395
Views
60
CrossRef citations to date
0
Altmetric
Review

Genetics of inflammatory bowel disease: implications for disease pathogenesis and natural history

&
Pages 513-534 | Published online: 10 Jan 2014

References

  • Loftus EV Jr. Clinical epidemiology of inflammatory bowel disease: Incidence, prevalence, and environmental influences. Gastroenterology126(6), 1504–1517 (2004).
  • Cho JH. The genetics and immunopathogenesis of inflammatory bowel disease. Nat. Rev. Immunol.8(6), 458–466 (2008).
  • Korn T, Bettelli E, Oukka M et al. IL-17 and Th17 Cells. Annu. Rev. Immunol.27, 485–517 (2009).
  • Orholm M, Binder V, Sorensen TI et al. Concordance of inflammatory bowel disease among Danish twins. Results of a nationwide study. Scand. J. Gastroenterol.35(10), 1075–1081 (2000).
  • Thompson NP, Driscoll R, Pounder RE et al. Genetics versus environment in inflammatory bowel disease: results of a British twin study. BMJ312(7023), 95–96 (1996).
  • Tysk C, Lindberg E, Jarnerot G et al. Ulcerative colitis and Crohn’s disease in an unselected population of monozygotic and dizygotic twins. A study of heritability and the influence of smoking. Gut29(7), 990–996 (1988).
  • Russell RK, Satsangi J. IBD: a family affair. Best Pract. Res. Clin. Gastroenterol.18(3), 525–539 (2004).
  • Cavanaugh J. International collaboration provides convincing linkage replication in complex disease through analysis of a large pooled data set: Crohn’s disease and chromosome 16. Am. J. Hum. Genet.68(5), 1165–1171 (2001).
  • Hugot JP, Laurent-Puig P, Gower-Rousseau C et al. Mapping of a susceptibility locus for Crohn’s disease on chromosome 16. Nature379(6568), 821–823 (1996).
  • Achkar JP, Dassopoulos T, Silverberg MS et al. Phenotype-stratified genetic linkage study demonstrates that IBD2 is an extensive ulcerative colitis locus. Am. J. Gastroenterol.101(3), 572–580 (2006).
  • Parkes M, Barmada MM, Satsangi J et al. The IBD2 locus shows linkage heterogeneity between ulcerative colitis and Crohn’s disease. Am. J. Hum. Genet.67(6), 1605–1610 (2000).
  • Satsangi J, Parkes M, Louis E et al. Two stage genome-wide search in inflammatory bowel disease provides evidence for susceptibility loci on chromosomes 3, 7 and 12. Nat. Genet.14(2), 199–202 (1996).
  • Hampe J, Shaw SH, Saiz R et al. Linkage of inflammatory bowel disease to human chromosome 6p. Am. J. Hum. Genet.65(6), 1647–1655 (1999).
  • Satsangi J, Welsh KI, Bunce M et al. Contribution of genes of the major histocompatibility complex to susceptibility and disease phenotype in inflammatory bowel disease. Lancet347(9010), 1212–1217 (1996).
  • van Heel DA, Fisher SA, Kirby A et al. Inflammatory bowel disease susceptibility loci defined by genome scan meta-analysis of 1952 affected relative pairs. Hum. Mol. Genet.13(7), 763–770 (2004).
  • Wellcome Trust Case–Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature447(7145), 661–678 (2007).
  • Barrett JC, Hansoul S, Nicolae DL et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat. Genet.40(8), 955–962 (2008).
  • Duerr RH, Taylor KD, Brant SR et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science314(5804), 1461–1463 (2006).
  • Fisher SA, Tremelling M, Anderson CA et al. Genetic determinants of ulcerative colitis include the ECM1 locus and five loci implicated in Crohn’s disease. Nat. Genet.40(6), 710–712 (2008).
  • Franke A, Balschun T, Karlsen TH et al. Replication of signals from recent studies of Crohn’s disease identifies previously unknown disease loci for ulcerative colitis. Nat. Genet.40(6), 713–715 (2008).
  • Franke A, Balschun T, Karlsen TH et al. Sequence variants in IL10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility. Nat. Genet.40(11), 1319–1323 (2008).
  • Hampe J, Franke A, Rosenstiel P et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat. Genet.39(2), 207–211 (2007).
  • Libioulle C, Louis E, Hansoul S et al. Novel Crohn disease locus identified by genome-wide association maps to a gene desert on 5p13.1 and modulates expression of PTGER4. PLoS Genet.3(4), e58 (2007).
  • Parkes M, Barrett JC, Prescott NJ et al. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s disease susceptibility. Nat. Genet.39(7), 830–832 (2007).
