44
Views
3
CrossRef citations to date
0
Altmetric
Review

PET imaging in lymphoma

Pages 261-276 | Published online: 10 Jan 2014

References

  • Thompson CJ. Instrumentation. In: Principles and Practice of Positron Emission Tomography. Wahl RL (Ed.). Lippincott Williams & Wilkins, PA, USA 48–64 (2002).
  • Finn RD, Schlyer DJ. Production of Radionuclides for PET. In: Principles and Practice of Positron Emission Tomography. Wahl RL (Ed). Lippincott Williams & Wilkins, PA, USA 1–15 (2002).
  • Fowler JS, Ding Y. Chemistry. In: Principles and Practice of Positron Emission Tomography. Wahl RL (Eds). Lippincott Williams & Wilkins, PA, USA 16–47 (2002).
  • Warburg O. Über den Stoffwechsel der Tumoren: arbeiten aus dem Kaiser Wilhelm-Institut für Biologie, Berlin-Dahlem. Springer, Berlin, Germany (1926).
  • Yamamoto T, Seino Y, Fukumoto H et al. Over-expression of facilitative glucose transporter genes in human cancer. Biochem. Biophys. Res. Commun.170(1), 223–230 (1990).
  • Brown RS, Wahl RL. Overexpression of Glut-1 glucose transporter in human breast cancer. An immunohistochemical study. Cancer72(10), 2979–2985 (1993).
  • Au KK, Liong E, Li JY et al. Increases in mRNA levels of glucose transporters types 1 and 3 in Ehrlich ascites tumor cells during tumor development. J. Cell. Biochem.67(1), 131–135 (1997).
  • Aloj L, Caraco C, Jagoda E, Eckelman WC, Neumann RD. Glut-1 and hexokinase expression: relationship with 2-fluoro-2-deoxy-D-glucose uptake in A431 and T47D cells in culture. Cancer Res.59(18), 4709–4714 (1999).
  • Higashi K, Clavo AC, Wahl RL. Does FDG uptake measure proliferative activity of human cancer cells? In vitro comparison with DNA flow cytometry and tritiated thymidine uptake. J. Nucl. Med.34(3), 414–419 (1993).
  • Brown RS, Leung JY, Fisher SJ, Frey KA, Ethier SP, Wahl RL. Intratumoral distribution of tritiated-FDG in breast carcinoma: correlation between Glut-1 expression and FDG uptake. J. Nucl. Med.37(6), 1042–1047 (1996).
  • Wahl RL, Henry CA, Ethier SP. Serum glucose: effects on tumor and normal tissue accumulation of 2-[F-18]-fluoro-2-deoxy-D-glucose in rodents with mammary carcinoma. Radiology183(3), 643–647 (1992).
  • Clavo AC, Brown RS, Wahl RL. Fluorodeoxyglucose uptake in human cancer cell lines is increased by hypoxia. J. Nucl. Med.36(9), 1625–1632 (1995).
  • Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T. Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J. Nucl. Med.33(11), 1972–1980 (1992).
  • Brown RS, Leung JY, Fisher SJ, Frey KA, Ethier SP, Wahl RL. Intratumoral distribution of tritiated fluorodeoxyglucose in breast carcinoma: I. Are inflammatory cells important? J. Nucl. Med.36(10), 1854–1861 (1995).
  • Higashi K, Clavo AC, Wahl RL. In vitro assessment of 2-fluoro-2-deoxy-D-glucose, l-methionine and thymidine as agents to monitor the early response of a human adenocarcinoma cell line to radiotherapy. J. Nucl. Med.34(5), 773–779 (1993).
  • Spaepen K, Stroobants S, Dupont P et al. [(18)F]FDG PET monitoring of tumour response to chemotherapy: does [(18)F]FDG uptake correlate with the viable tumour cell fraction? Eur. J. Nucl. Med. Mol. Imaging30(5), 682–688 (2003).
  • Hasenclever D, Diehl V. A prognostic score for advanced hodgkin’s disease. international prognostic factors project on advanced hodgkin’s disease. N. Engl. J. Med.339(21), 1506–1514 (1998).
  • Solal-Celigny P, Roy P, Colombat P et al. Follicular lymphoma international prognostic index. Blood104(5), 1258–1265 (2004).
  • A predictive model for aggressive non-Hodgkin’s lymphoma. The International Non-Hodgkin’s Lymphoma Prognostic Factors Project. N. Engl. J. Med.329(14), 987–994 (1993).
  • Bendini M, Zuiani C, Bazzocchi M, Dalpiaz G, Zaja F, Englaro E. Magnetic resonance imaging and 67Ga scan versus computed tomography in the staging and in the monitoring of mediastinal malignant lymphoma: a prospective pilot study. MAGMA4(3–4), 213–224 (1996).
  • Tomura N, Hirano H, Sashi R et al. Comparison of MR imaging and CT in discriminating tumor infiltration of bone and bone marrow in the skull base. Comput. Med. Imaging Graph.22(1), 41–51 (1998).
  • Paul R. Comparison of fluorine-18-2-fluorodeoxyglucose and gallium-67 citrate imaging for detection of lymphoma. J. Nucl. Med.28(3), 288–292 (1987).
