevated cyclic AMP reduce glutamate neurotoxicity. Eur. J. Neurosci.13, 1529–1536 (2001).
  • Marsicano G, Goodenough S, Monroy K et al. CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science302, 84–88 (2003).
  • Shen M, Thayer SA. Cannabinoid receptor agonists protect cultured rat hippocampal neurons from excitoxicity. Mol. Pharmacol.54, 459–462 (1998).
  • Skaper SD, Buriani A, Dal Toso R et al. The ALIAmide palmitoylethanolamide and cannabinoids, but not anandamide, are protective in a delayed postglutamate paradigm of excitotoxic death in cerebellar granule neurons. Proc. Natl Acad. Sci. USA93, 3984–3989 (1996).
  • Bisogno T, Di Marzo V. The role of the endocannabinoid system in Alzheimer’s disease: facts and hypothesis. Curr. Pharm. Des.14, 2299–3305 (2008).
  • Papa SM. The cannabinoid system in Parkinson’s disease: multiple targets to motor effects. Exp. Neurol.211, 334–338 (2008).
  • Sagredo O, García-Arencibia M, de Lago E, Finetti S, Decio A, Fernández-Ruiz J. Cannabinoids and neuroprotection in basal ganglia disorders. Mol. Neurobiol.36, 82–91 (2007).
  • Pazos MR, Sagredo O, Fernández-Ruiz J. The endocannabinoid system in Huntington’s disease. Curr. Pharm. Des.14, 2317–2325 (2008).
  • Bisland LG, Greensmith L. The endocannabinoid system in amyotrophic lateral sclerosis. Curr. Pharm. Des.14, 2306–2316 (2008).
  • Baker D, Pryce G. The endocannabinoid system and multiple sclerosis. Curr. Pharm. Des.14, 2326–2336 (2008).
  • Pertwee RG. Cannabinoids and multiple sclerosis. Pharmacol. Ther.95, 165–174 (2002).
  • Pryce G, Ahmed Z, Hankey DJ et al. Cannabinoids inhibit neurodegeneration in models of multiple sclerosis. Brain126, 2191–2202 (2003).
  • Hardingham GE, Bading H. The Yin and Yang of NMDA receptor signalling. Trends Neurosci.26, 81–89 (2003).
  • Atlante A, Calissano P, Bobba A, Giannattasio S, Marra E, Passarella S. Glutamate neurotoxicity, oxidative stress and mitochondria. FEBS Lett.497, 1–5 (2001).
  • Lee JM, Grabb MC, Zipfel GJ, Choi DW. Brain tissue responses to ischemia. J. Clin. Invest.106, 723–731 (2000).
  • Pintor A, Tebano MT, Martire A et al. The cannabinoid receptor agonist WIN55,512–2 attenuates the effects induced by quinolic acid in the rat striatum. Neuropharmacology51, 1004–1012 (2006).
  • Parmentier-Batteur S, Jin K, Mao XO, Sie L, Greenberg DA. Increased severity of stroke in CB1 cannabinoid receptor knock-out mice. J. Neurosci.22, 9771–9775 (2002).
  • Shen M, Piser TM, Seybold VS, Thayer SA. Cannabinoid receptor agonists inhibit glutamatergic synaptic transmission in rat hippocampal cultures. J. Neurosci.16, 4322–4334 (1996).
  • Shen M, Thayer SA. Δ9-tetrahydrocannabinol acts as a partial agonist to modulate glutamatergic synaptic transmission between rat hippocampal neurons in culture. Mol. Pharmacol.55, 8–13 (1999).
  • van der Stelt M, Veldhuis WB, Bar PR, Veldink GA, Vliegenthart JF, Nicolay K. Neuroprotection by Δ9-tetrahydrocannabinol, the main active compound in marijuana, against ouabain-induced in vivo excitotoxicity. J. Neurosci.21, 6475–6579 (2001).