  • Silverberg MS, Cho JH, Rioux JD et al. Ulcerative colitis-risk loci on chromosomes 1p36 and 12q15 found by genome-wide association study. Nat. Genet.41(2), 216–220 (2009).
  • Yamazaki K, McGovern D, Ragoussis J et al. Single nucleotide polymorphisms in TNFSF15 confer susceptibility to Crohn’s disease. Hum. Mol. Genet.14(22), 3499–3506 (2005).
  • Cummings JR, Ahmad T, Geremia A et al. Contribution of the novel inflammatory bowel disease gene IL23R to disease susceptibility and phenotype. Inflamm. Bowel Dis.13(9), 1063–1068 (2007).
  • Tremelling M, Cummings F, Fisher SA et al.IL23R variation determines susceptibility but not disease phenotype in inflammatory bowel disease. Gastroenterology132(5), 1657–1664 (2007).
  • Van LJ, Russell RK, Nimmo ER et al.IL23R Arg381Gln is associated with childhood onset inflammatory bowel disease in Scotland. Gut56(8), 1173–1174 (2007).
  • Raelson JV, Little RD, Ruether A et al. Genome-wide association study for Crohn’s disease in the Quebec Founder Population identifies multiple validated disease loci. Proc. Natl Acad. Sci. USA104(37), 14747–14752 (2007).
  • Borgiani P, Perricone C, Ciccacci C et al. Interleukin-23R Arg381Gln is associated with susceptibility to Crohn’s disease but not with phenotype in an Italian population. Gastroenterology133(3), 1049–1051 (2007).
  • Latiano A, Palmieri O, Valvano MR et al. Replication of interleukin 23 receptor and autophagy-related 16-like 1 association in adult- and pediatric-onset inflammatory bowel disease in Italy. World J. Gastroenterol.14(29), 4643–4651 (2008).
  • Amre DK, Mack D, Israel D et al. Association between genetic variants in the IL-23R gene and early-onset Crohn’s disease: results from a case–control and family-based study among Canadian children. Am. J. Gastroenterol.103(3), 615–620 (2008).
  • Weersma RK, Stokkers PC, van Bodegraven AA et al. Molecular prediction of disease risk and severity in a large Dutch Crohn’s disease cohort. Gut58(3), 388–395 (2008).
  • Weersma RK, Zhernakova A, Nolte IM et al.ATG16L1 and IL23R are associated with inflammatory bowel diseases but not with celiac disease in the Netherlands. Am. J. Gastroenterol.103(3), 621–627 (2008).
  • Marquez A, Mendoza JL, Taxonera C et al.IL23R and IL12B polymorphisms in Spanish IBD patients: no evidence of interaction. Inflamm. Bowel Dis.14(9), 1192–1196 (2008).
  • Glas J, Seiderer J, Wetzke M et al. rs1004819 is the main disease-associated IL23R variant in German Crohn’s disease patients: combined analysis of IL23R, CARD15, and OCTN1/2 variants. PLoS ONE2(9), e819 (2007).
  • Lappalainen M, Halme L, Turunen U et al. Association of IL23R, TNFRSF1A, and HLA-DRB1*0103 allele variants with inflammatory bowel disease phenotypes in the Finnish population. Inflamm. Bowel Dis.14(8), 1118–1124 (2008).
  • Lakatos PL, Szamosi T, Szilvasi A et al.ATG16L1 and IL23 receptor (IL23R) genes are associated with disease susceptibility in Hungarian CD patients. Dig. Liver Dis.40(11), 867–873 (2008).
  • Baptista ML, Amarante H, Picheth G et al.CARD15 and IL23R influences Crohn’s disease susceptibility but not disease phenotype in a Brazilian population. Inflamm. Bowel Dis.14(5), 674–679 (2008).
  • Dubinsky MC, Wang D, Picornell Y et al.; Western Regional Research Alliance for Pediatric IBD. IL-23 receptor (IL-23R) gene protects against pediatric Crohn’s disease. Inflamm. Bowel Dis.13(5), 511–515 (2007).
  • van Limbergen JE, Russell RK, Nimmo ER et al.IL23R Arg381Gln is associated with childhood onset inflammatory bowel disease in Scotland. Gut56(8), 1173–1174 (2007).
  • Hue S, Ahern P, Buonocore S et al. Interleukin-23 drives innate and T cell-mediated intestinal inflammation. J. Exp. Med.203(11), 2473–2483 (2006).
  • Kullberg MC, Jankovic D, Feng CG et al. IL-23 plays a key role in Helicobacter hepaticus-induced T cell-dependent colitis. J. Exp. Med.203(11), 2485–2494 (2006).
  • Oppmann B, Lesley R, Blom B et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity13(5), 715–725 (2000).
