55
Views
15
CrossRef citations to date
0
Altmetric
Review

Targeting the endocannabinoid system for gastrointestinal diseases: future therapeutic strategies

&
Pages 193-207 | Published online: 10 Jan 2014

References

  • Mechoulam R. The pharmacohistory of Cannabis sativa. In: Cannabis as Therapeutic Agents. Mechoulam R (Ed.). CRC Press, FL, USA 1–19 (1986).
  • Belenko S. Drugs and Drug Policy in America: a Documentory History. Belenko S (Ed.). Greenwood Press, CA, USA (2000).
  • Di Marzo V, Fontana A. Anandamide, an endogenous cannabinomimetic eicosanoid: ‘killing two birds with one stone’. Prostaglandins Leukot. Essent. Fatty Acids53(1), 1–11 (1995).
  • De Petrocellis L, Di Marzo V. An introduction to the endocannabinoid system: from the early to the latest concepts. Best. Pract. Res. Clin. Endocrinol. Metab.23(1), 1–15 (2009).
  • Izzo AA, Camilleri M. Cannabinoids in intestinal inflammation and cancer. Pharmacol. Res.60(2), 117–125 (2009).
  • Izzo AA, Camilleri M. Emerging role of cannabinoids in gastrointestinal and liver diseases: basic and clinical aspects. Gut57(8), 1140–1155 (2008).
  • Storr MA, Yüce B, Andrews CN, Sharkey KA. The role of the endocannabinoid system in the pathophysiology and treatment of irritable bowel syndrome. Neurogastroenterol. Motil.20(8), 857–868 (2008).
  • Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature346(6284), 561–564 (1990).
  • Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature365(6441), 61–65 (1993).
  • Casu MA, Porcella A, Ruiu S et al. Differential distribution of functional cannabinoid CB1 receptors in the mouse gastroenteric tract. Eur. J. Pharmacol.459(1), 97–105 (2003).
  • Coutts AA, Irving AJ, Mackie K, Pertwee RG, Anavi-Goffer S. Localisation of cannabinoid CB(1) receptor immunoreactivity in the guinea pig and rat myenteric plexus. J. Comp. Neurol.448(4), 410–422 (2002).
  • Wright K, Rooney N, Feeney M et al. Differential expression of cannabinoid receptors in the human colon: cannabinoids promote epithelial wound healing. Gastroenterology129(2), 437–453 (2005).
  • Kulkarni-Narla A, Brown DR. Opioid, cannabinoid and vanilloid receptor localization on porcine cultured myenteric neurons. Neurosci. Lett.308(3), 153–156 (2001).
  • Sibaev A, Yüce B, Kemmer M et al. Cannabinoid-1 (CB1) receptors regulate colonic propulsion by acting at motor neurons within the ascending motor pathways in mouse colon. Am. J. Physiol. Gastrointest. Liver Physiol.296(1), G119–G128 (2009).
  • Adami M, Frati P, Bertini S et al. Gastric antisecretory role and immunohistochemical localization of cannabinoid receptors in the rat stomach. Br. J. Pharmacol.135(7), 1598–1606 (2002).
  • MacNaughton WK, Van Sickle MD, Keenan CM, Cushing K, Mackie K, Sharkey KA. Distribution and function of the cannabinoid-1 receptor in the modulation of ion transport in the guinea pig ileum: relationship to capsaicin-sensitive nerves. Am. J. Physiol. Gastrointest. Liver Physiol.286(5), G863–G871 (2004).
  • Storr M, Sibaev A, Marsicano G et al. Cannabinoid receptor type 1 modulates excitatory and inhibitory neurotransmission in mouse colon. Am. J. Physiol. Gastrointest. Liver Physiol.286(1), G110–G117 (2004).
  • Pertwee RG. Cannabinoids and the gastrointestinal tract. Gut48(6), 859–867 (2001).
  • Baldassano S, Zizzo MG, Serio R, Mulè F. Interaction between cannabinoid CB1 receptors and endogenous ATP in the control of spontaneous mechanical activity in mouse ileum. Br. J. Pharmacol.158(1), 243–251 (2009).
  • Hohmann AG, Herkenham M. Localization of central cannabinoid CB1 receptor messenger RNA in neuronal subpopulations of rat dorsal root ganglia: a double-label in situ hybridization study. Neuroscience90(3), 923–931 (1999).
  • Bridges D, Rice AS, Egertova M, Elphick MR, Winter J, Michael GJ. Localisation of cannabinoid receptor 1 in rat dorsal root ganglion using in situ hybridisation and immunohistochemistry. Neuroscience119(3), 803–812 (2003).
  • Binzen U, Greffrath W, Hennessy S, Bausen M, Saaler-Reinhardt S, Treede RD. Co-expression of the voltage-gated potassium channel Kv1.4 with transient receptor potential channels (TRPV1 and TRPV2) and the cannabinoid receptor CB1 in rat dorsal root ganglion neurons. Neuroscience142(2), 527–539 (2006).
  • Burdyga G, Lal S, Varro A, Dimaline R, Thompson DG, Dockray GJ. Expression of cannabinoid CB1 receptors by vagal afferent neurons is inhibited by cholecystokinin. J. Neurosci.24(11), 2708–2715 (2004).