  • Lastres-Becker I, Bizat N, Boyer F, Hantraye P, Brouillet E, Fernández-Ruiz J. Effects of cannabinoids in the rat model of Huntington’s disease generated by an intrastriatal injection of malonate. Neuroreport14, 813–816 (2003).
  • van der Stelt M, Veldhuis WB, van Haaften GW et al. Exogenous anandamide protects brain against acute neuronal injury in vivo. J. Neurosci.21, 8765–8771 (2001).
  • Hansen HH, Azcoitia I, Pons S et al. Blockade of cannabinoid CB1 receptor function protects again in vivo dissemining brain damage following NMDA-induced excitotoxicity. J. Neurochem.82, 154–158 (2002).
  • Muthian S, Rademacher DJ, Roelke CT, Gros GJ, Hillard CJ. Anandamide content is increased and CB1 cannabinoid receptor blockade is protective during transient, focal cerebral ischemia. Neuroscience129, 743–750 (2004).
  • Lozovaya N, Min R, Tsintsadze V, Burnashev N. Dual modulation of CNS voltage-gated calcium channels by cannabinoids: focus on CB1 receptor-independent effects. Cell Calcium46(3), 154–162 (2009).
  • De Petrocellis L, Di Marzo V. Role of endocannabinoids and endovanilloids in Ca2+ signalling. Cell Calcium45, 611–624 (2009).
  • Hampson AJ, Bornheim LM, Scanziani M et al. Dual effects of anandamide on NMDA receptor-mediated responses and neurotransmission. J. Neurochem.70, 671–676 (1998).
  • Feigenbaum JJ, Bergmann F, Richmond SA et al. Nonpsychotropic cannabinoid acts as a functional N-methyl-D-aspartate receptor blocker. Proc. Natl Acad. Sci. USA86, 9584–9587 (1989).
  • Nadler V, Biegon A, Beit-Yannai E, Adamchik J, Shohami E. 45Ca accumulation in rat brain after closed head injury; attenuation by the novel neuroprotective agent HU-211. Brain Res.685, 1–11 (1995).
  • Eshhar N, Striem S, Kohen R, Tirosh O, Biegon A. Neuroprotective and antioxidant activities of HU-211, a novel NMDA receptor antagonist. Eur. J. Pharmacol.283, 19–29 (1995).
  • Shohami E, Gallily R, Mechoulam R, Bass R, Ben-Hur T. Cytokine production in the brain following closed head injury: dexanabinol (HU-211) is a novel TNF-α inhibitor and an effective neuroprotectant. J. Neuroimmunol.72, 169–177 (1997).
  • Maas AI, Murray G, Henney H 3rd et al. Pharmoos TBI investigators. Efficacy and safety of dexanabinol in severe traumatic brain injury: results of Phase III randomised, placebo-controlled, clinical trial. Lancet Neurol.5, 38–45 (2006).
  • Fatokun AA, Stone TW, Smith RA. Oxidative stress in neurodegeneration and available means of protection. Front. Biosci.13, 3288–3311 (2008).
  • Chan PH. Reactive oxygen radicals in signaling and damage in the ischemic brain. J. Cereb. Blood Flow Metab.21, 2–14 (2001).
  • Nicholls DG. Oxidative stress and energy crises in neuronal dysfunction. Ann. NY Acad. Sci.1147, 53–60 (2008).
  • Chen Y, Buck J. Cannabinoids protect cell from oxidative cell death: a receptor-independent mechanism. J. Pharmacol. Exp. Ther.293, 807–812 (2000).
  • Lastres-Becker I, Bizat N, Boyer F, Hantraye P, Fernández-Ruiz J, Brouillet E. Potential involvement of cannabinoid receptors in 3-nitropropionic acid toxicity in vivo. Neuroreport15, 2375–2379 (2004).
  • Sagredo O, Ramos JA, Decio A, Mechoulam R, Fernández-Ruiz J. Cannabidiol reduced the striatal atrophy caused by 3-nitropropionic acid in vivo by mechanisms independent of the activation of cannabinoid, vanilloid TRPV1 and adenosine A2A receptors. Eur. J. Neurosci.26, 843–851 (2007).