  • Wiekowski MT, Leach MW, Evans EW et al. Ubiquitous transgenic expression of the IL-23 subunit p19 induces multiorgan inflammation, runting, infertility, and premature death. J. Immunol.166(12), 7563–7570 (2001).
  • Bettelli E, Kuchroo VK. IL-12- and IL-23-induced T helper cell subsets: birds of the same feather flock together. J. Exp. Med.201(2), 169–171 (2005).
  • Harrington LE, Hatton RD, Mangan PR et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol.6(11), 1123–1132 (2005).
  • McKenzie BS, Kastelein RA, Cua DJ. Understanding the IL-23-IL-17 immune pathway. Trends Immunol.27(1), 17–23 (2006).
  • Puccetti P, Belladonna ML, Grohmann U. Effects of IL-12 and IL-23 on antigen-presenting cells at the interface between innate and adaptive immunity. Crit. Rev. Immunol.22(5–6), 373–390 (2002).
  • costa-Rodriguez EV, Rivino L, Geginat J et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat. Immunol.8(6), 639–646 (2007).
  • Baba M, Imai T, Nishimura M et al. Identification of CCR6, the specific receptor for a novel lymphocyte-directed CC chemokine LARC. J. Biol. Chem.272(23), 14893–14898 (1997).
  • Schutyser E, Struyf S, Van Damme J. The CC chemokine CCL20 and its receptor CCR6. Cytokine Growth Factor Rev.14(5), 409–426 (2003).
  • Cook DN, Prosser DM, Forster R et al. CCR6 mediates dendritic cell localization, lymphocyte homeostasis, and immune responses in mucosal tissue. Immunity12(5), 495–503 (2000).
  • Varona R, Villares R, Carramolino L et al. CCR6-deficient mice have impaired leukocyte homeostasis and altered contact hypersensitivity and delayed-type hypersensitivity responses. J. Clin. Invest.107(6), R37–R45 (2001).
  • Kaser A, Ludwiczek O, Holzmann S et al. Increased expression of CCL20 in human inflammatory bowel disease. J. Clin. Immunol.24(1), 74–85 (2004).
  • Kwon JH, Keates S, Bassani L et al. Colonic epithelial cells are a major site of macrophage inflammatory protein 3a (MIP-3α) production in normal colon and inflammatory bowel disease. Gut51(6), 818–826 (2002).
  • Lee HJ, Choi SC, Lee MH et al. Increased expression of MIP-3α/CCL20 in peripheral blood mononuclear cells from patients with ulcerative colitis and its down-regulation by sulfasalazine and glucocorticoid treatment. Inflamm. Bowel Dis.11(12), 1070–1079 (2005).
  • Hoover DM, Boulegue C, Yang D et al. The structure of human macrophage inflammatory protein-3α /CCL20. Linking antimicrobial and CC chemokine receptor-6-binding activities with human β-defensins. J. Biol. Chem.277(40), 37647–37654 (2002).
  • Hugot JP, Chamaillard M, Zouali H et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature411(6837), 599–603 (2001).
  • Ogura Y, Bonen DK, Inohara N et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature411(6837), 603–606 (2001).
  • Hampe J, Cuthbert A, Croucher PJ et al. Association between insertion mutation in NOD2 gene and Crohn’s disease in German and British populations. Lancet357(9272), 1925–1928 (2001).
  • Kobayashi KS, Chamaillard M, Ogura Y et al. NOD2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science307(5710), 731–734 (2005).
  • Maeda S, Hsu LC, Liu H et al.NOD2 mutation in Crohn’s disease potentiates NFκB activity and IL-1β processing. Science307(5710), 734–738 (2005).
  • Watanabe T, Kitani A, Murray PJ et al. NOD2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses. Nat. Immunol.5(8), 800–808 (2004).
  • Yang Z, Fuss IJ, Watanabe T et al. NOD2 transgenic mice exhibit enhanced MDP-mediated down-regulation of TLR2 responses and resistance to colitis induction. Gastroenterology133(5), 1510–1521 (2007).
  • Watanabe T, Asano N, Murray PJ et al. Muramyl dipeptide activation of nucleotide-binding oligomerization domain 2 protects mice from experimental colitis. J. Clin. Invest.118(2), 545–559 (2008).
  • Lala S, Ogura Y, Osborne C et al. Crohn’s disease and the NOD2 gene: a role for paneth cells. Gastroenterology125(1), 47–57 (2003).
  • Wehkamp J, Salzman NH, Porter E et al. Reduced paneth cell α-defensins in ileal Crohn’s disease. Proc. Natl Acad. Sci. USA102(50), 18129–18134 (2005).
  • Simms LA, Doecke JD, Walsh MD et al. Reduced α-defensin expression is associated with inflammation and not NOD2 mutation status in ileal Crohn’s disease. Gut57(7), 903–910 (2008).