  • Burdyga G, Varro A, Dimaline R, Thompson DG, Dockray GJ. Ghrelin receptors in rat and human nodose ganglia: putative role in regulating CB1 and MCH receptor abundance. Am. J. Physiol. Gastrointest. Liver Physiol.290(6), G1289–G1297 (2006).
  • Van Sickle MD, Oland LD, Ho W et al. Cannabinoids inhibit emesis through CB1 receptors in the brainstem of the ferret. Gastroenterology121(4), 767–774 (2001).
  • Pazos MR, Tolon RM, Benito C et al. Cannabinoid CB1 receptors are expressed by parietal cells of the human gastric mucosa. J. Histochem. Cytochem.56(5), 511–516 (2008).
  • Marquéz L, Suárez J, Iglesias M, Bermudez-Silva FJ, Rodríguez de FF, Andreu M. Ulcerative colitis induces changes on the expression of the endocannabinoid system in the human colonic tissue. PLoS One4(9), e6893 (2009).
  • Kimball ES, Schneider CR, Wallace NH, Hornby PJ. Agonists of cannabinoid receptor 1 and 2 inhibit experimental colitis induced by oil of mustard and by dextran sulfate sodium. Am. J. Physiol. Gastrointest. Liver Physiol.291(2), G364–G371 (2006).
  • Wright KL, Duncan M, Sharkey KA. Cannabinoid CB2 receptors in the gastrointestinal tract: a regulatory system in states of inflammation. Br. J. Pharmacol.153(2), 263–270 (2008).
  • Duncan M, Mouihate A, Mackie K et al. Cannabinoid CB2 receptors in the enteric nervous system modulate gastrointestinal contractility in lipopolysaccharide-treated rats. Am. J. Physiol. Gastrointest. Liver Physiol.295(1), G78–G87 (2008).
  • Duncan M, Davison JS, Sharkey KA. Review article: endocannabinoids and their receptors in the enteric nervous system. Aliment. Pharmacol. Ther.22(8), 667–683 (2005).
  • Howlett AC, Barth F, Bonner TI et al. International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol. Rev.54(2), 161–202 (2002).
  • Twitchell W, Brown S, Mackie K. Cannabinoids inhibit N- and P/Q-type calcium channels in cultured rat hippocampal neurons. J. Neurophysiol.78(1), 43–50 (1997).
  • Boesmans W, Ameloot K, Van den Abbeel V, Tack J, Vanden Berghe P. Cannabinoid receptor 1 signalling dampens activity and mitochondrial transport in networks of enteric neurones. Neurogastroenterol. Motil.21(9), e958–e77 (2009).
  • Brown AJ. Novel cannabinoid receptors. Br. J. Pharmacol.152(5), 567–575 (2007).
  • Kreitzer FR, Stella N. The therapeutic potential of novel cannabinoid receptors. Pharmacol. Ther.122(2), 83–96 (2009).
  • Godlewski G, Offertáler L, Wagner JA, Kunos G. Receptors for acylethanolamides-GPR55 and GPR119. Prostaglandins Other Lipid Mediat.89(3–4), 105–111 (2009).
  • Chu ZL, Jones RM, He H et al. A role for β-cell-expressed G protein-coupled receptor 119 in glycemic control by enhancing glucose-dependent insulin release. Endocrinology148(6), 2601–2609 (2007).
  • Lauffer LM, Iakoubov R, Brubaker PL. GPR119 is essential for oleoylethanolamide-induced glucagon-like peptide-1 secretion from the intestinal enteroendocrine L-cell. Diabetes58(5), 1058–1066 (2009).
  • Ryberg E, Larsson N, Sjogren S et al. The orphan receptor GPR55 is a novel cannabinoid receptor. Br. J. Pharmacol.152(7), 1092–1101 (2007).
  • Massa F, Marsicano G, Hermann H et al. The endogenous cannabinoid system protects against colonic inflammation. J. Clin. Invest.113(8), 1202–1209 (2004).
  • Izzo AA, Fezza F, Capasso R et al. Cannabinoid CB1-receptor mediated regulation of gastrointestinal motility in mice in a model of intestinal inflammation. Br. J. Pharmacol.134(3), 563–570 (2001).
  • Mascolo N, Izzo AA, Ligresti A et al. The endocannabinoid system and the molecular basis of paralytic ileus in mice. FASEB J.16(14), 1973–1975 (2002).
  • Izzo AA, Capasso F, Costagliola A et al. An endogenous cannabinoid tone attenuates cholera toxin-induced fluid accumulation in mice. Gastroenterology125(3), 765–774 (2003).
  • Storr MA, Keenan CM, Zhang H, Patel KD, Makriyannis A, Sharkey KA. Activation of the cannabinoid 2 receptor (CB(2)) protects against experimental colitis. Inflamm. Bowel. Dis.15(11), 1678–1685 (2009).
  • D’Argenio G, Petrosino S, Gianfrani C et al. Overactivity of the intestinal endocannabinoid system in celiac disease and in methotrexate-treated rats. J. Mol. Med.85(5), 523–530 (2007).
  • Guagnini F, Valenti M, Mukenge S et al. Neural contractions in colonic strips from patients with diverticular disease: role of endocannabinoids and substance P. Gut55(7), 946–953 (2006).
