74
Views
6
CrossRef citations to date
0
Altmetric
Review

K+ channels in the heart: new insights and therapeutic implications

&
Pages 305-319 | Published online: 10 Jan 2014

References

  • Noble D. The surprising heart: a review of recent progress in cardiac electrophysiology. J. Physiol. (Lond.)353, 1–50 (1984).
  • Salkoff L, Jegla T. Surfing the DNA databases for K+ channels nets yet more diversity. Neuron15, 489–492 (1995).
  • Jan LY, Jan YN. Cloned potassium channels from eukaryotes and prokaryotes. Annu. Rev. Neurosci.20, 91–123 (1997).
  • Gouaux E, MacKinnon R. Principles of selective ion transport in channels and pumps. Science310, 1461–1465 (2005).
  • Long SB, Tao X, Campbell EB, MacKinnon R. Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature450, 376–382 (2007).
  • Noseworthy PA, Newton-Cheh C. Genetic determinants of sudden cardiac death. Circulation118, 1854–1863 (2008).
  • Fuster V, Ryden LE, Cannom DS et al. ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to revise the 2001 guidelines for the management of patients with atrial fibrillation): developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. Circulation114, e257–e354 (2006).
  • Nerbonne JM, Kass RS. Molecular physiology of cardiac repolarization. Physiol. Rev.85, 1205–1253 (2005).
  • Tamargo J, Caballero R, Gomez R, Valenzuela C, Delpon E. Pharmacology of cardiac potassium channels. Cardiovasc. Res.62, 9–33 (2004).
  • Nattel S. New ideas about atrial fibrillation 50 years on. Nature415, 219–226 (2002).
  • Baruscotti M, Robinson RB. Electrophysiology and pacemaker function of the developing sinoatrial node. Am. J. Physiol. Heart Circ. Physiol.293, H2613–H2623 (2007).
  • Baron A, van Bever L, Monnier D, Roatti A, Baertschi AJ. A novel K(ATP) current in cultured neonatal rat atrial appendage cardiomyocytes. Circ. Res.85, 707–715 (1999).
  • Flagg TP, Kurata HT, Masia R et al. Differential structure of atrial and ventricular KATP: atrial KATP channels require SUR1. Circ. Res.103, 1458–1465 (2008).
  • Dixon JE, Shi W, Wang HS et al. Role of the Kv4.3 K+ channel in ventricular muscle. A molecular correlate for the transient outward current. Circ. Res.79, 659–668 (1996).
  • An WF, Bowlby MR, Betty M et al. Modulation of A-type potassium channels by a family of calcium sensors. Nature403, 553–556 (2000).
  • Patel SP, Parai R, Parai R, Campbell DL. Regulation of Kv4.3 voltage-dependent gating kinetics by KChIP2 isoforms. J. Physiol.557, 19–41 (2004).
  • Birnbaum SG, Varga AW, Yuan LL, Anderson AE, Sweatt JD, Schrader LA. Structure and function of Kv4-family transient potassium channels. Physiol. Rev.84, 803–833 (2004).
  • Rettig J, Heinemann SH, Wunder F et al. Inactivation properties of voltage-gated K+ channels altered by presence of β-subunit. Nature369, 289–294 (1994).
  • London B, Wang DW, Hill JA, Bennett PB. The transient outward current in mice lacking the potassium channel gene Kv1.4. J. Physiol.509(Pt 1), 171–182 (1998).
  • Gaborit N, Le BS, Szuts V et al. Regional and tissue specific transcript signatures of ion channel genes in the non-diseased human heart. J. Physiol.582, 675–693 (2007).
  • Wang Z, Fermini B, Nattel S. Sustained depolarization-induced outward current in human atrial myocytes. Evidence for a novel delayed rectifier K+ current similar to Kv1.5 cloned channel currents. Circ. Res.73, 1061–1076 (1993).
  • Martens JR, Kwak YG, Tamkun MM. Modulation of Kv channel α/β subunit interactions. Trends Cardiovasc. Med.9, 253–258 (1999).
  • Tamargo J, Caballero R, Gomez R, Delpon E. I(Kur)/Kv1.5 channel blockers for the treatment of atrial fibrillation. Expert Opin. Investig. Drugs18, 399–416 (2009).
