119
Views
24
CrossRef citations to date
0
Altmetric
Review

Cognitive correlates of hypothalamic–pituitary–adrenal axis in major depression

, &
Pages 109-126 | Published online: 10 Jan 2014

References

  • Joels M, Karst H, DeRijk R, de Kloet ER. The coming out of the brain mineralocorticoid receptor. Trends Neurosci.31(1), 1–7 (2007).
  • Roozendaal B, Hernandez A, Cabrera SM et al. Membrane-associated glucocorticoid activity is necessary for modulation of long-term memory via chromatin modification. J. Neurosci.30(14), 5037–5046 (2010).
  • Patel PD, Lopez JF, Lyons DM, Burke S, Wallace M, Schatzberg AF. Glucocorticoid and mineralocorticoid receptor mRNA expression in squirrel monkey brain. J. Psychiatr. Res.34, 383–392 (2000).
  • de Kloet ER, Joels M, Holsboer F. Stress and the brain: from adaptation to disease. Nat. Rev. Neurosci.6(6), 463–475 (2005).
  • Barden N. Implication of the hypothalamic–pituitary–adrenal axis in the physiopathology of depression. J. Psychiatry Neurosci.29(3), 185–193 (2004).
  • Burke HM, Davis MC, Otte C, Mohr DC. Depression and cortisol responses to psychological stress: a meta-analysis. Psychoneuroendocrinology30, 846–865 (2005).
  • Gold PW, Goodwin FK, Chrousos GP. Clinical and biochemical manifestations of depression. Relation to the neurobiology of stress (2). N. Engl. J. Med.319(7), 413–420 (1988).
  • Pariante CM, Lightman SL. The HPA axis in major depression: classical theories and new developments. Trends Neurosci.31, 464–468 (2008).
  • Bhagwagar Z, Hafizi S, Cowen PJ. Increased salivary cortisol after waking in depression. Psychopharmacology (Berl.)183(1), 54–57 (2005).
  • Vreeburg SA, Hoogendijk WJG, van Pelt J et al. Major depressive disorder and hypothalamic–pituitary–adrenal axis activity – results from a large cohort study. Arch. Gen. Psychiatry66(6), 617–626 (2009).
  • Holsboer F. The corticosteroid receptor hypothesis of depression. NeuroPsychopharmacology23(5), 477–501 (2000).
  • Strickland PL, Deakin JF, Percival C, Dixon J, Gater RA, Goldberg DP. Bio-social origins of depression in the community – interactions between social adversity, cortisol and serotonin neurotransmission. Br. J. Psychiatry180, 168–173 (2002).
  • Wong ML, Kling MA, Munson, PJ et al. Pronounced and sustained central hypernoradrenergic function in major depression with melancholic features: Relation to hypercortisolism and corticotropin-releasing hormone. Proc. Natl Acad. Sci. USA97(1), 325–330 (2000).
  • Gold PW, Chrousos GP. Organization of the stress system and its dysregulation in melancholic and atypical depression: high vs low CRH/NE states. Mol. Psychiatry7, 254–275 (2002).
  • Gold PW, Calabrese JR, Kling MA et al.Abnormal ACTH and cortisol responses to ovine corticotropin releasing factor in patients with primary affective disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry10(1), 57–65 (1986).
  • Holsboer F, Gerken A, von Bardeleben U et al. Human corticotropin-releasing hormone in depression – correlation with thyrotropin secretion following thyrotropin-releasing hormone. Biol. Psychiatry21(7), 601–611 (1986).
  • Carroll BJ. Dexamethasone suppression test for depression. In: Frontiers in Biochemical and Pharmacological Research in Depression (Volume 39). Usdin E. (Ed.). Raven Press, NY, USA, 179–188 (1984).
  • Appelhof BC, Huyser J, Verweij M et al. Glucocorticoids and relapse of major depression (dexamethasone/corticotropin-releasing hormone test in relation to relapse of major depression). Biol. Psychiatry59, 696–701 (2006).