  • Ligresti A, Bisogno T, Matias I et al. Possible endocannabinoid control of colorectal cancer growth. Gastroenterology125(3), 677–687 (2003).
  • Izzo AA, Mascolo N, Capasso F. The gastrointestinal pharmacology of cannabinoids. Curr. Opin. Pharmacol.1(6), 597–603 (2001).
  • Zygmunt PM, Petersson J, Andersson DA et al. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature400(6743), 452–457 (1999).
  • Kimball ES, Wallace NH, Schneider CR, D’Andrea MR, Hornby PJ. Vanilloid receptor 1 antagonists attenuate disease severity in dextran sulphate sodium-induced colitis in mice. Neurogastroenterol. Motil.16(6), 811–818 (2004).
  • D’Argenio G, Valenti M, Scaglione G, Cosenza V, Sorrentini I, Di Marzo V. Up-regulation of anandamide levels as an endogenous mechanism and a pharmacological strategy to limit colon inflammation. FASEB J.20(3), 568–570 (2006).
  • McVey DC, Schmid PC, Schmid HH, Vigna SR. Endocannabinoids induce ileitis in rats via the capsaicin receptor (VR1). J. Pharmacol. Exp. Ther.304(2), 713–722 (2003).
  • Izzo AA, Aviello G, Petrosino S et al. Increased endocannabinoid levels reduce the development of precancerous lesions in the mouse colon. J. Mol. Med.86(1), 89–98 (2008).
  • Di Marzo V, Capasso R, Matias I et al. The role of endocannabinoids in the regulation of gastric emptying: alterations in mice fed a high-fat diet. Br. J. Pharmacol.153(6), 1272–1280 (2008).
  • Izzo AA, Piscitelli F, Capasso R et al. Peripheral endocannabinoid dysregulation in obesity: relation to intestinal motility and energy processing induced by food deprivation and re-feeding. Br. J. Pharmacol.158(2), 451–461 (2009).
  • Maccarrone M, Bari M, Battista N, Finazzi-Agro A. Estrogen stimulates arachidonoylethanolamide release from human endothelial cells and platelet activation. Blood100(12), 4040–4048 (2002).
  • Maccarrone M, De Petrocellis L, Bari M et al. Lipopolysaccharide downregulates fatty acid amide hydrolase expression and increases anandamide levels in human peripheral lymphocytes. Arch. Biochem. Biophys.393(2), 321–328 (2001).
  • Rossi C, Pini LA, Cupini ML, Calabresi P, Sarchielli P. Endocannabinoids in platelets of chronic migraine patients and medication-overuse headache patients: relation with serotonin levels. Eur. J. Clin. Pharmacol.64(1), 1–8 (2008).
  • Varga K, Wagner JA, Bridgen DT, Kunos G. Platelet- and macrophage-derived endogenous cannabinoids are involved in endotoxin-induced hypotension. FASEB J.12(11), 1035–1044 (1998).
  • Di Marzo V, De Petrocellis L, Sepe N, Buono A. Biosynthesis of anandamide and related acylethanolamides in mouse J774 macrophages and N18 neuroblastoma cells. Biochem. J.316(3), 977–984 (1996).
  • Bisogno T, Maurelli S, Melck D, De Petrocellis L, Di Marzo V. Biosynthesis, uptake, and degradation of anandamide and palmitoylethanolamide in leukocytes. J. Biol. Chem.272(6), 3315–3323 (1997).
  • Nagy B, Fedonidis C, Photiou A et al. Capsaicin-sensitive primary sensory neurons in the mouse express N-acyl phosphatidylethanolamine phospholipase D. Neuroscience161(2), 572–577 (2009).
  • Ahluwalia J, Urban L, Bevan S, Nagy I. Anandamide regulates neuropeptide release from capsaicin-sensitive primary sensory neurons by activating both the cannabinoid 1 receptor and the vanilloid receptor 1 in vitro. Eur. J. Neurosci.17(12), 2611–2618 (2003).
  • Di Marzo V. The endocannabinoid system: its general strategy of action, tools for its pharmacological manipulation and potential therapeutic exploitation. Pharmacol. Res.60(2), 77–84 (2009).
  • Aviello G, Matias I, Capasso R et al. Inhibitory effect of the anorexic compound oleoylethanolamide on gastric emptying in control and overweight mice. J. Mol. Med.86(4), 413–422 (2008).
  • Fu J, Astarita G, Gaetani S et al. Food intake regulates oleoylethanolamide formation and degradation in the proximal small intestine. J. Biol. Chem.282(2), 1518–1528 (2007).
  • Deutsch DG, Glaser ST, Howell JM et al. The cellular uptake of anandamide is coupled to its breakdown by fatty-acid amide hydrolase. J. Biol. Chem.276(10), 6967–6973 (2001).
  • Cravatt BF, Lichtman AH. The enzymatic inactivation of the fatty acid amide class of signaling lipids. Chem. Phys. Lipids121(1–2), 135–148 (2002).
  • Goparaju SK, Ueda N, Yamaguchi H, Yamamoto S. Anandamide amidohydrolase reacting with 2-arachidonoylglycerol, another cannabinoid receptor ligand. FEBS Lett.422(1), 69–73 (1998).