  • Pond AL, Scheve BK, Benedict AT et al. Expression of distinct ERG proteins in rat, mouse, and human heart. Relation to functional I(Kr) channels. J. Biol. Chem.275, 5997–6006 (2000).
  • Abbott GW, Sesti F, Splawski I et al. MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell97, 175–187 (1999).
  • Chen H, Kim LA, Rajan S, Xu S, Goldstein SA. Charybdotoxin binding in the I(Ks) pore demonstrates two MinK subunits in each channel complex. Neuron40, 15–23 (2003).
  • Sanguinetti MC, Curran ME, Zou A et al. Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel. Nature384, 80–83 (1996).
  • Barhanin J, Lesage F, Guillemare E, Fink M, Lazdunski M, Romey G. K(V)LQT1 and lsK (minK) proteins associate to form the I(Ks) cardiac potassium current. Nature384, 78–80 (1996).
  • Schram G, Pourrier M, Melnyk P, Nattel S. Differential distribution of cardiac ion channel expression as a basis for regional specialization in electrical function. Circ. Res.90, 939–950 (2002).
  • Lopatin AN, Nichols CG. Inward rectifiers in the heart: an update on I(K1). J. Mol. Cell. Cardiol.33, 625–638 (2001).
  • Zaritsky JJ, Redell JB, Tempel BL, Schwarz TL. The consequences of disrupting cardiac inwardly rectifying K(+) current (I(K1)) as revealed by the targeted deletion of the murine Kir2.1 and Kir2.2 genes. J. Physiol533, 697–710 (2001).
  • Liu GX, Derst C, Schlichthorl G et al. Comparison of cloned Kir2 channels with native inward rectifier K+ channels from guinea-pig cardiomyocytes. J. Physiol.532, 115–126 (2001).
  • Noma A, Trautwein W. Relaxation of the ACh-induced potassium current in the rabbit sinoatrial node cell. Pflügers Archiv.377, 193–200 (1978).
  • Dascal N, Schreibmayer W, Lim NF et al. Atrial G protein-activated K+ channel: expression cloning and molecular properties. Proc. Natl Acad. Sci. USA90, 10235–10239 (1993).
  • Kubo Y, Reuveny E, Slesinger PA, Jan YN, Jan LY. Primary structure and functional expression of a rat G-protein-coupled muscarinic potassium channel. Nature364, 802–806 (1993).
  • Krapivinsky G, Gordon EA, Wickman K, Velimirovic B, Krapivinsky L, Clapham DE. The G-protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K(+)-channel proteins. Nature374, 135–141 (1995).
  • Wickman K, Nemec J, Gendler SJ, Clapham DE. Abnormal heart rate regulation in Girk4 knockout mice. Neuron20, 103–114 (1998).
  • Zingman LV, Alekseev AE, Hodgson-Zingman DM, Terzic A. ATP-sensitive potassium channels: metabolic sensing and cardioprotection. J. Appl. Physiol.103, 1888–1893 (2007).
  • Yutzey KE, Robbins J. Principles of genetic murine models for cardiac disease. Circulation115, 792–799 (2007).
  • Fiset C, Clark RB, Larsen TS, Giles WR. A rapidly activating sustained K+ current modulates repolarization and excitation–contraction coupling in adult mouse ventricle. J. Physiol.504(Pt 3), 557–563 (1997).
  • Brunet S, Aimond F, Li H et al. Heterogeneous expression of repolarizing, voltage-gated K+ currents in adult mouse ventricles. J. Physiol.559, 103–120 (2004).
  • Nerbonne JM. Studying cardiac arrhythmias in the mouse – a reasonable model for probing mechanisms? Trends Cardiovasc. Med.14, 83–93 (2004).
  • Heginbotham L, Lu Z, Abramson T, MacKinnon R. Mutations in the K+ channel signature sequence. Biophys. J.66, 1061–1067 (1994).
  • Aldrich RW. Fifty years of inactivation. Nature411, 643–644 (2001).
  • Bezanilla F. How membrane proteins sense voltage. Nat. Rev. Mol. Cell Biol.9, 323–332 (2008).
  • MacKinnon R. Potassium channels and the atomic basis of selective ion conduction (Nobel lecture). Angew. Chem. Int. Ed. Engl.43, 4265–4277 (2004).