  • Nemeroff CB, Evans DL. Correlation between the dexamethasone suppression test in depressed patients and clinical response. Am. J. Psychiatry141(2), 247–249 (1984).
  • Zobel AW, Nickel T, Sonntag A, Uhr M, Holsboer F, Ising M. Cortisol response in the combined dexamethasone/CRH test as predictor of relapse in patients with remitted depression: a prospective study. J. Psychiatr. Res.35, 83–94 (2001).
  • Ising M, Horstmann S, Kloiber S et al. Combinded dexamethasone/corticotrophin releasing hormone test predicts treatment response in major depression – a potential biomarker? Biol. Psychiatry62, 47–54 (2007).
  • Young EA, Lopez JF, Murphy-Weinberg V, Watson SJ, Akil H. Mineralocorticoid receptor function in major depression. Arch. Gen. Psychiatry.60, 24–28 (2003).
  • Pariante CM, Papadopoulos AS, Poon L et al. A novel prednisolone suppression test for the hypothalamic–pituitary–adrenal axis. Biol. Psychiatry51, 922–930 (2002).
  • Juruena MF, Cleare AJ, Papadopoulos AS, Poon L, Lightman S, Pariante CM. Different responses to dexamethasone and prednisolone in the same depressed patients. Psychopharmacology (Berl.)189, 225–235 (2006).
  • Juruena MF, Pariante CM, Papadopoulos A, Cleare AJ. The development and application of the prednisolone suppression test in psychiatry: a novel tool for assessing glucocorticoid and mineralocorticoid receptor function. Mind & Brain, J. Psych.1(1), 115–122 (2010).
  • Nemeroff CB, Widerlov E, Bisette G et al. Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients. Science226, 1342–1343 (1984).
  • Calfa G, Kademian S, Ceschin D, Vega G, Rabinovich GA, Volosin M. Characterization and functional significance of glucocorticoid receptors in patients with major depression: modulation by antidepressant treatment. Psychoneuroendocrinology28, 687–701 (2003).
  • Webster MJ, Knable MB, O’ Grady J, Orthmann J, Weickert CS. Regional specifity of brain glucocorticoid receptor mRNA alterations in subjects with schizophrenia and mood disorders. Mol. Psychiatry7, 985–994 (2002).
  • Ranga K, Krishnan R, Doraiswamy PM et al. Pituitary size in depression. J. Clin. Endocrinol. Metab.72, 256–259 (1991).
  • Nemeroff CB, Krishnan KRR, Reed D, Leder R, Beam C, Dunnick R. Adrenal gland enlargement in major depression. Arch. Gen. Psychiatry.49, 384–387 (1992).
  • De Kloet ER, Vreugdenhil E, Oitzl MS, Joels M. Brain corticosteroid receptor balance in health and disease. Endocr. Rev.19(3), 269–301 (1988).
  • De Kloet ER, DeRijk RH, Meijer OC. Therapy insight: is there an imbalanced response of mineralocorticoid and glucocorticoid receptors in depression? Nat. Clin. Pract. Endocrinol. Metab.3(2), 168–179 (2007).
  • Van Rossum EFC, Binder EB, Majer M et al. Polymorphisms of the glucocorticoid receptor gene and major depression. Biol. Psychiatry59, 681–688 (2006).
  • Otte C, Wüst S, Zhao S, Pawlikowska L, Kwok PY, Whooley MA. Glucocorticoid receptor gene and depression in patients with coronary heart disease: the heart and soul study – 2009 Curt Richter Award Winner. Psychoneuroendocrinology34(10), 1574–1581 (2009).
  • Kuningas M, de Rijk RH, Westendorp RG, Jolles J, Slagboom PE, van Heemst D. Mental performance in old age dependent on cortisol and genetic variance in the mineralocorticoid and glucocorticoid receptors. NeuroPsychopharmacology32, 1295–1301 (2007).
  • American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-IV). 4th edition. American Psychiatric Publishing, Washington, DC, USA (1994).