  • van Heel DA, Ghosh S, Butler M et al. Muramyl dipeptide and Toll-like receptor sensitivity in NOD2-associated Crohn’s disease. Lancet365(9473), 1794–1796 (2005).
  • Noguchi E, Homma Y, Kang X et al. A Crohn’s disease-associated NOD2 mutation suppresses transcription of human IL10 by inhibiting activity of the nuclear ribonucleoprotein hnRNP-A1. Nat. Immunol.10(5), 471–479 (2009).
  • Agostini L, Martinon F, Burns K et al. NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity20(3), 319–325 (2004).
  • Mariathasan S, Monack DM. Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat. Rev. Immunol.7(1), 31–40 (2007).
  • Villani AC, Lemire M, Fortin G et al. Common variants in the NLRP3 region contribute to Crohn’s disease susceptibility. Nat. Genet.41(1), 71–76 (2009).
  • Deretic V. Autophagy as an immune defense mechanism. Curr. Opin. Immunol.18(4), 375–382 (2006).
  • Rioux JD, Xavier RJ, Taylor KD et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat. Genet.39(5), 596–604 (2007).
  • Glas J, Konrad A, Schmechel S et al. The ATG16L1 gene variants rs2241879 and rs2241880 (T300A) are strongly associated with susceptibility to Crohn’s disease in the German population. Am. J. Gastroenterol.103(3), 682–691 (2008).
  • Lees CW, Noble CL, Diehl L et al. Expression analysis of all genes implicated in susceptibility to Crohn’s disease from genome-wide association studies. Gastroenterology134(4), A41 (2008).
  • Cadwell K, Liu JY, Brown SL et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature456(7219), 259–263 (2008).
  • Saitoh T, Fujita N, Jang MH et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production. Nature456, 264–268 (2008).
  • McCarroll SA, Huett A, Kuballa P et al. Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn’s disease. Nat. Genet.40, 1107–1112 (2008).
  • Taylor GA, Feng CG, Sher A. p47 GTPases: regulators of immunity to intracellular pathogens. Nat. Rev. Immunol.4(2), 100–109 (2004).
  • Bekpen C, Hunn JP, Rohde C et al. The interferon-inducible p47 (IRG) GTPases in vertebrates: loss of the cell autonomous resistance mechanism in the human lineage. Genome Biology6(11), R92 (2005).
  • Singh SB, Davis AS, Taylor GA et al. Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science313(5792), 1438–1441 (2006).
  • MacMicking JD, Taylor GA, McKinney JD. Immune control of tuberculosis by IFNγ-inducible LRG-47. Science302(5645), 654–659 (2003).
  • Feng CG, Collazo-Custodio CM, Eckhaus M et al. Mice deficient in LRG-47 display increased susceptibility to mycobacterial infection associated with the induction of lymphopenia. J. Immunol.172(2), 1163–1168 (2004).
  • De Santa BP, van Den Brink GR, Roberts DJ. Development and differentiation of the intestinal epithelium. Cell Mol. Life Sci.60(7), 1322–1332 (2003).
  • Roberts DJ. Molecular mechanisms of development of the gastrointestinal tract. Dev. Dyn.219(2), 109–120 (2000).
  • Pabst O, Schneider A, Brand T et al. The mouse Nkx2–3 homeodomain gene is expressed in gut mesenchyme during pre- and postnatal mouse development. Dev. Dyn.209(1), 29–35 (1997).
  • Wang CC, Biben C, Robb L et al. Homeodomain factor Nkx2–3 controls regional expression of leukocyte homing coreceptor MAdCAM-1 in specialized endothelial cells of the viscera. Dev. Biol.224(2), 152–167 (2000).
  • Pabst O, Zweigerdt R, Arnold HH. Targeted disruption of the homeobox transcription factor Nkx2–3 in mice results in postnatal lethality and abnormal development of small intestine and spleen. Development126(10), 2215–2225 (1999).
  • Macdonald JK, McDonald JW. Natalizumab for induction of remission in Crohn’s disease. Cochrane Database Syst. Rev. (1), CD006097 (2007).
  • Lees CW, Zacharias WJ, Tremelling M et al. Analysis of germline GLI1 variation implicates hedgehog signalling in the regulation of intestinal inflammatory pathways. PLoS Med.5(12), e239 (2008).
  • Kolterud A, Grosse AS, Zacharias WJ et al. Paracrine hedgehog signaling in stomach and intestine: new roles for hedgehog in gastrointestinal patterning. Gastroenterology137(2), 618–628 (2009).
  • Lees C, Howie S, Sartor RB et al. The hedgehog signalling pathway in the gastrointestinal tract: implications for development, homeostasis, and disease. Gastroenterology129(5), 1696–1710 (2005).