  • Tombola F, Pathak MM, Isacoff EY. How does voltage open an ion channel? Annu. Rev. Cell Dev. Biol.22, 23–52 (2006).
  • Nichols CG, Makhina EN, Pearson WL, Sha Q, Lopatin AN. Inward rectification and implications for cardiac excitability. Circ. Res.78, 1–7 (1996).
  • Corey S, Clapham DE. Identification of native atrial G-protein-regulated inwardly rectifying K+ (GIRK4) channel homomultimers. J. Biol. Chem.273, 27499–27504 (1998).
  • Fleischmann BK, Duan Y, Fan Y et al. Differential subunit composition of the G protein-activated inward-rectifier potassium channel during cardiac development. J. Clin. Invest.114, 994–1001 (2004).
  • Seino S. ATP-sensitive potassium channels: a model of heteromultimeric potassium channel/receptor assemblies. Annu. Rev. Physiol.61, 337–362 (1999).
  • Rodrigo GC, Standen NB. ATP-sensitive potassium channels. Curr. Pharm. Des.11, 1915–1940 (2005).
  • Alekseev AE, Hodgson DM, Karger AB, Park S, Zingman LV, Terzic A. ATP-sensitive K+ channel channel/enzyme multimer: metabolic gating in the heart. J. Mol. Cell. Cardiol.38, 895–905 (2005).
  • Lesage F, Lazdunski M. Molecular and functional properties of two-pore-domain potassium channels. Am. J. Physiol. Renal Physiol.279, F793–F801 (2000).
  • Putzke C, Wemhoner K, Sachse FB et al. The acid-sensitive potassium channel TASK-1 in rat cardiac muscle. Cardiovasc. Res.75, 59–68 (2007).
  • Luo CH, Rudy Y. A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ. Res.74, 1071–1096 (1994).
  • Luo CH, Rudy Y. A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. Circ. Res.68, 1501–1526 (1991).
  • Courtemanche M, Ramirez RJ, Nattel S. Ionic targets for drug therapy and atrial fibrillation-induced electrical remodeling: insights from a mathematical model. Cardiovasc. Res.42, 477–489 (1999).
  • Nygren A, Fiset C, Firek L et al. Mathematical model of an adult human atrial cell: the role of K+ currents in repolarization. Circ. Res.82, 63–81 (1998).
  • January CT, Riddle JM. Early afterdepolarizations: mechanism of induction and block. A role for L-type Ca2+ current. Circ. Res.64, 977–990 (1989).
  • The Sicilian Gambit. A new approach to the classification of antiarrhythmic drugs based on their actions on arrhythmogenic mechanisms. Task Force of the Working Group on Arrhythmias of the European Society of Cardiology. Circulation84, 1831–1851 (1991).
  • Schlotthauer K, Bers DM. Sarcoplasmic reticulum Ca(2+) release causes myocyte depolarization. Underlying mechanism and threshold for triggered action potentials. Circ. Res.87, 774–780 (2000).
  • Pogwizd SM, Bers DM. Cellular basis of triggered arrhythmias in heart failure. Trends Cardiovasc. Med.14, 61–66 (2004).
  • Mandapati R, Skanes A, Chen J, Berenfeld O, Jalife J. Stable microreentrant sources as a mechanism of atrial fibrillation in the isolated sheep heart. Circulation101, 194–199 (2000).
  • The Sicilian Gambit. A new approach to the classification of antiarrhythmic drugs based on their actions on arrhythmogenic mechanisms. The Task Force of the Working Group on Arrhythmias of the European Society of Cardiology. Eur. Heart J.12, 1112–1131 (1991).
  • Colatsky TJ, Argentieri TM. Potassiun channel blockers as antiarrhythmic drugs. Drug Dev. Res.33, 235–249 (1994).
  • Fermini B, Fossa AA. The impact of drug-induced QT interval prolongation on drug discovery and development. Nat. Rev. Drug Discov.2, 439–447 (2003).
  • Nattel S, Carlsson L. Innovative approaches to antiarrhythmic drug therapy. Nat. Rev. Drug Discov.5, 1034–1049 (2006).
  • Nattel S, Maguy A, Le BS, Yeh YH. Arrhythmogenic ion-channel remodeling in the heart: heart failure, myocardial infarction, and atrial fibrillation. Physiol. Rev.87, 425–456 (2007).