  • Beblo T, Lautenbacher S. [Neuropsychology of depression]. Hogrefe, Göttingen, Germany (2006).
  • Chamberlain SR, Sahakian BJ. The neuropsychology of mood disorders. Curr. Psychiatry Rep.8, 458–463 (2006).
  • Porter RJ, Bourke C, Gallagher P. Neuropsychological impairment in major depression: its nature, origin and clinical significance. Aust. NZ J. Psychiatry41, 115–128 (2007).
  • Christensen H, Griffiths K, Mackinnon A, Jacomb P. A quantitative review of cognitive deficits in depression and Alzheimer-type dementia. J. Int. Neuropsychol. Soc.3(6), 631–651 (1997).
  • Leppanen JM. Emotional information processing in mood disorders: a review of behavioral and neuroimaging findings. Curr. Opin Psychiatry19(1), 34–39 (2006).
  • Henry J, Crawford JR. A meta-analytic review of verbal fluency deficits in depression. J. Clin. Exp. Neuropsychol.27(1), 78–101 (2005).
  • Gorwood P, Corruble E, Falissard B, Goodwin GM. Toxic effects of depression on brain function: impairment of delayed recall and the cumulative length of depressive disorder in a large sample of depressed outpatients. Am. J. Psychiatry165(6), 731–739 (2008).
  • Williams JMG, Barnhofer T, Crane C et al. Autobiographical memory specifity and emotional disorder. Psychol. Bull.133(1), 122–148 (2007).
  • Gualtieri CT, Johnson LG. Age-related cognitive decline in patients with mood disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry32(4), 962–967 (2008).
  • Douglas KM, Porter R J. Longitudinal assessment of neuropsychological function in major depression. Aust. NZ J. Psychiatry43(12), 1105–1117 (2009).
  • Drevets WC, Price JL, Furey ML. Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct. Funct.213(1–2), 93–118 (2008).
  • Lorenzetti V, Allen NB, Fornito A, Yucel M. Structural brain abnormalities in major depressive disorder: a selective review of recent MRI studies. J. Affect. Disord.117(1–2), 1–17 (2009).
  • de Kloet ER, Oitzl MS, Joels M. Stress and cognition: are corticosteroids good or bad guys? Trends Neurosci.22(10), 422–426 (1999).
  • Belanoff JK, Gross K, Yager A, Schatzberg AF. Corticosteroids and cognition. J. Psychatr. Res.35, 127–145 (2001).
  • de Quervain JF, Aerni A, Schelling G, Roozendaal B. Glucocorticoids and the regulation of memory in health and disease. Front. Neuroendocrinol.30, 358–370 (2008).
  • Het S, Ramlow G, Wolf OT. A meta-analytic review of the effects of acute cortisol administration on human memory. Psychoneuroendocrinology30, 771–784 (2005).
  • Lupien SJ, Maheu F, Tu M, Fiocco A, Schramek TE. The effects of stress and stress hormones on human cognition: implications for the field of brain and cognition. Brain Cogn.65, 209–237 (2007).
  • Sandi C, Pinelo-Nava MT. Stress and memory: behavioural effects and neurobiological mechanisms. Neural Plast.1–20 (2007).
  • Joels M, Pu Z, Wiegert O, Oitzl MS, Krugers HJ. Learning under stress: how does it work? Trends Cogn. Sci.10, 152–158 (2006).
  • Roozendaal B. Stress and memory: opposing effects of glucocorticoids on memory consolidation and memory retrieval. Neurobiol. Learn. Mem.78, 578–595 (2002).
  • Wolf OT. Stress and memory in humans: twelve years of progress? Brain Res.1293, 142–154 (2009).
  • Wolf OT. The influence of stress hormones on emotional memory: relevance for psychopathology. Acta Psychol. (Amst.)127(3), 513–531 (2008).
  • Tulving E. Organization of memory: quo vadis? In: The Cognitive Neurosciences. Gazzangia MS (Ed.). MIT Press, Cambridge, UK, 839–847 (1995).