  • Di Marzo V, Bisogno T, Sugiura T, Melck D, De Petrocellis L. The novel endogenous cannabinoid 2-arachidonoylglycerol is inactivated by neuronal- and basophil-like cells: connections with anandamide. Biochem. J.331(1), 15–19 (1998).
  • Dinh TP, Freund TF, Piomelli D. A role for monoglyceride lipase in 2-arachidonoylglycerol inactivation. Chem. Phys. Lipids121(1–2), 149–158 (2002).
  • Wei BQ, Mikkelsen TS, McKinney MK, Lander ES, Cravatt BF. A second fatty acid amide hydrolase with variable distribution among placental mammals. J. Biol. Chem.281(48), 36569–36578 (2006).
  • Duncan M, Thomas AD, Cluny NL et al. Distribution and function of monoacylglycerol lipase in the gastrointestinal tract. Am. J. Physiol. Gastrointest. Liver Physiol.295(6), G1255–G1265 (2008).
  • Glaser ST, Kaczocha M, Deutsch DG. Anandamide transport: a critical review. Life Sci.77(14), 1584–1604 (2005).
  • Kaczocha M, Glaser ST, Deutsch DG. Identification of intracellular carriers for the endocannabinoid anandamide. Proc. Natl Acad. Sci. USA106(15), 6375–6380 (2009).
  • Long JZ, Li W, Booker L et al. Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects. Nat. Chem. Biol.5(1), 37–44 (2009).
  • Carlisle SJ, Marciano-Cabral F, Staab A, Ludwick C, Cabral GA. Differential expression of the CB2 cannabinoid receptor by rodent macrophages and macrophage-like cells in relation to cell activation. Int. Immunopharmacol.2(1), 69–82 (2002).
  • Börner C, Höllt V, Sebald W, Kraus J. Transcriptional regulation of the cannabinoid receptor type 1 gene in T cells by cannabinoids. J. Leukoc. Biol.81(1), 336–343 (2007).
  • Wang S, Lim G, Mao J, Sung B, Yang L, Mao J. Central glucocorticoid receptors regulate the upregulation of spinal cannabinoid-1 receptors after peripheral nerve injury in rats. Pain131(1–2), 96–105 (2007).
  • Hansen HH, Ikonomidou C, Bittigau P, Hansen SH, Hansen HS. Accumulation of the anandamide precursor and other N-acylethanolamine phospholipids in infant rat models of in vivo necrotic and apoptotic neuronal death. J. Neurochem.76(1), 39–46 (2001).
  • Darmani NA. The cannabinoid CB1 receptor antagonist SR 141716A reverses the antiemetic and motor depressant actions of WIN 55, 212–2. Eur. J. Pharmacol.430(1), 49–58 (2001).
  • Matias I, Cristino L, Di Marzo V. Endocannabinoids: some like it fat (and sweet too). J. Neuroendocrinol.20(Suppl. 1), 100–109 (2008).
  • Kunos G. Understanding metabolic homeostasis and imbalance: what is the role of the endocannabinoid system? Am. J. Med.120(9 Suppl. 1), S18–S24 (2007).
  • Darmani NA, Johnson JC. Central and peripheral mechanisms contribute to the antiemetic actions of Δ9-tetrahydrocannabinol against 5-hydroxytryptophan-induced emesis. Eur. J. Pharmacol.488(1–3), 201–212 (2004).
  • Sharkey KA, Cristino L, Oland LD et al. Arvanil, anandamide and N-arachidonoyl-dopamine (NADA) inhibit emesis through cannabinoid CB1 and vanilloid TRPV1 receptors in the ferret. Eur. J. Neurosci.25(9), 2773–2782 (2007).
  • Parker LA, Kwiatkowska M, Mechoulam R. Δ9-tetrahydrocannabinol and cannabidiol, but not ondansetron, interfere with conditioned retching reactions elicited by a lithium-paired context in Suncus murinus: an animal model of anticipatory nausea and vomiting. Physiol. Behav.87(1), 66–71 (2006).
  • Storr M, Gaffal E, Saur D, Schusdziarra V, Allescher HD. Effect of cannabinoids on neural transmission in rat gastric fundus. Can. J. Physiol. Pharmacol.80(1), 67–76 (2002).
  • Fioramonti J, Bueno L. Role of cannabinoid receptors in the control of gastrointestinal motility and perception. Expert Rev. Gastroenterol. Hepatol.2(3), 385–397 (2008).
  • Hinds NM, Ullrich K, Smid SD. Cannabinoid 1 (CB1) receptors coupled to cholinergic motorneurones inhibit neurogenic circular muscle contractility in the human colon. Br. J. Pharmacol.148(2), 191–199 (2006).
  • Croci T, Manara L, Aureggi G et al. In vitro functional evidence of neuronal cannabinoid CB1 receptors in human ileum. Br. J. Pharmacol.125(7), 1393–1395 (1998).
  • Manara L, Croci T, Guagnini F et al. Functional assessment of neuronal cannabinoid receptors in the muscular layers of human ileum and colon. Dig. Liver Dis.34(4), 262–269 (2002).
  • Capasso R, Matias I, Lutz B et al. Fatty acid amide hydrolase controls mouse intestinal motility in vivo. Gastroenterology129(3), 941–951 (2005).
  • Di Marzo V. Endocannabinoids: synthesis and degradation. Rev. Physiol Biochem. Pharmacol.160, 1–24 (2008).