  • The Cardiac Arrhythmia Suppression Trial (CAST) Investigators. Preliminary report: effect of encainide and flecainide on mortality in a randomized trial of arrhythmia suppression after myocardial infarction. N. Engl. J. Med.321, 406–412 (1989).
  • The Cardiac Arrhythmia Suppression Trial (CAST) Investigators. Effect of the antiarrhythmic agent moricizine on survival after myocardial infarction. N. Engl. J. Med.327, 227–233 (1992).
  • Waldo AL, Camm AJ, deRuyter H et al. Effect of d-sotalol on mortality in patients with left ventricular dysfunction after recent and remote myocardial infarction. The SWORD investigators. Survival with oral d-sotalol. Lancet348, 7–12 (1996).
  • Julian DG, Camm AJ, Frangin G et al. Randomised trial of effect of amiodarone on mortality in patients with left-ventricular dysfunction after recent myocardial infarction: EMIAT. European Myocardial Infarct Amiodarone Trial investigators. Lancet349, 667–674 (1997).
  • Moss AJ, Kass RS. Long QT syndrome: from channels to cardiac arrhythmias. J. Clin. Invest.115, 2018–2024 (2005).
  • Huang L, Bitner-Glindzicz M, Tranebjaerg L, Tinker A. A spectrum of functional effects for disease causing mutations in the Jervell and Lange–Nielsen syndrome. Cardiovasc. Res.51, 670–680 (2001).
  • Mitcheson JS, Chen J, Lin M, Culberson C, Sanguinetti MC. A structural basis for drug-induced long QT syndrome. Proc. Natl Acad. Sci. USA97, 12329–12333 (2000).
  • Akar FG, Yan GX, Antzelevitch C, Rosenbaum DS. Unique topographical distribution of M cells underlies reentrant mechanism of torsade de pointes in the long-QT syndrome. Circulation105, 1247–1253 (2002).
  • Hondeghem LM, Carlsson L, Duker G. Instability and triangulation of the action potential predict serious proarrhythmia, but action potential duration prolongation is antiarrhythmic. Circulation103, 2004–2013 (2001).
  • Hondeghem LM. Use and abuse of QT and TRIaD in cardiac safety research: importance of study design and conduct. Eur. J. Pharmacol.584, 1–9 (2008).
  • Jurkiewicz NK, Sanguinetti MC. Rate-dependent prolongation of cardiac action potentials by a methanesulfonanilide class III antiarrhythmic agent. Specific block of rapidly activating delayed rectifier K+ current by dofetilide. Circ. Res.72, 75–83 (1993).
  • Nakashima H, Gerlach U, Schmidt D, Nattel S. In vivo electrophysiological effects of a selective slow delayed-rectifier potassium channel blocker in anesthetized dogs: potential insights into class III actions. Cardiovasc. Res.61, 705–714 (2004).
  • Chen YH, Xu SJ, Bendahhou S et al. KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science299, 251–254 (2003).
  • Xia M, Jin Q, Bendahhou S et al. A Kir2.1 gain-of-function mutation underlies familial atrial fibrillation. Biochem. Biophys. Res. Commun.332, 1012–1019 (2005).
  • Hong K, Bjerregaard P, Gussak I, Brugada R. Short QT syndrome and atrial fibrillation caused by mutation in KCNH2. J. Cardiovasc. Electrophysiol.16, 394–396 (2005).
  • Yang Y, Xia M, Jin Q et al. Identification of a KCNE2 gain-of-function mutation in patients with familial atrial fibrillation. Am. J. Hum. Genet.75, 899–905 (2004).
  • Wyse DG, Waldo AL, DiMarco JP et al. A comparison of rate control and rhythm control in patients with atrial fibrillation. N. Engl. J. Med.347, 1825–1833 (2002).
  • Van G, I, Hagens VE, Bosker HA et al. A comparison of rate control and rhythm control in patients with recurrent persistent atrial fibrillation. N. Engl. J. Med.347, 1834–1840 (2002).
  • Singh BN, Singh SN, Reda DJ et al. Amiodarone versus sotalol for atrial fibrillation. N. Engl. J. Med.352, 1861–1872 (2005).
  • Wijffels MC, Kirchhof CJ, Dorland R, Allessie MA. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation92, 1954–1968 (1995).