  • Kostakoglu L, Leonard JP, Kuji I, Coleman M, Vallabhajosula S, Goldsmith SJ. Comparison of fluorine-18 fluorodeoxyglucose positron emission tomography and Ga-67 scintigraphy in evaluation of lymphoma. Cancer94(4), 879–888 (2002).
  • Wirth A, Seymour JF, Hicks RJ et al. Fluorine-18 fluorodeoxyglucose positron emission tomography, gallium-67 scintigraphy, and conventional staging for Hodgkin’s disease and non-Hodgkin’s lymphoma. Am. J. Med.112(4), 262–268 (2002).
  • Friedberg JW, Fischman A, Neuberg D et al. FDG–PET is superior to gallium scintigraphy in staging and more sensitive in the follow-up of patients with de novo Hodgkin lymphoma: a blinded comparison. Leuk. Lymphoma45(1), 85–92 (2004).
  • Yamamoto F, Tsukamoto E, Nakada K et al.18F-FDG PET is superior to 67Ga SPECT in the staging of non-Hodgkin’s lymphoma. Ann. Nucl. Med.18(6), 519–526 (2004).
  • Moog F, Bangerter M, Diederichs CG et al. Lymphoma: role of whole-body 2-deoxy-2-[F-18]fluoro-D-glucose (FDG) PET in nodal staging. Radiology203(3), 795–800 (1997).
  • Bangerter M, Kotzerke J, Griesshammer M, Elsner K, Reske SN, Bergmann L. Positron emission tomography with 18-fluorodeoxyglucose in the staging and follow-up of lymphoma in the chest. Acta Oncol.38(6), 799–804 (1999).
  • Buchmann I, Reinhardt M, Elsner K et al. 2-(fluorine-18)fluoro-2-deoxy-D-glucose positron emission tomography in the detection and staging of malignant lymphoma. A bicenter trial. Cancer91(5), 889–899 (2001).
  • Schoder H, Meta J, Yap C et al. Effect of whole-body (18)F-FDG PET imaging on clinical staging and management of patients with malignant lymphoma. J. Nucl. Med.42(8), 1139–1143 (2001).
  • Sasaki M, Kuwabara Y, Koga H et al. Clinical impact of whole body FDG–PET on the staging and therapeutic decision making for malignant lymphoma. Ann. Nucl. Med.16(5), 337–345 (2002).
  • Delbeke D, Martin WH, Morgan DS et al. 2-deoxy-2-[F-18]fluoro-D-glucose imaging with positron emission tomography for initial staging of Hodgkin’s disease and lymphoma. Mol. Imaging Biol.4(1), 105–114 (2002).
  • Moog F, Bangerter M, Diederichs CG et al. Extranodal malignant lymphoma: detection with FDG PET versus CT. Radiology206(2), 475–481 (1998).
  • Stumpe KD, Urbinelli M, Steinert HC, Glanzmann C, Buck A, von Schulthess GK. Whole-body positron emission tomography using fluorodeoxyglucose for staging of lymphoma: effectiveness and comparison with computed tomography. Eur. J. Nucl. Med.25(7), 721–728 (1998).
  • Hoh CK, Glaspy J, Rosen P et al. Whole-body FDG–PET imaging for staging of Hodgkin’s disease and lymphoma. J. Nucl. Med.38(3), 343–348 (1997).
  • Jerusalem G, Warland V, Najjar F et al. Whole-body 18F-FDG PET for the evaluation of patients with Hodgkin’s disease and non-Hodgkin’s lymphoma. Nucl. Med. Commun.20(1), 13–20 (1999).
  • Shah N, Hoskin P, McMillan A, Gibson P, Lowe J, Wong WL. The impact of FDG positron emission tomography imaging on the management of lymphomas. Br. J. Radiol.73(869), 482–487 (2000).
  • Wiedmann E, Baican B, Hertel A et al. Positron emission tomography (PET) for staging and evaluation of response to treatment in patients with Hodgkin’s disease. Leuk. Lymphoma34(5–6), 545–551 (1999).
  • Partridge S, Timothy A, O’Doherty MJ, Hain SF, Rankin S, Mikhaeel G. 2-Fluorine-18-fluoro-2-deoxy-D glucose positron emission tomography in the pretreatment staging of Hodgkin’s disease: influence on patient management in a single institution. Ann. Oncol.11(10), 1273–1279 (2000).
  • Hueltenschmidt B, Sautter-Bihl ML, Lang O et al. Whole body positron emission tomography in the treatment of Hodgkin disease. Cancer91(2), 302–310 (2001).
  • Jerusalem G, Beguin Y, Fassotte MF et al. Whole-body positron emission tomography using 18F-fluorodeoxyglucose compared to standard procedures for staging patients with Hodgkin’s disease. Haematologica86(3), 266–273 (2001).
  • Menzel C, Dobert N, Mitrou P et al. Positron emission tomography for the staging of Hodgkin’s lymphoma – increasing the body of evidence in favor of the method. Acta Oncol.41(5), 430–436 (2002).