  • Baddeley A. Working memory. Science255, 556–559 (1992).
  • Newcomer JW, Sella H, Melson AK. Decreased memory performance in healthy humans induced by stress-level cortisol treatment. Arch. Gen. Psychiatry56, 527–533 (1999).
  • Newcomer JW, Craft S, Hershey T, Askins K, Bardgett ME. Glucocorticoid-induced impairment in declarative memory performance in adult humans. J. Neurosci.14(4), 2047–2053 (1994).
  • Kirschbaum C, Wolf OT, May M, Wippich W, Hellhammer DH. Stress- and treatment-induced elevations of cortisol levels associated with impaired declarative memory in healthy adults. Life Sciences58(17), 1475–1483 (1996).
  • Wolf OT, Convit A, McHugh PF et al. Cortisol differentially affects memory in young and elderly men. Behav. Neurosci.115(5), 1002–1011 (2001).
  • Buchanan TW, Lovallo WR. Enhanced memory for emotional material following stress-level cortisol treatment in humans. Psychoneuroendocrinology26, 307–317 (2001).
  • Cahill L, Gorski L, Le K. Enhanced human memory consolidation with post-learning stress: interaction with the degree of arousal at encoding. Learn. Mem.10, 270–274 (2003).
  • Kuhlmann S, Wolf OT. Arousal and cortisol interact in modulating memory consolidation in healthy young men. Behav. Neurosci.120, 217–223 (2006).
  • Abercrombie HC, Kalin NH, Thurow ME, Rosenkranz MA, Davidson RJ. Cortisol variation in humans affects memory for emotionally laden and neutral information. Behav. Neurosci.117, 505–516 (2003).
  • Rimmele U, Domes G, Mathiak K, Hautzinger M. Cortisol has different effects on human memory for emotional and neutral stimuli. Neuroreport14, 2485–2488 (2003).
  • Lupien S, Gillin CJ, Hauger RL. Working memory is more sensitive than declarative memory to the acute effects of corticosteroids: a dose–response study in humans. Behav. Neurosci.113(3), 420–430 (1999).
  • Young AH, Sahakian BJ, Robbins TW. The effects of chronic administration of hydrocortisone on cognitive function in normal volunteers. Psychopharmacology145, 260–266 (1999).
  • Schoofs D, Preuss D, Wolf OT. Psychosocial stress induces working memory impairments in an n-back paradigm. Psychoneuroendocrinology33, 643–653 (2008).
  • Kuhlmann S, Kirschbaum C, Wolf OT. Effects of oral cortisol treatment in healthy young women on memory retrieval of negative and neutral words. Neurobiol. Learn. Mem.83, 158–162 (2005).
  • Kuhlmann S, Piel M, Wolf OT. Impaired memory retrieval after psychosocial stress in healthy young men. J. Neurosci.25(11), 2977–2982 (2005).
  • Buss C, Wolf OT, Witt J, Hellhammer DH. Autobiographic memory impairment following acute cortisol administration. Psychoneuroendocrinology29, 1093–1096 (2004).
  • Roozendaal B, Okuda S, de Quervain DJ, McGaugh JL. Glucocorticoids interact with emotion-induced noradrenergic activation in influencing different memory functions. Neuroscience138, 901–910 (2006).
  • Pavlides C, Watanabe Y, McEwen BS. Effects of glucocorticoids on hippocampal long-term potentiation. Hippocampus3, 183–192 (1993).
  • de Quervain DJ, Henke K, Aerni A et al. Glucocorticoid-induced impairment of declarative memory retrieval is associated with reduced blood flow in the medial temporal lobe. Eur. J. Neurosci.17, 1296–1302 (2003).
  • Oei NYL, Elzinga BM, Wolf OT et al. Glucocorticoids decrease hippocampal and prefrontal activation during declarative memory retrieval in young men. Brain Imaging Behav.1, 31–41 (2007).
  • Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat. Rev. Neurosci.9, 46–56 (2008).
  • Herbert J, Goodyer IM, Grossman AB et al. Do corticosteroids damage the brain? J. Neuroendocrinol.18, 393–411 (2006).
  • Vythilingam M, Heim C, Newport J et al. Childhood trauma associated with smaller hippocampal volume in women with major depression. Am. J. Psychiatry159(12), 2072–2080 (2002).
  • Sheline YI, Sanghavi M, Mintun MA, Gado MH. Depression duration but not age predicts hippocampal volume loss in medically healthy women with major depression. J. Neurosci.19, 5034–5043 (1999).
  • Sheline YI, Wang PW, Gado MH, Csernansky JG, Vannier MW. Hippocampal atrophy in recurrent major depression. Proc. Natl Acad. Sci. USA93(9), 3908–3913 (1996).
  • Paizanis E, Hamon M, Lanfumey L. Hippocampal neurogenesis, depressive disorders, and antidepressant therapy. Neural Plast.737–754 (2007).
  • Becker S, Macqueen G, Wojtowicz JM. Computational modeling and empirical studies of hippocampal neurogenesis-dependent memory: effects of interference, stress and depression. Brain Res.1299, 45–54 (2009).
  • Kelly WF, Checkley SA, Bender DA, Mashiter K. Cushing’s syndrome and depression – a prospective study of 26 patients. Br. J. Psychiatry142, 16–19 (1983).
  • Starkman MN, Giordani B, Berent S, Schork MA, Schteingart DE. Elevated cortisol levels in Cushing’s disease are associated with cognitive decrements. Psychosom. Med.63, 985–993 (2001).
  • Bremner JD, Vythilingam M, Vermetten E, Anderson G, Newcomer JW, Charney DS. Effects of glucocorticoids on declarative memory function in major depression. Biol. Psychiatry55, 811–815 (2004).
  • Schlosser N, Wolf OT, Carvalho Fernando S et al. Effects of acute cortisol administration on autobiographical memory in patients with major depression and healthy controls. Psychoneuroendocrinology35, 316–320 (2010).
  • Rubinow DR, Post RM, Savard R, Gold PW. Cortisol hypersecretion and cognitive impairment in depression. Arch. Gen. Psychiatry41, 279–283 (1984).
  • Wauthy J, Ansseau M, von Frenckell R, Mormont C, Legros JJ. Memory disturbances and dexamethasone suppression test in major depression. Biol. Psychiatry30, 736–738 (1991).
  • Sikes CR, Stokes PE, Lasley BJ. Cognitive sequelae of hypothalamic–pituitary–adrenal (HPA) dysregulation in depression. Biol. Psychiatry25, 148A–152A (1989).
  • Egeland J, Lund A, Landro NI et al. Cortisol level predicts executive and memory function in depression, symptom level predicts psychomotor speed. Acta Psychiatr. Scand.112, 434–441 (2005).
  • Gomez R, Fleming SH, Keller J et al. The neuropsychological profile of psychotic major depression and its relation to cortisol. Biol. Psychiatry60, 472–478 (2006).
  • van Londen L, Goekoop JG, Zwindermann AH, Lanser JBK, Wiegant VM, de Wied D. Neuropsychological performance and plasma cortisol, arginine vasopressin and oxytocin in patients with major depression. Psychol. Med.28, 275–284 (1998).
  • Michopoulos I, Zervas IM, Pantelis C et al. Neuropsychological and hypothalamic–pituitary-axis function in female patients with melancholic and non-melancholic depression. Eur. Arch. Psychiatry Clin. Neurosci.258, 217–225 (2008).
  • Belanoff JK, Kalehzan M, Sund B, Fleming Ficek SK, Schatzberg, AF. Cortisol activity and cognitive changes in psychotic major depression. Am. J. Psychiatry158, 1612–1616 (2001).