  • Yue L, Feng J, Gaspo R, Li GR, Wang Z, Nattel S. Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation. Circ. Res.81, 512–525 (1997).
  • Gaspo R, Bosch RF, Bou-Abboud E, Nattel S. Tachycardia-induced changes in Na+ current in a chronic dog model of atrial fibrillation. Circ. Res.81, 1045–1052 (1997).
  • Van Wagoner DR, Pond AL, McCarthy PM, Trimmer JS, Nerbonne JM. Outward K+ current densities and Kv1.5 expression are reduced in chronic human atrial fibrillation. Circ. Res.80, 772–781 (1997).
  • Yue L, Melnyk P, Gaspo R, Wang Z, Nattel S. Molecular mechanisms underlying ionic remodeling in a dog model of atrial fibrillation. Circ. Res.84, 776–784 (1999).
  • Dobrev D, Graf E, Wettwer E et al. Molecular basis of downregulation of G-protein-coupled inward rectifying K(+) current (I(K,ACh) in chronic human atrial fibrillation: decrease in GIRK4 mRNA correlates with reduced I(K,ACh) and muscarinic receptor-mediated shortening of action potentials. Circulation104, 2551–2557 (2001).
  • Dobrev D, Friedrich A, Voigt N et al. The G protein-gated potassium current I(K,ACh) is constitutively active in patients with chronic atrial fibrillation. Circulation112, 3697–3706 (2005).
  • Xiao L, Xiao J, Luo X, Lin H, Wang Z, Nattel S. Feedback remodeling of cardiac potassium current expression: a novel potential mechanism for control of repolarization reserve. Circulation118, 983–992 (2008).
  • Kourliouros A, Savelieva I, Kiotsekoglou A, Jahangiri M, Camm J. Current concepts in the pathogenesis of atrial fibrillation. Am. Heart J.157, 243–252 (2009).
  • Norgaard BL, Wachtell K, Christensen PD et al. Efficacy and safety of intravenously administered dofetilide in acute termination of atrial fibrillation and flutter: a multicenter, randomized, double-blind, placebo-controlled trial. Danish Dofetilide in Atrial Fibrillation and Flutter Study Group. Am. Heart J.137, 1062–1069 (1999).
  • Torp-Pedersen C, Moller M, Bloch-Thomsen PE et al. Dofetilide in patients with congestive heart failure and left ventricular dysfunction. Danish Investigations of Arrhythmia and Mortality on Dofetilide Study Group. N. Engl. J. Med.341, 857–865 (1999).
  • Roukoz H, Saliba W. Dofetilide: a new class III antiarrhythmic agent. Expert Rev. Cardiovasc. Ther.5, 9–19 (2007).
  • Allen MJ, Nichols DJ, Oliver SD. The pharmacokinetics and pharmacodynamics of oral dofetilide after twice daily and three times daily dosing. Br. J. Clin. Pharmacol.50, 247–253 (2000).
  • Savelieva I, Camm J. Anti-arrhythmic drug therapy for atrial fibrillation: current antiarrhythmic drugs, investigational agents, and innovative approaches. Europace10, 647–665 (2008).
  • Gautier P, Guillemare E, Marion A, Bertrand JP, Tourneur Y, Nisato D. Electrophysiologic characterization of dronedarone in guinea pig ventricular cells. J. Cardiovasc. Pharmacol.41, 191–202 (2003).
  • Guillemare E, Marion A, Nisato D, Gautier P. Inhibitory effects of dronedarone on muscarinic K+ current in guinea pig atrial cells. J. Cardiovasc. Pharmacol.36, 802–805 (2000).
  • Singh BN, Connolly SJ, Crijns HJ et al. Dronedarone for maintenance of sinus rhythm in atrial fibrillation or flutter. N. Engl. J. Med.357, 987–999 (2007).
  • Hohnloser SH, Crijns HJ, van EM et al. Effect of dronedarone on cardiovascular events in atrial fibrillation. N. Engl. J. Med.360, 668–678 (2009).
  • Kober L, Torp-Pedersen C, McMurray JJ et al. Increased mortality after dronedarone therapy for severe heart failure. N. Engl. J. Med.358, 2678–2687 (2008).