  • Weihrauch MR, Re D, Bischoff S et al. Whole-body positron emission tomography using 18F-fluorodeoxyglucose for initial staging of patients with Hodgkin’s disease. Ann. Hematol.81(1), 20–25 (2002).
  • Cohade C, Wahl RL. Applications of positron emission tomography/computed tomography image fusion in clinical positron emission tomography – clinical use, interpretation methods, diagnostic improvements. Semin. Nucl. Med.33(3), 228–237 (2003).
  • Naumann R, Beuthien-Baumann B, Reiss A et al. Substantial impact of FDG PET imaging on the therapy decision in patients with early-stage Hodgkin’s lymphoma. Br. J. Cancer90(3), 620–625 (2004).
  • Munker R, Glass J, Griffeth LK et al. Contribution of PET imaging to the initial staging and prognosis of patients with Hodgkin’s disease. Ann. Oncol.15(11), 1699–1704 (2004).
  • Hutchings M, Loft A, Hansen M et al. Position emission tomography with or without computed tomography in the primary staging of Hodgkin’s lymphoma. Haematologica91(4), 482–489 (2006).
  • Rigacci L, Vitolo U, Nassi L et al. Positron emission tomography in the staging of patients with Hodgkin’s lymphoma. A prospective multicentric study by the Intergruppo Italiano Linfomi. Ann. Hematol.86(12), 897–903 (2007).
  • Bangerter M, Moog F, Buchmann I et al. Whole-body 2-[18F]-fluoro-2-deoxy-D-glucose positron emission tomography (FDG–PET) for accurate staging of Hodgkin’s disease. Ann. Oncol.9(10), 1117–1122 (1998).
  • Carr R, Barrington SF, Madan B et al. Detection of lymphoma in bone marrow by whole-body positron emission tomography. Blood91(9), 3340–3346 (1998).
  • Pakos EE, Fotopoulos AD, Ioannidis JP. 18F-FDG PET for evaluation of bone marrow infiltration in staging of lymphoma: a meta-analysis. J. Nucl. Med.46(6), 958–963 (2005).
  • Hoffmann M, Vogelsang H, Kletter K, Zettinig G, Chott A, Raderer M. 18F-fluoro-deoxy-glucose positron emission tomography (18F-FDG–PET) for assessment of enteropathy-type T cell lymphoma. Gut52(3), 347–351 (2003).
  • Fuertes S, Setoain X, Lopez-Guillermo A et al. [The value of positron emission tomography/computed tomography (PET/CT) in the staging of diffuse large B-cell lymphoma]. Med. Clin. (Barc.)129(18), 688–693 (2007).
  • Hoffmann M, Kletter K, Becherer A, Jager U, Chott A, Raderer M. 18F-fluorodeoxyglucose positron emission tomography (18F-FDG–PET) for staging and follow-up of marginal zone B-cell lymphoma. Oncology64(4), 336–340 (2003).
  • Hoffmann M, Chott A, Puspok A, Jager U, Kletter K, Raderer M. 18F-fluorodeoxyglucose positron emission tomography (18F-FDG–PET) does not visualize follicular lymphoma of the duodenum. Ann. Hematol.83(5), 276–278 (2004).
  • Wohrer S, Jaeger U, Kletter K et al.18F-fluoro-deoxy-glucose positron emission tomography (18F-FDG–PET) visualizes follicular lymphoma irrespective of grading. Ann. Oncol.17(5), 780–784 (2006).
  • Jerusalem G, Beguin Y, Najjar F et al. Positron emission tomography (PET) with 18F-fluorodeoxyglucose (18F-FDG) for the staging of low-grade non-Hodgkin’s lymphoma (NHL). Ann. Oncol.12(6), 825–830 (2001).
  • Elstrom R, Guan L, Baker G et al. Utility of FDG–PET scanning in lymphoma by WHO classification. Blood101(10), 3875–3876 (2003).
  • Beal KP, Yeung HW, Yahalom J. FDG–PET scanning for detection and staging of extranodal marginal zone lymphomas of the MALT type: a report of 42 cases. Ann. Oncol.16(3), 473–480 (2005).
  • Valencak J, Becherer A, Der-Petrossian M, Trautinger F, Raderer M, Hoffmann M. Positron emission tomography with [18F] 2-fluoro-d-2-deoxyglucose in primary cutaneous T-cell lymphomas. Haematologica89(1), 115–116 (2004).
  • Ambrosini V, Rubello D, Castellucci P et al. Diagnostic role of 18F-FDG pet in gastric MALT lymphoma. Nucl. Med. Rev. Cent. East Eur.9(1), 37–40 (2006).
  • Najjar F, Hustinx R, Jerusalem G, Fillet G, Rigo P. Positron emission tomography (PET) for staging low-grade non-Hodgkin’s lymphomas (NHL). Cancer Biother. Radiopharm.16(4), 297–304 (2001).
  • Schoder H, Noy A, Gonen M et al. Intensity of 18fluorodeoxyglucose uptake in positron emission tomography distinguishes between indolent and aggressive non-Hodgkin’s lymphoma. J. Clin. Oncol.23(21), 4643–4651 (2005).