  • Pola R, Ling LE, Aprahamian TR et al. Postnatal recapitulation of embryonic hedgehog pathway in response to skeletal muscle ischemia. Circulation108(4), 479–485 (2003).
  • Jung Y, Brown KD, Witek RP et al. Accumulation of hedgehog-responsive progenitors parallels alcoholic liver disease severity in mice and humans. Gastroenterology134(5), 1532–1543 (2008).
  • Omenetti A, Popov Y, Jung Y et al. The hedgehog pathway regulates remodeling responses to biliary obstruction in rats. Gut57(9), 1275–1282 (2008).
  • Stewart GA, Hoyne GF, Ahmad SA et al. Expression of the developmental Sonic hedgehog (Shh) signalling pathway is up-regulated in chronic lung fibrosis and the Shh receptor patched 1 is present in circulating T lymphocytes. J. Pathol.199(4), 488–495 (2003).
  • Watkins DN, Berman DM, Burkholder SG et al. Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature422(6929), 313–317 (2003).
  • El Andaloussi A, Graves S, Meng F et al. Hedgehog signaling controls thymocyte progenitor homeostasis and differentiation in the thymus. Nat. Immunol.7(4), 418–426 (2006).
  • Varas A, Hernandez-Lopez C, Valencia J et al. Survival and function of human thymic dendritic cells are dependent on autocrine hedgehog signaling. J. Leukoc. Biol.83(6), 1476–1483 (2008).
  • Lowrey JA, Stewart GA, Lindey S et al. Sonic hedgehog promotes cell cycle progression in activated peripheral CD4+ T lymphocytes. J. Immunol.169(4), 1869–1875 (2002).
  • Stewart GA, Lowrey JA, Wakelin SJ et al. Sonic hedgehog signaling modulates activation of and cytokine production by human peripheral CD4+ T cells. J. Immunol.169(10), 5451–5457 (2002).
  • Kasperczyk H, Baumann B, Debatin KM et al. Characterization of sonic hedgehog as a novel NFκB target gene that promotes NFκB-mediated apoptosis resistance and tumor growth in vivo. FASEB J.23(1), 21–33 (2008).
  • Park HL, Bai C, Platt KA et al. Mouse Gli1 mutants are viable but have defects in SHH signaling in combination with a Gli2 mutation. Development127(8), 1593–1605 (2000).
  • Zacharias WJ, Kao J, Xing L, Gumucio DL. Constitutive inhibition of hedgehog (hh) signaling causes intestinal villus atrophy, spontaneous small intestinal inflammation, and dermatitis: a mouse phenocopy of human celiac disease? Gastroenterology136(5), A58 (2009).
  • Ibarra-Sanchez MJ, Simoncic PD, Nestel FR et al. The T-cell protein tyrosine phosphatase. Semin. Immunol.12(4), 379–386 (2000).
  • You-Ten KE, Muise ES, Itie A et al. Impaired bone marrow microenvironment and immune function in T cell protein tyrosine phosphatase-deficient mice. J. Exp. Med.186(5), 683–693 (1997).
  • Simoncic PD, Bourdeau A, Lee-Loy A et al. T-cell protein tyrosine phosphatase (Tcptp) is a negative regulator of colony-stimulating factor 1 signaling and macrophage differentiation. Mol. Cell Biol.26(11), 4149–4160 (2006).
  • Heinonen KM, Nestel FP, Newell EW et al. T-cell protein tyrosine phosphatase deletion results in progressive systemic inflammatory disease. Blood103(9), 3457–3464 (2004).
  • Galic S, Klingler-Hoffmann M, Fodero-Tavoletti MT et al. Regulation of insulin receptor signaling by the protein tyrosine phosphatase TCPTP. Mol. Cell Biol.23(6), 2096–2108 (2003).
  • Tiganis T, Kemp BE, Tonks NK. The protein-tyrosine phosphatase TCPTP regulates epidermal growth factor receptor-mediated and phosphatidylinositol 3-kinase-dependent signaling. J. Biol. Chem.274(39), 27768–27775 (1999).
  • Simoncic PD, Lee-Loy A, Barber DL et al. The T cell protein tyrosine phosphatase is a negative regulator of janus family kinases 1 and 3. Curr. Biol.12(6), 446–453 (2002).
  • ten HJ, de J, I, Fu Y et al. Identification of a nuclear Stat1 protein tyrosine phosphatase. Mol. Cell Biol.22(16), 5662–5668 (2002).
  • Yamamoto T, Sekine Y, Kashima K et al. The nuclear isoform of protein-tyrosine phosphatase TC-PTP regulates interleukin-6-mediated signaling pathway through STAT3 dephosphorylation. Biochem. Biophys. Res. Commun.297(4), 811–817 (2002).