  • Lastres-Becker I, Molina-Holgado F, Ramos JA, Mechoulam R, Fernández-Ruiz J. Cannabinoids provide neuroprotection against 6-hydroxydopamine toxicity in vivo and in vitro: relevance to Parkinson’s disease. Neurobiol. Dis.19, 96–107 (2005).
  • García-Arencibia M, González S, de Lago E, Ramos JA, Mechoulam R, Fernández- Ruiz J. Evaluation of the neuroprotective effect of cannabioids in a rat model of Parkinson’s disease: importance of antioxidant and cannabinoid receptor-independent properties. Brain Res.1134, 162–170 (2007).
  • Iuvone T, Esposite G, Esposito R, Santamaria R, Di Rosa M, Izzo AA. Neuroprotective effect of cannabidiol, a non-psychoactive component from Cannabis sativa, on β-amyloid-induced toxicity in PC12 cells. J. Neurochem.89, 134–141 (2004).
  • Iuvone T, Esposito G, De Filippis D, Scuderi C, Steardo L. Cannabidiol: a promising drug for neurodegenerative disorders? CNS Neurosci. Ther.15, 65–75 (2009).
  • Esposito G, Scuderi C, Savani C et al. Cannabidiol in vivo blunts β-amyloid induced neuroinflammation by suppressing IL-1β and iNOS expression. Br. J. Pharmacol.151, 1272–1279 (2007).
  • Ullrich O, Merker K, Timm J, Tauber S. Immune control by endocannabinoids – new mechanisms of neuroprotection?. J. Neuroimmunol.184, 127–135 (2007).
  • Walter L, Stella N. Cannabinoids and neuroinflammation. Br. J. Pharmacol.141, 775–785 (2004).
  • Stella N. Endocannabinoid signaling in microglial cells. Neuropharmacology56(Suppl. 1), 244–253 (2009).
  • Facchinetti F, Del Giudice E, Furegato S, Passarotto M, Leon A. Cannabinoids ablate release of TNF-α in rat microglial cells stimulated with lypopolysaccharide. Glia41, 161–168 (2003).
  • Klein TW, Lane B, Newton CA, Friedman H. The cannabinoid system and cytokine network. Proc. Soc. Exp. Biol. Med.225, 1–8 (2000).
  • Molina-Holgado F, Pinteaux E, Moore JD et al. Endogenous interleukin-1 receptor antagonist mediates anti-inflammatory and neuroprotective actions of cannabinoids in neurons and glia. J. Neurosci.23, 6470–6474 (2003).
  • Smith SR, Terminelli C, Denhardt G. Effects of cannabinoid receptor agonist and antagonist ligands on production of inflammatory cytokines and anti-inflammatory interleukin-10 in endotoxemic mice. J. Pharmacol. Exp. Ther.293, 136–150 (2000).
  • Fernández-Ruiz J, Romero J, Velasco G, Tolón RM, Ramos JA, Guzmán M. Cannabinoid CB2 receptor: a new target for the control of neuronal cell survival? Trends Pharmacol. Sci.28, 39–45 (2007).
  • Fernández-Ruiz J, Pazos MR, García-Arencibia M, Sagredo O, Ramos JA. Role of CB2 receptors in neuroprotective effects of cannabinoids. Mol. Cell. Endocrinol.286, S91–S96 (2008).
  • Galve-Roperh I, Aguado T, Palazuelos J, Guzmán M. The endocannabinoid system and neurogenesis in health and disease. Neuroscientist13, 109–114 (2007).
  • Stella N. Cannabinoid signaling in glial cells. Glia48, 267–277 (2004).
  • Ramirez BG, Blázquez C, Gómez del Pulgar T, Guzmán M, de Ceballos ML Prevention of Alzheimer’s disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation. J. Neurosci.25, 1904–1913 (2005).
  • Palazuelos J, Aguado T, Pazos MR et al. Microglial CB2 cannabinoid receptors are neuroprotective in Huntington’s disease excitotoxicity. Brain (Epub ahead of print) (2009).