  • Radan L, Fischer D, Bar-Shalom R et al. FDG avidity and PET/CT patterns in primary gastric lymphoma. Eur. J. Nucl. Med. Mol. Imaging35(8), 1424–1430 (2008).
  • Kumar R, Xiu Y, Potenta S et al.18F-FDG–PET for evaluation of the treatment response in patients with gastrointestinal tract lymphomas. J. Nucl. Med.45(11), 1796–1803 (2004).
  • Roe RH, Finger PT, Kurli M, Tena LB, Iacob CE. Whole-body positron emission tomography/computed tomography imaging and staging of orbital lymphoma. Ophthalmology113(10), 1854–1858 (2006).
  • Basu S, Mahne A, Iruvuri S, Alavi A. Potential clinical role of fluorodeoxyglucose–positron emission tomography in assessing primary or secondary lymphomas of the parotid gland. Clin. Lymphoma Myeloma7(4), 309–314 (2007).
  • Perry C, Herishanu Y, Metzer U et al. Diagnostic accuracy of PET/CT in patients with extranodal marginal zone MALT lymphoma. Eur. J. Haematol.79(3), 205–209 (2007).
  • Suh C, Kang YK, Roh JL et al. Prognostic value of tumor 18F-FDG uptake in patients with untreated extranodal natural killer/T-cell lymphomas of the head and neck. J. Nucl. Med.49(11), 1783–1789 (2008).
  • Allen-Auerbach M, Quon A, Weber WA et al. Comparison between 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography and positron emission tomography/computed tomography hardware fusion for staging of patients with lymphoma. Mol. Imaging Biol.6(6), 411–416 (2004).
  • Lister TA, Crowther D, Sutcliffe SB et al. Report of a committee convened to discuss the evaluation and staging of patients with Hodgkin’s disease: Cotswolds meeting. J. Clin. Oncol.7(11), 1630–1636 (1989).
  • Rankin SC. Assessment of response to therapy using conventional imaging. Eur. J. Nucl. Med. Mol. Imaging30(Suppl. 1), S56–S64 (2003).
  • Armitage JO, Weisenburger DD, Hutchins M et al. Chemotherapy for diffuse large-cell lymphoma – rapidly responding patients have more durable remissions. J. Clin. Oncol.4(2), 160–164 (1986).
  • Gupta RK, Gospodarowicz MK, Lister TA. Clinical Evaluation and Staging. In: Hodgkin’s Disease. Mauch P, Armitage JO, Diehl V, Hoppe R, Weiss LM (Eds). Lippincott Williams and Wilkins, PA, USA 223–240 (1999)
  • Canellos GP. Residual mass in lymphoma may not be residual disease. J. Clin. Oncol.6(6), 931–933 (1988).
  • Jerusalem G, Beguin Y, Fassotte MF et al. Persistent tumor 18F-FDG uptake after a few cycles of polychemotherapy is predictive of treatment failure in non-Hodgkin’s lymphoma. Haematologica85(6), 613–618 (2000).
  • Mikhaeel NG, Timothy AR, O’Doherty MJ, Hain S, Maisey MN. 18-FDG–PET as a prognostic indicator in the treatment of aggressive non-Hodgkin’s lymphoma-comparison with CT. Leuk. Lymphoma39(5–6), 543–553 (2000).
  • Spaepen K, Stroobants S, Dupont P et al. Early restaging positron emission tomography with (18)F-fluorodeoxyglucose predicts outcome in patients with aggressive non-Hodgkin’s lymphoma. Ann. Oncol.13(9), 1356–1363 (2002).
  • Hoekstra OS, Ossenkoppele GJ, Golding R et al. Early treatment response in malignant lymphoma, as determined by planar fluorine-18-fluorodeoxyglucose scintigraphy. J. Nucl. Med.34(10), 1706–1710 (1993).
  • Kostakoglu L, Coleman M, Leonard JP, Kuji I, Zoe H, Goldsmith SJ. PET predicts prognosis after 1 cycle of chemotherapy in aggressive lymphoma and Hodgkin’s disease. J. Nucl. Med.43(8), 1018–1027 (2002).
  • Torizuka T, Nakamura F, Kanno T et al. Early therapy monitoring with FDG–PET in aggressive non-Hodgkin’s lymphoma and Hodgkin’s lymphoma. Eur. J. Nucl. Med. Mol. Imaging31(1), 22–28 (2004).
  • Mikhaeel NG, Hutchings M, Fields PA, O’Doherty MJ, Timothy AR. FDG–PET after two to three cycles of chemotherapy predicts progression-free and overall survival in high-grade non-Hodgkin lymphoma. Ann. Oncol.16(9), 1514–1523 (2005).
  • Haioun C, Itti E, Rahmouni A et al. [18F] fluoro-2-deoxy-D-glucose positron emission tomography (FDG–PET) in aggressive lymphoma: an early prognostic tool for predicting patient outcome. Blood106(4), 1376–1381 (2005).
  • Kostakoglu L, Goldsmith SJ, Leonard JP et al. FDG–PET after 1 cycle of therapy predicts outcome in diffuse large cell lymphoma and classic Hodgkin disease. Cancer107(11), 2678–2687 (2006).