  • Lu X, Nechushtan H, Ding F et al. Distinct IL-4-induced gene expression, proliferation, and intracellular signaling in germinal center B-cell-like and activated B-cell-like diffuse large-cell lymphomas. Blood105(7), 2924–2932 (2005).
  • Lu X, Chen J, Sasmono RT et al. TCPTP, distinctively expressed in ABC-like diffuse large B-cell lymphomas, is the nuclear phosphatase of STAT6. Mol. Cell Biol.27(6), 2166–2179 (2007).
  • van VC, Bukczynska PE, Puryer MA et al. Selective regulation of tumor necrosis factor-induced Erk signaling by Src family kinases and the T cell protein tyrosine phosphatase. Nat. Immunol.6(3), 253–260 (2005).
  • Klingler-Hoffmann M, Fodero-Tavoletti MT, Mishima K et al. The protein tyrosine phosphatase TCPTP suppresses the tumorigenicity of glioblastoma cells expressing a mutant epidermal growth factor receptor. J. Biol. Chem.276(49), 46313–46318 (2001).
  • Gregersen PK, Olsson LM. Recent advances in the genetics of autoimmune disease. Annu. Rev. Immunol.27, 363–391 (2009).
  • Rieck M, Arechiga A, Onengut-Gumuscu S et al. Genetic variation in PTPN22 corresponds to altered function of T and B lymphocytes. J. Immunol.179(7), 4704–4710 (2007).
  • Vang T, Congia M, Macis MD et al. Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat. Genet.37(12), 1317–1319 (2005).
  • Hasegawa K, Martin F, Huang G et al. PEST domain-enriched tyrosine phosphatase (PEP) regulation of effector/memory T cells. Science303(5658), 685–689 (2004).
  • Schreiber S, Heinig T, Thiele HG et al. Immunoregulatory role of interleukin 10 in patients with inflammatory bowel disease. Gastroenterology108(5), 1434–1444 (1995).
  • Schreiber S, Fedorak RN, Nielsen OH et al. A safety and efficacy study of recombinant human interleukin-10 (rHuIL-10) treatment in 329 patients with chronic active Crohn’s disease (CACD). Gastroenterology114(4), A1080 (1998).
  • Fedorak RN, Gangl A, Elson CO et al. Recombinant human interleukin 10 in the treatment of patients with mild to moderately active Crohn’s disease. The Interleukin 10 Inflammatory Bowel Disease Cooperative Study Group. Gastroenterology119(6), 1473–1482 (2000).
  • Schreiber S, Fedorak RN, Nielsen OH et al. Safety and efficacy of recombinant human interleukin 10 in chronic active Crohn’s disease. Crohn’s Disease IL-10 Cooperative Study Group. Gastroenterology119(6), 1461–1472 (2000).
  • Steidler L, Hans W, Schotte L et al. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science289(5483), 1352–1355 (2000).
  • Ahmad T, Armuzzi A, Bunce M et al. The molecular classification of the clinical manifestations of Crohn’s disease. Gastroenterology122(4), 854–866 (2002).
  • Cuthbert AP, Fisher SA, Mirza MM et al. The contribution of NOD2 gene mutations to the risk and site of disease in inflammatory bowel disease. Gastroenterology122(4), 867–874 (2002).
  • Lesage S, Zouali H, Cezard JP et al.CARD15/NOD2 mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease. Am. J. Hum. Genet.70(4), 845–857 (2002).
  • Arnott ID, Nimmo ER, Drummond HE et al.NOD2/CARD15, TLR4 and CD14 mutations in Scottish and Irish Crohn’s disease patients: evidence for genetic heterogeneity within Europe? Genes Immun.5(5), 417–425 (2004).
  • Russell RK, Drummond HE, Nimmo EE et al. Genotype–phenotype analysis in childhood-onset Crohn‘s disease: NOD2/CARD15 variants consistently predict phenotypic characteristics of severe disease. Inflamm. Bowel Dis.11(11), 955–964 (2005).
  • Helio T, Halme L, Lappalainen M et al.CARD15/NOD2 gene variants are associated with familially occurring and complicated forms of Crohn’s disease. Gut52(4), 558–562 (2003).
  • Torkvist L, Noble CL, Lordal M et al. Contribution of CARD15 variants in determining susceptibility to Crohn’s disease in Sweden. Scand. J. Gastroenterol.41(6), 700–705 (2006).
  • Inoue N, Tamura K, Kinouchi Y et al. Lack of common NOD2 variants in Japanese patients with Crohn’s disease. Gastroenterology123(1), 86–91 (2002).
  • Leong RW, Armuzzi A, Ahmad T et al.NOD2/CARD15 gene polymorphisms and Crohn’s disease in the Chinese population. Aliment. Pharmacol. Ther.17(12), 1465–1470 (2003).