  • Barnhofer T, Kuehn EM, de Jong-Meyer R. Specifity of autobiographical memories and basal cortisol levels in patients with major depression. Psychoneuroendocrinology30, 403–411 (2005).
  • den Hartog M, Nicolson NA, Derix MMA, van Bemmel AL, Kremer B, Jolles J. Salivary cortisol patterns and cognitive speed in major depression: a comparison with allergic rhinitis and healthy control subjects. Biol. Psychol.63, 1–14 (2003).
  • Gomez RG, Posener JA, Keller J, DeBattista C, Solvason B, Schatzberg AF. Effects of major depression diagnosis and cortisol levels on indices of neurocognitive function. Psychoneuroendocrinology34, 1012–1018 (2009).
  • Hinkelmann K, Moritz S, Botzenhardt J et al. Cognitive impairment in major depression: association with salivary cortisol. Biol. Psychiatry66, 879–885 (2009).
  • Mannie ZN, Barnes J, Bristow GC, Harmer CJ, Cowen PJ. Memory impairment in young women at increased risk of depression: influence of cortisol and 5-HTT genotype. Psychol. Med.39, 757–762 (2009).
  • Holsboer F, Lauer CJ, Schreiber W, Krieg JC. Altered hypothalamic–pituitary–adrenocortical regulation in healthy subjects at high familial risk for affective disorders. Neuroendocrinology62, 340–347 (1995).
  • Modell S, Lauer CJ, Schreiber W, Huber J, Krieg JC, Holsboer F. Hormonal response pattern in the combined DEX-CRH test is stable over time in subjects at high familial risk for affective disorders. Neuropsychopharmacology18, 253–262 (1998).
  • Vythilingam M, Vermetten E, Anderson GM et al. Hippocampal volume, memory, and cortisol status in major depressive disorder: effects of treatment. Biol. Psychiatry56, 101–112 (2004).
  • Brown WA, Qualls CB. Pituitary–adrenal disinhibition in depression: marker of a subtype with characteristic clinical features and response to treatment? Psychiatr. Res.4, 115–128 (1981).
  • Winokur G, Black DW, Nasrallah A. DST nonsuppressor status: relationship to specific aspects of the depressive syndrome. Biol. Psychiatry22, 360–368 (1987).
  • Caine ED, Yerevanian BI, Bamford KA. Cognitive function and the dexamethasone suppression test in depression. Am. J. Psychiatry141, 116–118 (1984).
  • Wolkowitz OM, Reus VI, Weingartner H et al. Cognitive effects of corticosteroids. Am. J. Psychiatry147, 1297–1303 (1990).
  • Zobel AW, Schulze-Rauschenbach S, von Widdern OC et al. Improvement of working but not declarative memory is correlated with HPA normalization during antidepressant treatment. J. Psychiatr. Res.38, 377–383 (2004).
  • Reppermund S, Zihl J, Lucae S. Persistent cognitive impairment in depression: the role of psychopathology and altered hypothalamic–pituitary–adrenocortical (HPA) system regulation. Biol. Psychiatry62, 400–406 (2007).
  • Juruena MF, Pariante CM, Papadopoulos AS, Poon L, Lightman S, Cleare AJ. Prednisolone suppression test in depression: prospective study of the role of HPA axis dysfunction in treatment resistance. Br. J. Psychiatry194(4), 342–349 (2009).
  • Kaufmann J, Charney D. Effects of early stress on brain structure and function: implications for understanding the relationship between child maltreatment and depression. Dev. Psychopathol.13, 451–471 (2001).
  • Hammen CL. Stress and depression. In: Annual Review of Clinical Psychiatry (Volume 1). Annual Reviews, Palo Alto, CA, USA, 293–319 (2005).
  • Monroe SM, Hadjiyannakis KL. The social environment and depression: focusing on severe life stress. In: Handbook of Depression. Gotlib IH, Hammen CL (Eds). Guilford Press, NY, USA, 314–340 (2002).