  • Hutchings M, Mikhaeel NG, Fields PA, Nunan T, Timothy AR. Prognostic value of interim FDG–PET after two or three cycles of chemotherapy in Hodgkin lymphoma. Ann. Oncol.16(7), 1160–1168 (2005).
  • Hutchings M, Loft A, Hansen M et al. FDG–PET after two cycles of chemotherapy predicts treatment failure and progression-free survival in Hodgkin lymphoma. Blood107(1), 52–59 (2006).
  • Zinzani PL, Tani M, Fanti S et al. Early positron emission tomography (PET) restaging: a predictive final response in Hodgkin’s disease patients. Ann. Oncol.17(8), 1296–1300 (2006).
  • Gallamini A, Rigacci L, Merli F et al. The predictive value of positron emission tomography scanning performed after two courses of standard therapy on treatment outcome in advanced stage Hodgkin’s disease. Haematologica91(4), 475–481 (2006).
  • Gallamini A, Hutchings M, Rigacci L et al. Early interim 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography is prognostically superior to international prognostic score in advanced-stage Hodgkin’s lymphoma: a report from a joint Italian–Danish study. J. Clin. Oncol.25(24), 3746–3752 (2007).
  • Gallamini A, Viviani S, Bonfante V et al. Early interim FDG–PET during intensified BEACOPP therapy shows a lower predicitve value than during conventional ABVD chemotherapy. Haematologica92(Suppl. 5), 71 (2007).
  • Avigdor A, Bulvik S, Dann EJ et al. Combined ESCBEACOPP–ABVD therapy for advanced Hodgkin’s lymphoma patients with high IPS score: an effective regimen and low positive predictive value of early FDG–PET/CT. Haematologica92(Suppl. 5), 66 (2007).
  • Aleman BM, van den Belt-Dusebout AW, Klokman WJ, Van’t Veer MB, Bartelink H, van Leeuwen FE. Long-term cause-specific mortality of patients treated for Hodgkin’s disease. J. Clin. Oncol.21(18), 3431–3439 (2003).
  • Oza AM, Ganesan TS, Leahy M et al. Patterns of survival in patients with Hodgkin’s disease: long follow up in a single centre. Ann. Oncol.4(5), 385–392 (1993).
  • Diehl V, Franklin J, Pfreundschuh M et al. Standard and increased-dose BEACOPP chemotherapy compared with COPP-ABVD for advanced Hodgkin‘s disease. N. Engl. J. Med.348(24), 2386–2395 (2003).
  • Bishu S, Quigley JM, Bishu SR et al. Predictive value and diagnostic accuracy of F-18-fluoro-deoxy-glucose positron emission tomography treated grade 1 and 2 follicular lymphoma. Leuk. Lymphoma48(8), 1548–1555 (2007).
  • Cheson BD, Horning SJ, Coiffier B et al. Report of an international workshop to standardize response criteria for non-Hodgkin’s lymphomas. NCI Sponsored International Working Group. J. Clin. Oncol.17(4), 1244 (1999).
  • Juweid ME, Wiseman GA, Vose JM et al. Response assessment of aggressive non-Hodgkin’s lymphoma by integrated International Workshop Criteria and fluorine-18-fluorodeoxyglucose positron emission tomography. J. Clin. Oncol.23(21), 4652–4661 (2005).
  • Becherer A, Jaeger U, Szabo M, Kletter K. Prognostic value of FDG–PET in malignant lymphoma. Q. J. Nucl. Med.47(1), 14–21 (2003).
  • Brepoels L, Stroobants S, Verhoef G. PET and PET/CT for response evaluation in lymphoma: current practice and developments. Leuk. Lymphoma48(2), 270–282 (2007).
  • Cremerius U, Fabry U, Neuerburg J, Zimny M, Osieka R, Buell U. Positron emission tomography with 18F-FDG to detect residual disease after therapy for malignant lymphoma. Nucl. Med. Commun.19(11), 1055–1063 (1998).
  • de Wit M, Bumann D, Beyer W, Herbst K, Clausen M, Hossfeld DK. Whole-body positron emission tomography (PET) for diagnosis of residual mass in patients with lymphoma. Ann. Oncol.8(Suppl. 1), 57–60 (1997).
  • de Wit M, Bohuslavizki KH, Buchert R, Bumann D, Clausen M, Hossfeld DK. 18FDG–PET following treatment as valid predictor for disease-free survival in Hodgkin’s lymphoma. Ann. Oncol.12(1), 29–37 (2001).
  • Freudenberg LS, Antoch G, Schutt P et al. FDG–PET/CT in re-staging of patients with lymphoma. Eur. J. Nucl. Med. Mol. Imaging31(3), 325–329 (2004).
  • Dittmann H, Sokler M, Kollmannsberger C et al. Comparison of 18FDG–PET with CT scans in the evaluation of patients with residual and recurrent Hodgkin’s lymphoma. Oncol. Rep.8(6), 1393–1399 (2001).
  • Guay C, Lepine M, Verreault J, Benard F. Prognostic value of PET using 18F-FDG in Hodgkin’s disease for posttreatment evaluation. J. Nucl. Med.44(8), 1225–1231 (2003)..