  • Molina-Holgado F, Vela JM, Arevalo-Martín A et al. Cannabinoids promote oligodendrocyte progenitor survival: involvement of cannabinoid receptors and phosphatidylinositol-3 kinase/Akt signaling. J. Neurosci.22, 9742–9753 (2002).
  • Maresz K, Carrier EJ, Ponomarev ED, Hillard CJ, Dittel BN. Modulation of the cannabinoid CB2 receptor in microglial cells in response to inflammatory stimuli. J. Neurochem.95, 437–445 (2005).
  • Sagredo O, González S, Aroyo I et al. Cannabinoid CB2 receptor agonists protect the striatum against malonate toxicity: Relevance for Huntington’s disease. Glia57, 1154–1167 (2009).
  • Benito C, Nuñez E, Tolón RM et al. Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer’s disease brains. J. Neurosci.23, 11136–11141 (2003).
  • Ashton JC, Rahman RM, Nair SM et al. Cerebral hypoxia–ischemia and middle cerebral artery occlusion induce expression of the cannabinoid CB2 receptor in the brain. Neurosci. Lett.412, 114–117 (2007).
  • Benito C, Romero JP, Tolón RM et al. Cannabinoid CB1 and CB2 receptors and fatty acid amide hydrolase are specific markers of plaque cell subtypes in human multiple sclerosis. J. Neurosci.27, 2396–2402 (2007).
  • Nuñez E, Benito C, Tolón RM, Hillard Cj, Griffin WS, Romero J. Glial expression of cannabinoid CB2 receptors and fatty acid amide hydrolase are β amyloid-linked events in Down’s syndrome. Neuroscience151, 104–110 (2008).
  • Yiangou Y, Facer P, Durrenberger P et al. COX-2, CB2 and P2X7-immunoreactivities are increased in activated microglial cells/macrophages of multiple sclerosis and amyotrophic lateral sclerosis spinal cord. BMC Neurol.6, 12 (2006).
  • Zhang J, Hoffert C, Vu HK, Groblewski T, Ahmad S, O’Donnell D. Induction of CB2 receptor expression in the rat spinal cord of neuropathic but not inflammatory chronic pain models. Eur. J. Neurosci.17, 2750–2754 (2003).
  • Wang T, Collet JP, Shapiro S, Ware MA. Adverse effects of medical cannabinoids, a systematic review. CMAJ178, 1669–1678 (2008).
  • Kurzthaler I, Bodner T, Kemmler G et al. The effect of nabilone on neuropsychological functions related to driving ability, an extended case series. Hum. Psychopharmacol.20, 291–293 (2005).
  • Wade DT, Makela PM, House H, Bateman C, Robson P. Long-term use of a cannabis-based medicine in the treatment of spasticity and other symptoms in multiple sclerosis. Mult. Scler.12, 639–645 (2006).
  • Baker D, Pryce G, Croxford JL et al. Cannabinoids control spasticity and tremor in a multiple sclerosis model. Nature404, 84–87 (2000).
  • Baker D, Pryce G, Croxford JL et al. Endocannabinoids control spasticity in a multiple sclerosis model. FASEB J.15, 300–302 (2001).
  • Wilkinson JD, Whalley BJ, Baker D et al. Medicinal cannabis, is Δ9-tetrahydrocannabinol necessary for all its effects? J. Pharm. Pharmacol.55, 1687–1694 (2003).
  • Pryce G, Baker D. Control of spasticity in a multiple sclerosis model is mediated by CB1, not CB2, cannabinoid receptors. Br. J. Pharmacol.150, 519–525 (2007).
  • de Lago E, Fernández-Ruiz J, Ortega-Gutiérrez S et al. UCM707, an inhibitor of the anandamide uptake, behaves as a symptom control agent in models of Huntington’s disease and multiple sclerosis, but fails to delay/arrest the progression of different motor-related disorders. Eur. Neuropsychopharmacol.16, 7–18 (2006).