  • Piccini JP, Hasselblad V, Peterson ED, Washam JB, Califf RM, Kong DF. Comparative efficacy of dronedarone and amiodarone for the maintenance of sinus rhythm in patients with atrial fibrillation. J. Am. Coll. Cardiol.54, 1089–1095 (2009).
  • Burashnikov A, Antzelevitch C. Can inhibition of IKur promote atrial fibrillation? Heart Rhythm5, 1304–1309 (2008).
  • Roy D, Pratt CM, Torp-Pedersen C et al. Vernakalant hydrochloride for rapid conversion of atrial fibrillation: a Phase 3, randomized, placebo-controlled trial. Circulation117, 1518–1525 (2008).
  • Eldstrom J, Wang Z, Xu H et al. The molecular basis of high-affinity binding of the antiarrhythmic compound vernakalant (RSD1235) to Kv1.5 channels. Mol. Pharmacol.72, 1522–1534 (2007).
  • Fedida D. Vernakalant (RSD1235): a novel, atrial-selective antifibrillatory agent. Expert Opin. Investig. Drugs16, 519–532 (2007).
  • Crijns HJ, Van GI, Walfridsson H et al. Safe and effective conversion of persistent atrial fibrillation to sinus rhythm by intravenous AZD7009. Heart Rhythm3, 1321–1331 (2006).
  • Blaauw Y, Gogelein H, Tieleman RG, van HA, Schotten U, Allessie MA. ‘Early’ class III drugs for the treatment of atrial fibrillation: efficacy and atrial selectivity of AVE0118 in remodeled atria of the goat. Circulation110, 1717–1724 (2004).
  • DE Vos CB, Nieuwlaat R, Crijns HJ et al. Autonomic trigger patterns and antiarrhythmic treatment of paroxysmal atrial fibrillation: data from the Euro Heart Survey. Eur. Heart J.29, 632–639 (2008).
  • Coumel P, Attuel P, Lavallee J, Flammang D. The atrial arrhythmia syndrome of vagal origin. Arch. Mal. Coeur Vaiss.71, 645–656 (1978).
  • Bettoni M, Zimmermann M. Autonomic tone variations before the onset of paroxysmal atrial fibrillation. Circulation105, 2753–2759 (2002).
  • Sharifov OF, Fedorov VV, Beloshapko GG, Glukhov AV, Yushmanova AV, Rosenshtraukh LV. Roles of adrenergic and cholinergic stimulation in spontaneous atrial fibrillation in dogs. J. Am. Coll. Cardiol.43, 483–490 (2004).
  • Pappone C, Santinelli V, Manguso F et al. Pulmonary vein denervation enhances long-term benefit after circumferential ablation for paroxysmal atrial fibrillation. Circulation109, 327–334 (2004).
  • Yamada M, Inanobe A, Kurachi Y. G protein regulation of potassium ion channels. Pharmacol. Rev.50, 723–757 (1998).
  • Voigt N, Maguy A, Yeh YH et al. Changes in IK,ACh single-channel activity with atrial tachycardia remodelling in canine atrial cardiomyocytes. Cardiovasc. Res.77, 35–43 (2008).
  • Voigt N, Friedrich A, Bock M et al. Differential phosphorylation-dependent regulation of constitutively active and muscarinic receptor-activated IK,ACh channels in patients with chronic atrial fibrillation. Cardiovasc. Res.74, 426–437 (2007).
  • Leaney JL, Dekker LV, Tinker A. Regulation of a G-protein gated inwardly rectifying potassium channel by a Ca2+-independent protein kinase C. J. Physiol. (Lond.)534, 367–379 (2001).
  • Kitamura H, Yokoyama M, Akita H, Matsushita K, Kurachi Y, Yamada M. Tertiapin potently and selectively blocks muscarinic K(+) channels in rabbit cardiac myocytes. J. Pharmacol. Exp. Ther.293, 196–205 (2000).
  • Drici MD, Diochot S, Terrenoire C, Romey G, Lazdunski M. The bee venom peptide tertiapin underlines the role of I(KACh) in acetylcholine-induced atrioventricular blocks. Br. J. Pharmacol.131, 569–577 (2000).
  • Jin W, Lu Z. Synthesis of a stable form of tertiapin: a high-affinity inhibitor for inward-rectifier K+ channels. Biochemistry38, 14286–14293 (1999).