  • Coruzzi G, Adami M, Guaita E et al. Effects of cannabinoid receptor agonists on rat gastric acid secretion: discrepancy between in vitro and in vivo data. Dig. Dis. Sci.51(2), 310–317 (2006).
  • Winston J, Shenoy M, Medley D, Naniwadekar A, Pasricha PJ. The vanilloid receptor initiates and maintains colonic hypersensitivity induced by neonatal colon irritation in rats. Gastroenterology132(2), 615–627 (2007).
  • Darmani NA. Antiemetic action of D9-tetrahydrocannabinoid and synthetic cannabinoids in chemotherapy-induced nausea and vomiting. In: Biology of Marijuana: from Gene to Behavior. Onaivi ES (Ed.). Taylor and Francis, London, UK 356–389 (2002).
  • Van Sickle MD, Duncan M, Kingsley PJ et al. Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science310(5746), 329–332 (2005).
  • Fegley D, Gaetani S, Duranti A et al. Characterization of the fatty acid amide hydrolase inhibitor cyclohexyl carbamic acid 3´-carbamoyl-biphenyl-3-yl ester (URB597): effects on anandamide and oleoylethanolamide deactivation. J. Pharmacol. Exp. Ther.313(1), 352–358 (2005).
  • Cross-Mellor SK, Ossenkopp KP, Piomelli D, Parker LA. Effects of the FAAH inhibitor, URB597, and anandamide on lithium-induced taste reactivity responses: a measure of nausea in the rat. Psychopharmacology (Berl.)190(2), 135–143 (2007).
  • Darmani NA, McClanahan BA, Trinh C, Petrosino S, Valenti M, Di Marzo V. Cisplatin increases brain 2-arachidonoylglycerol (2-AG) and concomitantly reduces intestinal 2-AG and anandamide levels in the least shrew. Neuropharmacology49(4), 502–513 (2005).
  • Sharma R, Tobin P, Clarke SJ. Management of chemotherapy-induced nausea, vomiting, oral mucositis, and diarrhoea. Lancet Oncol.6(2), 93–102 (2005).
  • Davis MP. Oral nabilone capsules in the treatment of chemotherapy-induced nausea and vomiting and pain. Expert Opin. Investig. Drugs17(1), 85–95 (2008).
  • Machado Rocha FC, Stéfano SC, De Cássia Haiek R, Rosa Oliveira LM, Da Silveira DX. Therapeutic use of Cannabis sativa on chemotherapy-induced nausea and vomiting among cancer patients: systematic review and meta-analysis. Eur. J. Cancer Care (Engl.)17(5), 431–443 (2008).
  • Darmani NA. The potent emetogenic effects of the endocannabinoid, 2-AG (2-arachidonoylglycerol) are blocked by Δ(9)-tetrahydrocannabinol and other cannnabinoids. J. Pharmacol. Exp. Ther.300(1), 34–42 (2002).
  • Tramer MR, Carroll D, Campbell FA, Reynolds DJ, Moore RA, McQuay HJ. Cannabinoids for control of chemotherapy induced nausea and vomiting: quantitative systematic review. BMJ323(7303), 16–21 (2001).
  • Chepyala P, Olden KW. Cyclic vomiting and compulsive bathing with chronic cannabis abuse. Clin. Gastroenterol. Hepatol.6(6), 710–712 (2008).
  • Allen JH, de Moore GM, Heddle R, Twartz JC. Cannabinoid hyperemesis: cyclical hyperemesis in association with chronic cannabis abuse. Gut53(11), 1566–1570 (2004).
  • Sontineni SP, Chaudhary S, Sontineni V, Lanspa SJ. Cannabinoid hyperemesis syndrome: clinical diagnosis of an underrecognised manifestation of chronic cannabis abuse. World J. Gastroenterol.15(10), 1264–1266 (2009).
  • Lehmann A, Blackshaw LA, Branden L et al. Cannabinoid receptor agonism inhibits transient lower esophageal sphincter relaxations and reflux in dogs. Gastroenterology123(4), 1129–1134 (2002).
  • Partosoedarso ER, Abrahams TP, Scullion RT, Moerschbaecher JM, Hornby PJ. Cannabinoid1 receptor in the dorsal vagal complex modulates lower oesophageal sphincter relaxation in ferrets. J. Physiol.550(1), 149–158 (2003).
  • Beaumont H, Jensen J, Carlsson A, Ruth M, Lehmann A, Boeckxstaens G. Effect of Δ9-tetrahydrocannabinol, a cannabinoid receptor agonist, on the triggering of transient lower oesophageal sphincter relaxations in dogs and humans. Br. J. Pharmacol.156(1), 153–162 (2009).
  • Rutkowska M, Fereniec-Golebiewska L. Involvement of nitric oxide in the gastroprotective effect of ACEA, a selective cannabinoid CB1 receptor agonist, on aspirin-induced gastric ulceration. Pharmazie64(9), 595–597 (2009).
  • Rutkowska M, Fereniec-Goltbiewska L. ACEA (arachidonyl-2-chloroethylamide), the selective cannabinoid CB1 receptor agonist, protects against aspirin-induced gastric ulceration. Pharmazie61(4), 341–342 (2006).