  • Brooks JW, Pryce G, Bisogno T et al. Arvanil-induced inhibition of spasticity and persistent pain, evidence for therapeutic sites of action different from the vanilloid VR1 receptor and cannabinoid CB(1)/CB(2) receptors. Eur. J. Pharmacol.439, 83–92 (2002).
  • Collin C, Davies P, Mutiboko IK, Ratcliffe S. Randomized controlled trial of cannabis-based medicine in spasticity caused by multiple sclerosis. Eur. J. Neurol.14, 290–296 (2007).
  • Wade DT, Makela P, Robson P, House H, Bateman C. Do cannabis-based medicinal extracts have general or specific effects on symptoms in multiple sclerosis? A double-blind, randomized, placebo-controlled study on 160 patients. Mult. Scler.10, 434–441 (2004).
  • Wade DT, Robson P, House H, Makela P, Aram J. A preliminary controlled study to determine whether whole-plant cannabis extracts can improve intractable neurogenic symptoms. Clin. Rehabil.17, 21–29 (2003).
  • Brady CM, DasGupta R, Dalton C, Wiseman OJ, Berkley KJ, Fowler CJ. An open-label pilot study of cannabis-based extracts for bladder dysfunction in advanced multiple sclerosis. Mult. Scler.10, 425–433 (2004).
  • Zajicek J, Fox P, Sanders H et al. Cannabinoids for treatment of spasticity and other symptoms related to multiple sclerosis (CAMS study), multicentre randomised placebo-controlled trial. Lancet362, 1517–1526 (2003).
  • Zajicek JP, Sanders HP, Wright DE et al. Cannabinoids in multiple sclerosis (CAMS) study, safety and efficacy data for 12 months follow up. J. Neurol. Neurosurg. Psychiatry76, 1664–1669 (2005).
  • Vaney C, Heinzel-Gutenbrunner M, Jobin P et al. Efficacy, safety and tolerability of an orally administered cannabis extract in the treatment of spasticity in patients with multiple sclerosis, a randomized, double-blind, placebo-controlled, crossover study. Mult. Scler.10, 417–424 (2004).
  • Smith PF. Cannabinoids in the treatment of pain and spasticity in multiple sclerosis. Curr. Opin. Investig. Drugs3, 859–864 (2002).
  • Smith PF. Symptomatic treatment of multiple sclerosis using cannabinoids: recent advances. Expert Rev. Neurother.7, 1157–1163 (2007).
  • Rog DJ, Nurmikko TJ, Young CA. Oromucosal Δ9-tetrahydrocannabinol/cannabidiol for neuropathic pain associated with multiple sclerosis, an uncontrolled, open-label, 2-year extension trial. Clin. Ther.29, 2068–2079 (2007).
  • Rog DJ, Nurmikko TJ, Friede T, Young CA. Randomized, controlled trial of cannabis-based medicine in central pain in multiple sclerosis. Neurology65, 812–819 (2005).
  • Iskedjian M, Bereza B, Gordon A, Piwko C, Einarson TR. Meta-analysis of cannabis based treatments for neuropathic and multiple sclerosis-related pain. Curr. Med. Res. Opin.23, 17–24 (2007).
  • Perras C. Sativex for the management of multiple sclerosis symptoms. Issues Emerg. Health Technol.72, 1–4 (2005).
  • Svendsen KB, Jensen TS, Bach FW. Does the cannabinoid dronabinol reduce central pain in multiple sclerosis? Randomised double blind placebo controlled crossover trial. BMJ329, 253 (2004).
  • Pertwee RG. Emerging strategies for exploiting cannabinoid receptor agonists as medicines. Br. J. Pharmacol.156, 397–411 (2009).
  • Rajesh M, Mukhopadhyay P, Bátkai S et al. Cannabidiol attenuates high glucose-induced endothelial cell inflammatory response and barrier disruption. Am. J. Physiol. Heart Circ. Physiol.293, H610–H619 (2007).