  • Jerusalem G, Beguin Y, Fassotte MF et al. Whole-body positron emission tomography using 18F-fluorodeoxyglucose for post-treatment evaluation in Hodgkin’s disease and non-Hodgkin’s lymphoma has higher diagnostic and prognostic value than classical computed tomography scan imaging. Blood94(2), 429–433 (1999).
  • Kazama T, Faria SC, Varavithya V, Phongkitkarun S, Ito H, Macapinlac HA. FDG PET in the evaluation of treatment for lymphoma: clinical usefulness and pitfalls. Radiographics25(1), 191–207 (2005).
  • Lang O, Bihl H, Hultenschmidt B, Sautter-Bihl ML. Clinical relevance of positron emission tomography (PET) in treatment control and relapse of Hodgkin‘s disease. Strahlenther. Onkol.177(3), 138–144 (2001).
  • Maisey NR, Hill ME, Webb A et al. Are 18fluorodeoxyglucose positron emission tomography and magnetic resonance imaging useful in the prediction of relapse in lymphoma residual masses? Eur. J. Cancer36(2), 200–206 (2000).
  • Lavely WC, Delbeke D, Greer JP et al. FDG PET in the follow-up management of patients with newly diagnosed Hodgkin and non-Hodgkin lymphoma after first-line chemotherapy. Int. J. Radiat. Oncol. Biol. Phys.57(2), 307–315 (2003).
  • Mikhaeel NG, Timothy AR, Hain SF, O’Doherty MJ. 18-FDG–PET for the assessment of residual masses on CT following treatment of lymphomas. Ann. Oncol.11(Suppl. 1), 147ndash;150 (2000).
  • Naumann R, Vaic A, Beuthien-Baumann B et al. Prognostic value of positron emission tomography in the evaluation of post-treatment residual mass in patients with Hodgkin’s disease and non-Hodgkin’s lymphoma. Br. J. Haematol.115(4), 793–800 (2001).
  • Panizo C, Perez-Salazar M, Bendandi M et al. Positron emission tomography using 18F-fluorodeoxyglucose for the evaluation of residual Hodgkin’s disease mediastinal masses. Leuk. Lymphoma45(9), 1829–1833 (2004).
  • Rahmouni A, Luciani A, Itti E. Quantitative CT analysis for assessing response in lymphoma (Cheson’s criteria). Cancer Imaging5(Spec. No A), S102–S106 (2005).
  • Reinhardt MJ, Herkel C, Altehoefer C, Finke J, Moser E. Computed tomography and 18F-FDG positron emission tomography for therapy control of Hodgkin’s and non-Hodgkin’s lymphoma patients: when do we really need FDG–PET? Ann. Oncol.16(9), 1524–1529 (2005).
  • Reske SN. PET and restaging of malignant lymphoma including residual masses and relapse. Eur. J. Nucl. Med. Mol. Imaging30(Suppl. 1), S89–S96 (2003).
  • Rigacci L, Castagnoli A, Dini C et al.18FDG-positron emission tomography in post treatment evaluation of residual mass in Hodgkin’s lymphoma: long-term results. Oncol. Rep.14(5), 1209–1214 (2005).
  • Spaepen K, Stroobants S, Dupont P et al. Can positron emission tomography with [(18)F]-fluorodeoxyglucose after first-line treatment distinguish Hodgkin’s disease patients who need additional therapy from others in whom additional therapy would mean avoidable toxicity? Br. J. Haematol.115(2), 272–278 (2001).
  • Spaepen K, Stroobants S, Dupont P et al. Prognostic value of positron emission tomography (PET) with fluorine-18 fluorodeoxyglucose ([18F]FDG) after first-line chemotherapy in non-Hodgkin’s lymphoma: is [18F]FDG–PET a valid alternative to conventional diagnostic methods? J. Clin. Oncol.19(2), 414–419 (2001).
  • Weihrauch MR, Re D, Scheidhauer K et al. Thoracic positron emission tomography using 18F-fluorodeoxyglucose for the evaluation of residual mediastinal Hodgkin disease. Blood98(10), 2930–2934 (2001).
  • Zijlstra JM, Lindauer-van der Werf G, Hoekstra OS, Hooft L, Riphagen II, Huijgens PC. 18F-fluoro-deoxyglucose positron emission tomography for post-treatment evaluation of malignant lymphoma: a systematic review. Haematologica91(4), 522–529 (2006).
  • Zinzani PL, Musuraca G, Alinari L et al. Predictive role of positron emission tomography in the outcome of patients with follicular lymphoma. Clin. Lymphoma Myeloma7(4), 291–295 (2007).
  • Cheson BD, Pfistner B, Juweid ME et al. Revised response criteria for malignant lymphoma. J. Clin. Oncol.25(5), 579–586 (2007).
  • Juweid ME, Stroobants S, Hoekstra OS et al. Use of positron emission tomography for response assessment of lymphoma: consensus of the Imaging Subcommittee of International Harmonization Project in Lymphoma. J. Clin. Oncol.25(5), 571–578 (2007).