  • Kanjhan R, Coulson EJ, Adams DJ, Bellingham MC. Tertiapin-Q blocks recombinant and native large conductance K+ channels in a use-dependent manner. J. Pharmacol. Exp. Ther.314, 1353–1361 (2005).
  • Hashimoto N, Yamashita T, Tsuruzoe N. Characterization of in vivo and in vitro electrophysiological and antiarrhythmic effects of a novel IKACh blocker, NIP-151: a comparison with an IKr-blocker dofetilide. J. Cardiovasc. Pharmacol.51, 162–169 (2008).
  • Edwards G, Weston AH. The pharmacology of ATP-sensitive potassium channels. Annu. Rev. Pharmacol. Toxicol.33, 597–637 (1993).
  • Gribble FM, Tucker SJ, Seino S, Ashcroft FM. Tissue specificity of sulfonylureas: studies on cloned cardiac and β-cell K(ATP) channels. Diabetes47, 1412–1418 (1998).
  • Gribble FM, Ashcroft FM. Differential sensitivity of β-cell and extrapancreatic K(ATP) channels to gliclazide. Diabetologia42, 845–848 (1999).
  • Hansen AM, Christensen IT, Hansen JB, Carr RD, Ashcroft FM, Wahl P. Differential interactions of nateglinide and repaglinide on the human β-cell sulphonylurea receptor 1. Diabetes51, 2789–2795 (2002).
  • Zingman LV, Hodgson DM, Bast PH et al. Kir6.2 is required for adaptation to stress. Proc. Natl Acad. Sci. USA99, 13278–13283 (2002).
  • Liu XK, Yamada S, Kane GC et al. Genetic disruption of Kir6.2, the pore-forming subunit of ATP-sensitive K+ channel, predisposes to catecholamine-induced ventricular dysrhythmia. Diabetes53(Suppl. 3), S165–S168 (2004).
  • Yellon DM, Downey JM. Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol. Rev.83, 1113–1151 (2003).
  • O’Rourke B. Mitochondrial ion channels. Annu. Rev. Physiol69, 19–49 (2007).
  • Chi L, Uprichard AC, Lucchesi BR. Profibrillatory actions of pinacidil in a conscious canine model of sudden coronary death. J. Cardiovasc. Pharmacol.15, 452–464 (1990).
  • Kerr MJ, Wilson R, Shanks RG. Suppression of ventricular arrhythmias after coronary artery ligation by pinacidil, a vasodilator drug. J. Cardiovasc. Pharmacol.7, 875–883 (1985).
  • Balana B, Dobrev D, Wettwer E, Christ T, Knaut M, Ravens U. Decreased ATP-sensitive K(+) current density during chronic human atrial fibrillation. J. Mol. Cell. Cardiol.35, 1399–1405 (2003).
  • Arking DE, Pfeufer A, Post W et al. A common genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization. Nat. Genet.38, 644–651 (2006).
  • Pfeufer A, Sanna S, Arking DE et al. Common variants at ten loci modulate the QT interval duration in the QTSCD Study. Nat. Genet.41, 407–414 (2009).
  • Newton-Cheh C, Eijgelsheim M, Rice KM et al. Common variants at ten loci influence QT interval duration in the QTGEN Study. Nat. Genet.41, 399–406 (2009).
  • Chang KC, Barth AS, Sasano T et al. CAPON modulates cardiac repolarization via neuronal nitric oxide synthase signaling in the heart. Proc. Natl Acad. Sci. USA105, 4477–4482 (2008).
  • Gudbjartsson DF, Arnar DO, Helgadottir A et al. Variants conferring risk of atrial fibrillation on chromosome 4q25. Nature448, 353–357 (2007).
  • Kaab S, Darbar D, van NC et al. Large scale replication and meta-analysis of variants on chromosome 4q25 associated with atrial fibrillation. Eur. Heart J.30, 813–819 (2009).
  • Gudbjartsson DF, Holm H, Gretarsdottir S et al. A sequence variant in ZFHX3 on 16q22 associates with atrial fibrillation and ischemic stroke. Nat. Genet.41, 876–878 (2009).
  • Benjamin EJ, Rice KM, Arking DE et al. Variants in ZFHX3 are associated with atrial fibrillation in individuals of European ancestry. Nat. Genet.41, 879–881 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.