  • Arévalo-Martín A, Vela JM, Molina-Holgado E, Borrell J, Guaza C. Therapeutic action of cannabinoids in a murine model of multiple sclerosis. J. Neurosci.23, 2511–2516 (2003).
  • Sánchez AJ, González-Pérez P, Galve-Roperh I, García-Merino A. R-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)-pyrrolo-[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphtalenylmethanone (WIN-2) ameliorates experimental autoimmune encephalomyelitis and induces encephalitogenic T cell apoptosis: partial involvement of the CB2 receptor. Biochem. Pharmacol.72, 1697–1706 (2006).
  • Mestre L, Docagne F, Correa F et al. A cannabinoid agonist interferes with the progression of a chronic model of multiple sclerosis by downregulating adhesion molecules. Mol. Cell. Neurosci.40, 258–266 (2009).
  • O’Sullivan SE. Cannabinoids go nuclear: evidence for activation of peroxisome proliferator-activated receptors. Br. J. Pharmacol.152, 576–582 (2007).
  • Mestre L, Correa F, Arévalo-Martín A et al. Pharmacological modulation of the endocannabinoid system in a viral model of multiple sclerosis. J. Neurochem.92, 1327–1339 (2005).
  • Ehrhart J, Obregon D, Mori T et al. Stimulation of cannabinoid receptor 2 (CB2) suppresses microglial activation. J. Neuroinflammation2, 29 (2005).
  • Esiri MM. The interplay between inflammation and neurodegeneration in CNS disease. J. Neuroimmunol.184, 4–16 (2007).
  • Benito C, Kim WK, Chavarría I et al. A glial endogenous cannabinoid system is upregulated in the brains of macaques with simian immunodeficiency virus-induced encephalitis. J. Neurosci.25, 2530–2536 (2005).
  • Ashton JC, Glass M. The Cannabinoid CB2 receptor as a target for inflammation-dependent neurodegeneration. Curr. Neuropharmacol.5, 73–80 (2007).
  • Walter L, Franklin A, Witting A et al. Nonpsychotropic cannabinoid receptors regulate microgial cell migration. J. Neurosci.23, 1398–1405 (2003).
  • Carrier EJ, Kearn CS, Barkmeier AJ et al. Cultured rat microglial cells synthesize the endocannabinoid 2-arachidonylglycerol, which increases proliferation via a CB2 receptor-dependent mechanism. Mol. Pharmacol.65, 99–1007 (2004).
  • Maresz K, Pryce G, Ponomarev ED et al. Direct suppression of CNS autoimmune inflammation via the cannabinoid receptor CB1 on neurons and CB2 on autoreactive T cells. Nat. Med.13, 492–497 (2007).
  • Ortega-Gutierrez S, Molina-Holgado E, Arévalo-Martín A et al. Activation of the endocannabinoid system as therapeutic approach in a murine model of multiple sclerosis. FASEB J.19, 1338–1340 (2005).
  • Docagne F, Mestre L, Loría F, Hernangómez M, Correa F, Guaza C. Therapeutic potential of CB2 targeting in multiple sclerosis. Expert. Opin. Ther. Targets12, 185–195 (2008).
  • Croxford JL, Pryce G, Jackson SJ et al. Cannabinoid-mediated neuroprotection, not immunosuppression, may be more relevant to multiple sclerosis. J. Neuroimmunol.193, 120–129 (2008).
  • Jackson SJ, Pryce G, Diemel LT, Cuzner ML, Baker D. Cannabinoid-receptor 1 null mice are susceptible to neurofilament damage and caspase 3 activation. Neuroscience134, 261–268 (2005).
  • Jackson SJ, Baker D, Cuzner ML, Diemel LT. Cannabinoid-mediated neuroprotection following interferon-gamma treatment in a three-dimensional mouse brain aggregate cell culture. Eur. J. Neurosci.20, 2267–2275 (2004).
  • Croxford JL, Miller SD. Immunoregulation of a viral model of multiple sclerosis using the synthetic cannabinoid R+WIN55,212. J. Clin. Invest.111, 1231–1240 (2003).