  • Brepoels L, Stroobants S, De Wever W et al. Hodgkin lymphoma: response assessment by revised International Workshop Criteria. Leuk. Lymphoma48(8), 1539–1547 (2007).
  • Yahalom J. Omitting radiotherapy after attaining FDG-PET-negative status following chemotherapy alone for Hodgkin lymphoma: a randomized study caveat. Leuk. Lymphoma48(9), 1667–1669 (2007).
  • Picardi M, De Renzo A, Pane F et al. Randomized comparison of consolidation radiation versus observation in bulky Hodgkin’s lymphoma with post-chemotherapy negative positron emission tomography scans. Leuk. Lymphoma48(9), 1721–1727 (2007).
  • Kobe C, Dietlein M, Franklin J et al. Positron emission tomography has a high negative predictive value for progression or early relapse for patients with residual disease after first line chemotherapy in advanced-stage Hodgkin lymphoma. Blood (2008).
  • Jacene HA, Filice R, Kasecamp W, Wahl RL. 18F-FDG PET/CT for monitoring the response of lymphoma to radioimmunotherapy. J. Nucl. Med.50(1), 8–17 (2009).
  • Bodet-Milin C, Kraeber-Bodere F, Dupas B et al. Evaluation of response to fractionated radioimmunotherapy with 90Y-epratuzumab in non-Hodgkin’s lymphoma by 18F-fluorodeoxyglucose positron emission tomography. Haematologica93(3), 390–397 (2008).
  • Girinsky T, Pichenot C, Beaudre A, Ghalibafian M, Lefkopoulos D. Is intensity-modulated radiotherapy better than conventional radiation treatment and three-dimensional conformal radiotherapy for mediastinal masses in patients with Hodgkin’s disease, and is there a role for beam orientation optimization and dose constraints assigned to virtual volumes? Int. J. Radiat. Oncol. Biol. Phys.64(1), 218–226 (2006).
  • Girinsky T, van der Maazen R, Specht L et al. Involved-node radiotherapy (INRT) in patients with early Hodgkin lymphoma: concepts and guidelines. Radiother. Oncol.79(3), 270–277 (2006).
  • Specht L, Gray RG, Clarke MJ, Peto R. Influence of more extensive radiotherapy and adjuvant chemotherapy on long-term outcome of early-stage Hodgkin’s disease: a meta-analysis of 23 randomized trials involving 3,888 patients. International Hodgkin’s Disease Collaborative Group. J. Clin. Oncol.16(3), 830–843 (1998).
  • Yahalom J. Transformation in the use of radiation therapy of Hodgkin lymphoma: new concepts and indications lead to modern field design and are assisted by PET imaging and intensity modulated radiation therapy (IMRT). Eur. J. Haematol.66(Suppl.), 90–97 (2005).
  • Gregoire V. Is there any future in radiotherapy planning without the use of PET: unraveling the myth. Radiother. Oncol.73(3), 261–263 (2004).
  • Jarritt PH, Carson KJ, Hounsell AR, Visvikis D. The role of PET/CT scanning in radiotherapy planning. Br. J. Radiol.79(Spec. No 1), S27–S35 (2006).
  • Berthelsen AK, Dobbs J, Kjellén E et al. What’s new in target volume definitions for radiologists in ICRU Report 71? How can the ICRU volume definitions be integrated in clinical practice? Cancer Imaging11(7), 104–116 (2007).
  • Specht L. 2-[18F]fluoro-2-deoxyglucose positron-emission tomography in staging, response evaluation, and treatment planning of lymphomas. Semin. Radiat. Oncol.17(3), 190–197 (2007).
  • van Baardwijk A, Baumert BG, Bosmans G et al. The current status of FDG–PET in tumour volume definition in radiotherapy treatment planning. Cancer Treat. Rev.32(4), 245–260 (2006).
  • Dizendorf EV, Baumert BG, von Schulthess GK, Lutolf UM, Steinert HC. Impact of whole-body 18F-FDG PET on staging and managing patients for radiation therapy. J. Nucl. Med.44(1), 24–29 (2003).
  • Lee YK, Cook G, Flower MA et al. Addition of 18F-FDG–PET scans to radiotherapy planning of thoracic lymphoma. Radiother. Oncol.73(3), 277–283 (2004).
  • Girinsky T, Ghalibafian M, Bonniaud G et al. Is FDG–PET scan in patients with early stage Hodgkin lymphoma of any value in the implementation of the involved-node radiotherapy concept and dose painting? Radiother. Oncol.85(2), 178–186 (2007).
  • Hutchings M, Berthelsen AK, Loft A, Hansen M, Specht L. Clinical impact of FDG–PET/CT in the planning of radiotherapy for early stage Hodgkin lymphoma. Eur. J. Haematol.78(3), 206–212 (2007).
  • Krasin MJ, Hudson MM, Kaste SC. Positron emission tomography in pediatric radiation oncology: integration in the treatment-planning process. Pediatr. Radiol.34(3), 214–221 (2004).
  • Jerusalem G, Beguin Y, Fassotte MF et al. Early detection of relapse by whole-body positron emission tomography in the follow-up of patients with Hodgkin’s disease. Ann. Oncol.14(1), 123–130 (2003).