  • Croucher PJ, Mascheretti S, Hampe J et al. Haplotype structure and association to Crohn’s disease of CARD15 mutations in two ethnically divergent populations. Eur. J. Hum. Genet.11(1), 6–16 (2003).
  • Yang SK, Lim J, Chang HS et al. Association of TNFSF15 with Crohn’s disease in Koreans. Am. J. Gastroenterol.103(6), 1437–1442 (2008).
  • Yamazaki K, Onouchi Y, Takazoe M et al. Association analysis of genetic variants in IL23R, ATG16L1 and 5p13.1 loci with Crohn’s disease in Japanese patients. J. Hum. Genet.52(7), 575–583 (2007).
  • Yamazaki K, Takahashi A, Takazoe M et al. Positive association of genetic variants in the upstream region of NKX2-3 with Crohn’s disease in Japanese patients. Gut58(2), 228–232 (2009).
  • Negoro K, McGovern DP, Kinouchi Y et al. Analysis of the IBD5 locus and potential gene–gene interactions in Crohn’s disease. Gut52(4), 541–546 (2003).
  • Kim SC, Tonkonogy SL, Albright CA et al. Variable phenotypes of enterocolitis in interleukin 10-deficient mice monoassociated with two different commensal bacteria. Gastroenterology128(4), 891–906 (2005).
  • Altshuler D, Daly M. Guilt beyond a reasonable doubt. Nat. Genet.39(7), 813–815 (2007).
  • Mannon PJ, Fuss IJ, Mayer L et al. Anti-interleukin-12 antibody for active Crohn’s disease. N. Engl. J. Med.351(20), 2069–2079 (2004).
  • Massey DC, Bredin F, Parkes M. Use of sirolimus (rapamycin) to treat refractory Crohn’s disease. Gut57(9), 1294–1296 (2008).
  • Farkas S, Hornung M, Sattler C et al. Rapamycin decreases leukocyte migration in vivo and effectively reduces experimentally induced chronic colitis. Int. J. Colorectal Dis.21(8), 747–753 (2006).
  • Daly AK, Donaldson PT, Bhatnagar P et al. HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat. Genet.41(7), 816–819 (2009).
  • Derijks LJ, Gilissen LP, Hooymans PM et al. Review article: thiopurines in inflammatory bowel disease. Aliment. Pharmacol. Ther.24(5), 715–729 (2006).
  • D’Haens G, Baert F, van Assche G et al. Early combined immunosuppression or conventional management in patients with newly diagnosed Crohn’s disease: an open randomised trial. Lancet371(9613), 660–667 (2008).
  • Lees CW, Satsangi J. Early combined immunosuppression in Crohn’s disease. Lancet371(9629), 1995–1997 (2008).
  • Mathew CG. New links to the pathogenesis of Crohn disease provided by genome-wide association scans. Nat. Rev. Genet.9(1), 9–14 (2008).
  • Kugathasan S, Baldassano RN, Bradfield JP et al. Loci on 20q13 and 21q22 are associated with pediatric-onset inflammatory bowel disease. Nat. Genet.40(10), 1211–1215 (2008).
  • McCarthy MI, Abecasis GR, Cardon LR et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat. Rev. Genet.9(5), 356–369 (2008).
  • Cardon LR. Genetics. Delivering new disease genes. Science314(5804), 1403–1405 (2006).
  • Donnelly P. Progress and challenges in genome-wide association studies in humans. Nature456(7223), 728–731 (2008).
  • Zeggini E, Scott LJ, Saxena R et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for Type 2 diabetes. Nat. Genet.40(5), 638–645 (2008).
  • Lettre G, Jackson AU, Gieger C et al. Identification of ten loci associated with height highlights new biological pathways in human growth. Nat. Genet.40(5), 584–591 (2008).
  • Weedon MN, Lango H, Lindgren CM et al. Genome-wide association analysis identifies 20 loci that influence adult height. Nat. Genet.40(5), 575–583 (2008).
  • Houlston RS, Webb E, Broderick P et al. Meta-analysis of genome-wide association data identifies four new susceptibility loci for colorectal cancer. Nat. Genet.40(12), 1426–1435 (2008).
  • Tenesa A, Farrington SM, Prendergast JG et al. Genome-wide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21. Nat. Genet.40(5), 631–637 (2008).
  • Tomlinson IP, Webb E, Carvajal-Carmona L et al. A genome-wide association study identifies colorectal cancer susceptibility loci on chromosomes 10p14 and 8q23.3. Nat. Genet.40(5), 623–630 (2008).
  • Frayling TM, Timpson NJ, Weedon MN et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science316(5826), 889–894 (2007).
  • Loos RJ, Lindgren CM, Li S et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat. Genet.40(6), 768–775 (2008).