  • Dembinski A, Warzecha Z, Ceranowicz P et al. Cannabinoids in acute gastric damage and pancreatitis. J. Physiol. Pharmacol.57(Suppl. 5), 137–154 (2006).
  • Saito YA, Schoenfeld P, Locke GR III. The epidemiology of irritable bowel syndrome in North America: a systematic review. Am. J. Gastroenterol.97(8), 1910–1915 (2002).
  • Longstreth GF, Thompson WG, Chey WD, Houghton LA, Mearin F, Spiller RC. Functional bowel disorders. Gastroenterology130(5), 1480–1491 (2006).
  • Drossman DA. The functional gastrointestinal disorders and the Rome III process. Gastroenterology130(5), 1377–1390 (2006).
  • Spiller R, Aziz Q, Creed F et al. Guidelines on the irritable bowel syndrome: mechanisms and practical management. Gut56(12), 1770–1798 (2007).
  • Vassallo M, Camilleri M, Phillips S, Brown M, Chapman N, Thomforde G. Transit through the proximal colon influences stool weight in the irritable bowel syndrome. Gastroenterology102(1), 102–108 (1992).
  • Bazzocchi G, Ellis J, Villanueva-Meyer J, Reddy S, Mena I, Snape WJ. Effect of eating on colonic motility and transit in patients with functional diarrhea. Simultaneous scintigraphic and manometric evaluations. Gastroenterology101(5), 1298–1306 (1991).
  • Chey WY, Jin HO, Lee MH, Sun SW, Lee KY. Colonic motility abnormality in patients with irritable bowel syndrome exhibiting abdominal pain and diarrhea. Am. J. Gastroenterol.96(5), 1499–1506 (2001).
  • Bassotti G, Chistolini F, Marinozzi G, Morelli A. Abnormal colonic propagated activity in patients with slow transit constipation and constipation-predominant irritable bowel syndrome. Digestion68(4), 178–183 (2003).
  • Bazzocchi G, Ellis J, Villanueva-Meyer J et al. Postprandial colonic transit and motor activity in chronic constipation. Gastroenterology98(3), 686–693 (1990).
  • Sullivan M, Cohen S, Snape WJ. Colonic myoelectrical activity in irritable-bowel syndrome. Effect of eating and anticholinergics. N. Engl. J. Med.298(16), 878–883 (1978).
  • Hornby PJ, Prouty SM. Involvement of cannabinoid receptors in gut motility and visceral perception. Br. J. Pharmacol.141(8), 1335–1345 (2004).
  • Grider JR, Mahavadi S, Li Y et al. Modulation of motor and sensory pathways of the peristaltic reflex by cannabinoids. Am. J. Physiol. Gastrointest. Liver Physiol297(3), G539–G549 (2009).
  • Wang A, Liao X, Xiong L et al. The clinical overlap between functional dyspepsia and irritable bowel syndrome based on Rome III criteria. BMC. Gastroenterol.8, 43 (2008).
  • Tyler K, Hillard CJ, Greenwood-Van Meerveld B. Inhibition of small intestinal secretion by cannabinoids is CB1 receptor-mediated in rats. Eur. J. Pharmacol.409(2), 207–211 (2000).
  • Izzo AA, Mascolo N, Pinto L, Capasso R, Capasso F. The role of cannabinoid receptors in intestinal motility, defaecation and diarrhoea in rats. Eur. J. Pharmacol.384(1), 37–42 (1999).
  • Anand P, Aziz Q, Willert R, Van Oudenhove L. Peripheral and central mechanisms of visceral sensitization in man. Neurogastroenterol. Motil.19(Suppl. 1), 29–46 (2007).
  • Azpiroz F, Bouin M, Camilleri M et al. Mechanisms of hypersensitivity in IBS and functional disorders. Neurogastroenterol. Motil.19(Suppl. 1), 62–88 (2007).
  • Aziz Q. Visceral hypersensitivity: fact or fiction. Gastroenterology131(2), 661–664 (2006).
  • Barbara G, De Giorgio R, Stanghellini V, Cremon C, Corinaldesi R. A role for inflammation in irritable bowel syndrome? Gut51(Suppl. 1), i41–i44 (2002).
  • Holtmann G. IBS: a syndrome or many diseases? Best. Pract. Res. Clin. Gastroenterol.18(Suppl.), 91–97 (2004).
  • Campbell FA, Tramer MR, Carroll D, Reynolds DJ, Moore RA, McQuay HJ. Are cannabinoids an effective and safe treatment option in the management of pain? A qualitative systematic review. BMJ323(7303), 13–16 (2001).
  • Kikuchi A, Ohashi K, Sugie Y, Sugimoto H, Omura H. Pharmacological evaluation of a novel cannabinoid 2 (CB2) ligand, PF-03550096, in vitro and in vivo by using a rat model of visceral hypersensitivity. J. Pharmacol. Sci.106(2), 219–224 (2008).
  • Sanson M, Bueno L, Fioramonti J. Involvement of cannabinoid receptors in inflammatory hypersensitivity to colonic distension in rats. Neurogastroenterol. Motil.18(10), 949–956 (2006).
  • Hillsley K, McCaul C, Aerssens J et al. Activation of the cannabinoid 2 (CB2) receptor inhibits murine mesenteric afferent nerve activity. Neurogastroenterol. Motil.19(9), 769–777 (2007).