  • Zinzani PL, Tani M, Trisolini R et al. Histological verification of positive positron emission tomography findings in the follow-up of patients with mediastinal lymphoma. Haematologica92(6), 771–777 (2007).
  • Haioun C, Lepage E, Gisselbrecht C et al. Survival benefit of high-dose therapy in poor-risk aggressive non-Hodgkin’s lymphoma: final analysis of the prospective LNH87–2 protocol – a groupe d’Etude des lymphomes de l’Adulte study. J. Clin. Oncol.18(16), 3025–3030 (2000).
  • Stiff PJ, Dahlberg S, Forman SJ et al. Autologous bone marrow transplantation for patients with relapsed or refractory diffuse aggressive non-Hodgkin’s lymphoma: value of augmented preparative regimens – a Southwest Oncology Group trial. J. Clin. Oncol.16(1), 48–55 (1998).
  • Becherer A, Mitterbauer M, Jaeger U et al. Positron emission tomography with [18F]2-fluoro-D-2-deoxyglucose (FDG–PET) predicts relapse of malignant lymphoma after high-dose therapy with stem cell transplantation. Leukemia16(2), 260–267 (2002).
  • Cremerius U, Fabry U, Wildberger JE et al. Pre-transplant positron emission tomography (PET) using fluorine-18-fluoro-deoxyglucose (FDG) predicts outcome in patients treated with high-dose chemotherapy and autologous stem cell transplantation for non-Hodgkin’s lymphoma. Bone Marrow Transplant.30(2), 103–111 (2002).
  • Spaepen K, Stroobants S, Dupont P et al. Prognostic value of pretransplantation positron emission tomography using fluorine 18-fluorodeoxyglucose in patients with aggressive lymphoma treated with high-dose chemotherapy and stem cell transplantation. Blood102(1), 53–59 (2003).
  • Filmont JE, Czernin J, Yap C et al. Value of F-18 fluorodeoxyglucose positron emission tomography for predicting the clinical outcome of patients with aggressive lymphoma prior to and after autologous stem-cell transplantation. Chest124(2), 608–613 (2003).
  • Engles JM, Quarless SA, Mambo E, Ishimori T, Cho SY, Wahl RL. Stunning and its effect on 3H-FDG uptake and key gene expression in breast cancer cells undergoing chemotherapy. J. Nucl. Med.47(4), 603–608 (2006).
  • Buck AK, Halter G, Schirrmeister H et al. Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. J. Nucl. Med.44(9), 1426–1431 (2003).
  • Sandherr M, von Schilling C, Link T et al. Pitfalls in imaging Hodgkin’s disease with computed tomography and positron emission tomography using fluorine-18-fluorodeoxyglucose. Ann. Oncol.12(5), 719–722 (2001).
  • Martiat P, Ferrant A, Labar D et al.In vivo measurement of carbon-11 thymidine uptake in non-Hodgkin’s lymphoma using positron emission tomography. J. Nucl. Med.29(10), 1633–1637 (1988).
  • Shields AF, Mankoff DA, Link JM et al. Carbon-11-thymidine and FDG to measure therapy response. J. Nucl. Med.39(10), 1757–1762 (1998).
  • Shields AF, Grierson JR, Dohmen BM et al. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat. Med.4(11), 1334–1336 (1998).
  • Buchmann I, Neumaier B, Schreckenberger M, Reske S. [18F]3´-deoxy-3´-fluorothymidine-PET in NHL patients: whole-body biodistribution and imaging of lymphoma manifestations – a pilot study. Cancer Biother. Radiopharm.19(4), 436–442 (2004).
  • Buck AK, Bommer M, Stilgenbauer S et al. Molecular imaging of proliferation in malignant lymphoma. Cancer Res.66(22), 11055–11061 (2006).
  • Kasper B, Egerer G, Gronkowski M et al. Functional diagnosis of residual lymphomas after radiochemotherapy with positron emission tomography comparing FDG- and FLT-PET. Leuk. Lymphoma48(4), 746–753 (2007).
  • Buck AK, Kratochwil C, Glatting G et al. Early assessment of therapy response in malignant lymphoma with the thymidine analogue [18F]FLT. Eur. J. Nucl. Med. Mol. Imaging34(11), 1775–1782 (2007).
  • Graf N, Herrmann K, den Hollander J et al. Imaging proliferation to monitor early response of lymphoma to cytotoxic treatment. Mol. Imaging Biol.10(6), 349–355 (2008).
  • Hoffman RM. Altered methionine metabolism, DNA methylation and oncogene expression in carcinogenesis. A review and synthesis. Biochim. Biophys. Acta738(1–2), 49–87 (1984).
  • Stern PH, Wallace CD, Hoffman RM. Altered methionine metabolism occurs in all members of a set of diverse human tumor cell lines. J. Cell Physiol.119(1), 29–34 (1984).
  • Wheatley DN. On the problem of linear incorporation of amino acids into cell protein. Experientia38(7), 818–820 (1982).
  • Ogawa T, Kanno I, Hatazawa J et al. Methionine PET for follow-up of radiation therapy of primary lymphoma of the brain. Radiographics14(1), 101–110 (1994).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.