  • Starkman MN, Schteingart DE, Schork MA. Cushing’s syndrome after treatment: changes in cortisol and ACTH levels, and amelioration of the depressive syndrome. Psychiatry Res.19, 177–188 (1986).
  • Berton O, Nestler EJ. New approaches to antidepressant drug discovery: beyond monoamines. Nat. Neurosci.7, 137–151 (2006).
  • Kling MA, Coleman VH, Schulkin J. Glucocorticoid inhibition in the treatment of depression: can we think outside the endocrine hypothalamus? Depress. Anxiety26, 641–649 (2009).
  • Porter RJ, Gallagher P. Abnormalities of the HPA axis in affective disorders: clinical subtypes and potential treatments. Acta Neuropsychiatrica18, 193–209 (2006).
  • Schüle C, Baghai TC, Eser D, Rupprecht R. Hypothalamic–pituitary–adrenocortical system dysregulation and new treatment strategies in depression. Expert Rev. Neurother.9(7), 1005–1019 (2009).
  • Thomson F, Craighead M. Innovative approaches for the treatment of depression: targeting the HPA axis. Neurochem. Res.33, 691–707 (2008).
  • Gallagher P, Malik N, Newham J, Young AH, Ferrier IN, Mackin P. Antiglucocorticoid treatments for mood disorders. Cochrane Database Syst. Rev.1, CD005168 (2008).
  • Young AH, Gallagher P, Watson S, Del-Estal D, Owen BM, Ferrier IN. Improvements in neurocognitive function and mood following adjunctive treatment with mifepristone (RU-486) in bipolar disorder. Neuropsychopharmacology29, 1538–1545 (2004).
  • Mason BL, Pariante CM. The effects of antidepressants on the hypothalamic–pituitary–adrenal axis. Drug News Perspect.19(10), 603–608 (2006).
  • Schüle C. Neuroendocrinological mechanisms of actions of antidepressant drugs. J. Neuroendocrinol.19, 213–226 (2006).
  • Brady LS, Whitfield HJ Jr, Fox RJ, Gold PW, Herkenham M. Long-term antidepressant administration alters corticotropin-releasing hormone, tyrosine hydroxylase, and mineralocorticoid receptor gene expression in rat brain. Therapeutic implications. J. Clin. Invest.87, 831–837 (1991).
  • Seckl JR, Fink G. Antidepressants increase glucocorticoid and mineralocorticoid receptor mRNA expression in rat hippocampus in vivo.Neuroendocrinology55, 621–626 (1992).
  • Reul JM, Stee I, Soder M, Holsboer F. Chronic treatment of rats with the antidepressant amitriptyline attenuates the activity of the hypothalamic–pituitary–adrenocortical system. Endocrinology133, 312–320 (1993).
  • Reul JM, Labeur MS, Grigoriadis DE, De Souza EB, Holsboer F. Hypothalamic–pituitary–adrenocortical axis changes in the rat after long-term treatment with the reversible monoamine oxidase-A inhibitor moclobemide. Neuroendocrinology60, 509–519 (1994).
  • Yau JL, Olsson T, Morris RG, Meaney MJ, Seckl JR. Glucocorticoids, hippocampal corticoid receptor gene expression and antidepressant treatment: relationship with spatial learning in young and aged rats. Neuroscience66, 571–581 (1995).
  • Carvalho LA, Pariante CM. In vitromodulation of the glucocorticoid receptor by antidepressants. Stress11(6), 411–424 (2008).
  • Otte C, Hinkelmann K, Moritz S. Modulation of the mineralocorticoid receptor as add-on treatment in depression: a randomized, double blind, placebo-controlled proof-of-concept study. J. Psychiatr. Res.44(6), 339–346 (2010).
  • Juruena MF, Gama CS, Berk M, Belmonte-de-Abreu PS. Improved stress response in bipolar affective disorder with adjunctive spironolactone (mineralocorticoid receptor antagonist): case series. J. Psychopharmacol.23, 985–987 (2009).