  • Brusberg M, Arvidsson S, Kang D, Larsson H, Lindstrom E, Martinez V. CB1 receptors mediate the analgesic effects of cannabinoids on colorectal distension-induced visceral pain in rodents. J. Neurosci.29(5), 1554–1564 (2009).
  • Esfandyari T, Camilleri M, Busciglio I, Burton D, Baxter K, Zinsmeister AR. Effects of a cannabinoid receptor agonist on colonic motor and sensory functions in humans: a randomized, placebo-controlled study. Am. J. Physiol. Gastrointest. Liver Physiol.293(1), G137–G145 (2007).
  • Camilleri M. Novel pharmacology: asimadoline, a κ-opioid agonist, and visceral sensation. Neurogastroenterol. Motil.20(9), 971–979 (2008).
  • Fichna J, Schicho R, Andrews CN et al. Salvinorin A inhibits colonic transit and neurogenic ion transport in mice by activating κ-opioid and cannabinoid receptors. Neurogastroenterol. Motil.21(12), 1326 (2009).
  • Capasso R, Borrelli F, Cascio MG et al. Inhibitory effect of salvinorin A, from Salvia divinorum, on ileitis-induced hypermotility: cross-talk between κ-opioid and cannabinoid CB(1) receptors. Br. J. Pharmacol.155(5), 681–689 (2008).
  • Miranda A, Nordstrom E, Mannem A, Smith C, Banerjee B, Sengupta JN. The role of transient receptor potential vanilloid 1 in mechanical and chemical visceral hyperalgesia following experimental colitis. Neuroscience148(4), 1021–1032 (2007).
  • Akbar A, Yiangou Y, Facer P, Walters JR, Anand P, Ghosh S. Increased capsaicin receptor TRPV1-expressing sensory fibres in irritable bowel syndrome and their correlation with abdominal pain. Gut57(7), 923–929 (2008).
  • Ravnefjord A, Brusberg M, Kang D et al. Involvement of the transient receptor potential vanilloid 1 (TRPV1) in the development of acute visceral hyperalgesia during colorectal distension in rats. Eur. J. Pharmacol.611(1–3), 85–91 (2009).
  • Maione S, De Petrocellis L, de Novellis V et al. Analgesic actions of N-arachidonoyl-serotonin, a fatty acid amide hydrolase inhibitor with antagonistic activity at vanilloid TRPV1 receptors. Br. J. Pharmacol.150(6), 766–781 (2007).
  • Naidu PS, Booker L, Cravatt BF, Lichtman AH. Synergy between enzyme inhibitors of fatty acid amide hydrolase and cyclooxygenase in visceral nociception. J. Pharmacol. Exp. Ther.329(1), 48–56 (2009).
  • Riordan SM, Kim R. Bacterial overgrowth as a cause of irritable bowel syndrome. Curr. Opin. Gastroenterol.22(6), 669–673 (2006).
  • Verdu EF, Bercik P, Verma-Gandhu M et al. Specific probiotic therapy attenuates antibiotic induced visceral hypersensitivity in mice. Gut55(2), 182–190 (2006).
  • Ait-Belgnaoui A, Han W, Lamine F et al.Lactobacillus farciminis treatment suppresses stress induced visceral hypersensitivity: a possible action through interaction with epithelial cell cytoskeleton contraction. Gut55(8), 1090–1094 (2006).
  • Kajander K, Korpela R. Clinical studies on alleviating the symptoms of irritable bowel syndrome. Asia Pac. J. Clin. Nutr.15(4), 576–580 (2006).
  • Rousseaux C, Thuru X, Gelot A et al. Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors. Nat. Med.13(1), 35–37 (2007).
  • Camilleri M, Carlson P, McKinzie S et al. Genetic variation in endocannabinoid metabolism, gastrointestinal motility, and sensation. Am. J. Physiol. Gastrointest. Liver Physiol.294(1), G13–G19 (2008).
  • Sipe JC, Chiang K, Gerber AL, Beutler E, Cravatt BF. A missense mutation in human fatty acid amide hydrolase associated with problem drug use. Proc. Natl Acad. Sci. USA99(12), 8394–8399 (2002).
  • Storr MA, Keenan CM, Emmerdinger D et al. Targeting endocannabinoid degradation protects against experimental colitis in mice: involvement of CB1 and CB2 receptors. J. Mol. Med.86(8), 925–936 (2008).
  • Loftus EV Jr. Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology126(6), 1504–1517 (2004).
  • Croci T, Landi M, Galzin AM, Marini P. Role of cannabinoid CB1 receptors and tumor necrosis factor-α in the gut and systemic anti-inflammatory activity of SR 141716 (rimonabant) in rodents. Br. J. Pharmacol.140(1), 115–122 (2003).
  • Ihenetu K, Molleman A, Parsons ME, Whelan CJ. Inhibition of interleukin-8 release in the human colonic epithelial cell line HT-29 by cannabinoids. Eur. J. Pharmacol.458(1–2), 207–215 (2003).
  • Mathison R, Ho W, Pittman QJ, Davison JS, Sharkey KA. Effects of cannabinoid receptor-2 activation on accelerated gastrointestinal transit in lipopolysaccharide-treated rats. Br. J. Pharmacol.142(8), 1247–1254 (2004).