  • Thorleifsson G, Walters GB, Gudbjartsson DF et al. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat. Genet.41(1), 18–24 (2009).
  • Willer CJ, Speliotes EK, Loos RJ et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat. Genet.41(1), 25–34 (2009).
  • Webb MC, Andrews PA, Koffman CG et al. Renal transplantation in Wiskott-Aldrich syndrome. Transplantation56(6), 1585 (1993).
  • Marangoni F, Trifari S, Scaramuzza S et al. WASP regulates suppressor activity of human and murine CD4+CD25+FOXP3+ natural regulatory T cells. J. Exp. Med.204(2), 369–380 (2007).
  • Burton PR, Clayton DG, Cardon LR et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat. Genet.39(11), 1329–1337 (2007).
  • Kabashima K, Saji T, Murata T et al. The prostaglandin receptor EP4 suppresses colitis, mucosal damage and CD4 cell activation in the gut. J. Clin. Invest.109(7), 883–893 (2002).
  • Bouma G, Crusius JB, Garcia-Gonzalez MA et al. Genetic markers in clinically well defined patients with ulcerative colitis (UC). Clin. Exp. Immunol.115(2), 294–300 (1999).
  • Roussomoustakaki M, Satsangi J, Welsh K et al. Genetic markers may predict disease behavior in patients with ulcerative colitis. Gastroenterology112(6), 1845–1853 (1997).
  • Duerr RH, Chesny IJ. Associations between HLA-DR alleles and subsets of ulcerative colitis defined by extent of colitis. Gastroenterology (113) 2–7 (1997).
  • Mochida A, Kinouchi Y, Negoro K et al. Butyrophilin-like 2 gene is associated with ulcerative colitis in the Japanese under strong linkage disequilibrium with HLA-DRB1*1502. Tissue Antigens70(2), 128–135 (2007).
  • Aujla SJ, Dubin PJ, Kolls JK. Th17 cells and mucosal host defense. Semin. Immunol.19(6), 377–382 (2007).
  • Nakazawa A, Dotan I, Brimnes J et al. The expression and function of costimulatory molecules B7H and B7-H1 on colonic epithelial cells. Gastroenterology126(5), 1347–1357 (2004).
  • Ito T, Yang M, Wang YH et al. Plasmacytoid dendritic cells prime IL-10-producing T regulatory cells by inducible costimulator ligand. J. Exp. Med.204(1), 105–115 (2007).
  • Komiya T, Tanigawa Y, Hirohashi S. Cloning of the novel gene intelectin, which is expressed in intestinal paneth cells in mice. Biochem. Biophys. Res. Commun.251(3), 759–762 (1998).
  • Voehringer D, Stanley SA, Cox JS et al.Nippostrongylus brasiliensis: identification of intelectin-1 and -2 as Stat6-dependent genes expressed in lung and intestine during infection. Exp. Parasitol.116(4), 458–466 (2007).
  • Carolan BJ, Harvey BG, De BP et al. Decreased expression of intelectin 1 in the human airway epithelium of smokers compared to nonsmokers. J. Immunol.181(8), 5760–5767 (2008).
  • Plowey ED, Cherra SJ, III, Liu YJ et al. Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells. J. Neurochem.105(3), 1048–1056 (2008).
  • Bamias G, Martin C, III, Marini M et al. Expression, localization, and functional activity of TL1A, a novel Th1-polarizing cytokine in inflammatory bowel disease. J. Immunol.171(9), 4868–4874 (2003).
  • Takedatsu H, Michelsen KS, Wei B et al. TL1A (TNFSF15) regulates the development of chronic colitis by modulating both T-helper 1 and T-helper 17 activation. Gastroenterology135(2), 552–567 (2008).
  • Barmada MM, Brant SR, Nicolae DL et al. A genome scan in 260 inflammatory bowel disease-affected relative pairs. Inflamm. Bowel Dis.10(5), 513–520 (2004).
  • Hampe J, Schreiber S, Shaw SH et al. A genomewide analysis provides evidence for novel linkages in inflammatory bowel disease in a large European cohort. Am. J. Hum. Genet.64(3), 808–816 (1999).
  • Vermeire S, Rutgeerts P, van Steen K et al. Genome wide scan in a Flemish inflammatory bowel disease population: support for the IBD4 locus, population heterogeneity, and epistasis. Gut53(7), 980–986 (2004).
  • Kaser A, Lee AH, Franke A et al.XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell134(5), 743–756 (2008).
  • Gianfrancesco F, Esposito T, Ombra MN et al. Identification of a novel gene and a common variant associated with uric acid nephrolithiasis in a Sardinian genetic isolate. Am. J. Hum. Genet.72(6), 1479–1491 (2003).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.