  • López JF, Chalmers DT, Little KY, Watson SJ. Regulation of serotonin 1A, glucocorticoid, and mineralocorticoid receptor in rat and human hippocampus: implications for the neurobiology of depression. Biol. Psychiatry43, 547–573 (1998).
  • McKay MS, Zakzanis KK. The impact of treatment on HPA axis activity in unipolar major depression. J. Psychiatr. Res.44, 183–192 (2010).
  • Young EA, Abelson JL, Cameron OG. Effect of comorbid anxiety disorders on the hypothalamic–pituitary–adrenal axis response to a social stressor in major depression. Biol. Psychiatry56, 113–120 (2004).
  • Watson S, Gallagher P, Del-Estal D, Hearn A, Ferrier IN, Young AH. Hypothalamic–pituitary–adrenal axis function in patients with chronic depression. Psychol. Med.32, 1021–1028 (2002).
  • Nemeroff CB, Heim CM, Thase ME et al. Differential responses to psychotherapy versus pharmacotherapy in patients with chronic forms of major depression and childhood trauma. PNAS100(24), 14293–14296 (2003).
  • Heim C, Plotsky PM, Nemeroff CB. Importance of studying the contributions of adverse early experience to neurobiological findings in depression. Neuropsychopharmacology29, 641–648 (2004).
  • Heim C, Mletzko T, Purselle D, Musselman DL, Nemeroff CB. The dexamethasone/corticotrophin-releasing factor test in men with major depression: role of childhood trauma. Biol. Psychiatry63(4), 398–405 (2008).
  • Adam EK, Hawkley LC, Kudielka BM, Cacioppo JT. Day-to-day dynamics of experience cortisol associations in a population-based sample of older adults. Proc. Natl Acad. Sci. USA103, 17058–17063 (2006).
  • Adam EK, Sutton JM, Doane LD, Mineka S. Incorporating hypothalamic–pituitary–adrenal axis measures into preventive interventions for adolescent depression: are we there yet? Dev. Psychopathol.20, 975–1001 (2008).
  • Hawley LL, Ho MHR, Zuroff DC, Blatt SJ. Stress reactivity following brief treatment for depression: differential effects of psychotherapy and medication. J. Consult. Clin. Psychol.75(2), 244–256 (2007).
  • Thase ME, Dubé S, Bowler K et al. Hypothalamic–pituitary–adrenocortical acitivity and response to cognitive behaviour therapy in unmedicated, hospitalized depressed patients. Am. J. Psychiatry153(7), 886–891 (1996).
  • Schwabe L, Wolf OT. Stress prompts habit behavior in humans. J. Neurosci.29(22), 7191–7198 (2009).
  • Yang TT, Hsiao FH, Wang KC et al. The effect of psychotherapy added to pharmacotherapy on cortisol responses in outpatients with major depressive disorder. J. Nerv. Ment. Dis.197(6), 401–406 (2009).
  • Heinrichs M, Baumgartner T, Kirschbaum C, Ehlert U. Social support and oxytocin interact to suppress cortisol and subjective responses to psychosocial stress. Biol. Psychiatry54, 1389–1398 (2003).
  • Kirschbaum C, Klauer T, Filipp SH, Hellhammer DH. Sex-specific effects of social support on cortisol and subjective responses to acute psychosocial stress. Psychosom. Med.57, 23–31 (1995).
  • Gaab J, Blattler N, Menzi T, Pabst B, Stoyer S, Ehlert U. Randomized controlled evaluation of the effects of cognitive-behavioral stress management on cortisol responses to acute stress in healthy subjects. Psychoneuroendocrinology28, 767–779 (2003).
  • Hammerfald K, Eberle C, Grau M, Kinsperger A, Zimmermann A, Ehlert U. Persistent effects of cognitive-behavioral stress management on cortisol responses to acute stress in healthy subjects – a randomized controlled trial. Psychoneuroendocrinology31, 333–339 (2006).
  • Ursin H, Erikson HR. The cognitive activation theory of stress. Psychoneuroendocrinology29, 567–592 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.