  • Bisland LG, Dick JRT, Pryce G et al. Manipulation of the endocannabinoid system ameliorates disease symptoms in the SOD1G93A mouse model of ALS. FASEB J.20, 1003–1005 (2006).
  • Cabranes A, Venderova K, de Lago E et al. Decreased endocannabinoid levels in the brain and beneficial effects of agents activating cannabinoid and/or vanilloid receptors in a rat model of multiple sclerosis. Neurobiol. Dis.20, 207–217 (2005).
  • Di Filippo M, Pini LA, Pelliccioli GP, Calabresi P, Sarchielli P. Abnormalities in the cerebrospinal fluid levels of endocannabinoids in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry79, 1224–1229 (2008).
  • Loría F, Petrosino S, Mestre L et al. Study of the regulation of the endocannabinoid system in a virus model of multiple sclerosis reveals a therapeutic effect of palmitoylethanolamide. Eur. J. Neurosci.28, 633–641 (2008).
  • Centonze D, Bari M, Rossi S et al. The endocannabinoid system is dysregulated in multiple sclerosis and in experimental autoimmune encephalomyelitis. Brain130, 2543–2553 (2007).
  • Witting A, Chen L, Cudaback E et al. Experimental autoimmune encephalomyelitis disrupts endocannabinoid-mediated neuroprotection. Proc. Natl Acad. Sci. USA103, 6362–6367 (2006).
  • Eljaschewitsch E, Witting A, Mawrin C et al. The endocannabinoid anandamide protects neurons during CNS inflammation by induction of MKP-1 in microglial cells. Neuron49, 67–69 (2006).
  • Jean-Gilles L, Feng S, Tench CR et al. Plasma endocannabinoid levels in multiple sclerosis. J. Neurol. Sci. (Epub ahead of print) (2009).
  • Cabranes A, Pryce G, Baker D, Fernández-Ruiz J. Changes in CB1 receptors in motor-related brain structures of chronic relapsing experimental allergic encephalomyelitis mice. Brain Res.1107, 199–205 (2006).
  • Berrendero F, Sánchez A, Cabranes A et al. Changes in cannabinoid CB1 receptors in striatal and cortical regions of rats with experimental allergic encephalomyelitis, an animal model of multiple sclerosis. Synapse41, 195–202 (2001).
  • Pitt D, Werner P, Raine CS. Glutamate excitotoxicity in a model of multiple sclerosis. Nat. Med.6, 67–70 (2000).
  • Werner P, Pitt D, Raine CS. Glutamate excitotoxicity – a mechanism for axonal damage and oligodendrocyte death in multiple sclerosis? J. Neural Transm. (Suppl. 60), 375–385 (2000).
  • Plaut GS. Effectiveness of amantadine in reducing relapses in multiple sclerosis. J. R. Soc. Med.80, 91–93 (1987).
  • Docagne F, Muñetón V, Clemente D et al. Excitotoxicity in a chronic model of multiple sclerosis: neuroprotective effects of cannabinoids through CB1 and CB2 receptor activation. Mol. Cell. Neurosci.34, 551–561 (2007).
  • Petro DJ, Ellenberger C Jr. Treatment of human spasticity with Δ9-tetrahydrocannabinol. J. Clin. Pharmacol.21, 413S–416S (1981).
  • Ungerleider JT, Andyrsiak T, Fairbanks L, Ellison GW, Myers LW. Δ9-THC in the treatment of spasticity associated with multiple sclerosis. Adv. Alcohol Subst. Abuse7, 39–50 (1987).
  • Killestein J, Hoogervorst EL, Reif M et al. Safety, tolerability, and efficacy of orally administered cannabinoids in MS. Neurology58, 1404–1407 (2002).
  • Pérez J. Combined cannabinoid therapy via an oromucosal spray. Drugs Today42, 495–503 (2006).
  • Barnes MP. Sativex: clinical efficacy and tolerability in the treatment of symptoms of multiple sclerosis and neuropathic pain. Expert. Opin. Pharmacother.7, 607–615 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.