  • Borrelli F, Aviello G, Romano B et al. Cannabidiol, a safe and non-psychotropic ingredient of the marijuana plant Cannabis sativa, is protective in a murine model of colitis. J. Mol. Med.87(11), 1111–1121 (2009).
  • Di Marzo V, Izzo AA. Endocannabinoid overactivity and intestinal inflammation. Gut55(10), 1373–1376 (2006).
  • Ahmed FE. Colon cancer: prevalence, screening, gene expression and mutation, and risk factors and assessment. J. Environ. Sci. Health C. Environ. Carcinog. Ecotoxicol. Rev.21(2), 65–131 (2003).
  • Pisanti S, Malfitano AM, Grimaldi C et al. Use of cannabinoid receptor agonists in cancer therapy as palliative and curative agents. Best. Pract. Res. Clin. Endocrinol. Metab.23(1), 117–131 (2009).
  • Fernandez-Ruiz J, Romero J, Velasco G, Tolon RM, Ramos JA, Guzman M. Cannabinoid CB2 receptor: a new target for controlling neural cell survival? Trends Pharmacol. Sci.28(1), 39–45 (2007).
  • Greenhough A, Patsos HA, Williams AC, Paraskeva C. The cannabinoid Δ(9)-tetrahydrocannabinol inhibits RAS-MAPK and PI3K-AKT survival signalling and induces BAD-mediated apoptosis in colorectal cancer cells. Int. J. Cancer121(10), 2172–2180 (2007).
  • Joseph J, Niggemann B, Zaenker KS, Entschladen F. Anandamide is an endogenous inhibitor for the migration of tumor cells and T lymphocytes. Cancer Immunol. Immunother.53(8), 723–728 (2004).
  • Patsos HA, Hicks DJ, Dobson RR et al. The endogenous cannabinoid, anandamide, induces cell death in colorectal carcinoma cells: a possible role for cyclooxygenase 2. Gut54(12), 1741–1750 (2005).
  • Eberhart CE, Coffey RJ, Radhika A, Giiardiello FM, Ferrenbach S, DuBois RN. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology107(4), 1183–1188 (1994).
  • Jacoby RF, Seibert K, Cole CE, Kelloff G, Lubet RA. The cyclooxygenase-2 inhibitor celecoxib is a potent preventive and therapeutic agent in the min mouse model of adenomatous polyposis. Cancer Res.60(18), 5040–5044 (2000).
  • Wang D, Wang H, Ning W, Backlund MG, Dey SK, DuBois RN. Loss of cannabinoid receptor 1 accelerates intestinal tumor growth. Cancer Res.68(15), 6468–6476 (2008).
  • Velasco G, Galve-Roperh I, Sanchez C, Blazquez C, Haro A, Guzman M. Cannabinoids and ceramide: two lipids acting hand-by-hand. Life Sci.77(14), 1723–1731 (2005).
  • Cianchi F, Papucci L, Schiavone N et al. Cannabinoid receptor activation induces apoptosis through tumor necrosis factor α-mediated ceramide de novo synthesis in colon cancer cells. Clin. Cancer Res.14(23), 7691–7700 (2008).
  • Notarnicola M, Messa C, Orlando A et al. Estrogenic induction of cannabinoid CB1 receptor in human colon cancer cell lines. Scand. J. Gastroenterol.43(1), 66–72 (2008).
  • McPartland JM. Obesity, the endocannabinoid system, and bias arising from pharmaceutical sponsorship. PLOS One4(3), e5092 (2009).
  • Izzo AA, Borrelli F, Capasso R, Di Marzo V, Mechoulam R. Non-psychotropic plant cannabinoids: new therapeutic opportunities from an ancient herb. Trends Pharmacol. Sci.30(10), 515–527 (2009).
  • Capasso R, Borrelli F, Aviello G et al. Cannabidiol, extracted from Cannabis sativa, selectively inhibits inflammatory hypermotility in mice. Br. J. Pharmacol.154(5), 1001–1008 (2008).
  • Riedel G, Fadda P, Killop-Smith S, Pertwee RG, Platt B, Robinson L. Synthetic and plant-derived cannabinoid receptor antagonists show hypophagic properties in fasted and non-fasted mice. Br. J. Pharmacol.156(7), 1154–1166 (2009).
  • Parker LA, Limebeer CL, Rock EM, Litt DL, Kwiatkowska M, Piomelli D. The FAAH inhibitor URB-597 interferes with cisplatin- and nicotine-induced vomiting in the Suncus murinus (house musk shrew). Physiol. Behav.97(1), 121–124 (2009).
  • Di Marzo V. Targeting the endocannabinoid system: to enhance or reduce? Nat. Rev. Drug Discov.7(5), 438–455 (2008).
  • Li YY, Li YN, Ni JB et al. Involvement of cannabinoid-1 and cannabinoid-2 receptors in septic ileus. Neurogastroenterol. Motil. DOI: 10.1111/j.1365–2982.2009.01419.x (2009) (Epub ahead of print).
  • Yuece B, Sibaev A, Broedl UC et al. Cannabinoid type 1 receptor modulates intestinal propulsion by an attenuation of intestinal motor responses within the myenteric part of the peristaltic reflex. Neurogastroenterol. Motil.19(9), 744–753 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.