4,072
Views
122
CrossRef citations to date
0
Altmetric
Special Report

Pathogenesis and classification of eosinophil disorders: a review of recent developments in the field

, , , , , , , , , , , , , , , , , , & show all
Pages 157-176 | Published online: 10 Jan 2014

References

  • Gleich GJ, Adolphson CR, Leiferman KM. The biology of the eosinophilic leukocyte. Annu. Rev. Med. 44, 85–101 (1993).
  • Weller PF. Eosinophils: structure and functions. Curr. Opin. Immunol. 6(1), 85–90 (1994).
  • Fulkerson PC, Rothenberg ME. Origin, regulation and physiological function of intestinal eosinophils. Best. Pract. Res. Clin. Gastroenterol. 22(3), 411–423 (2008).
  • Kita H. Eosinophils: multifaceted biological properties and roles in health and disease. Immunol. Rev. 242(1), 161–177 (2011).
  • Gleich GJ. Mechanisms of eosinophil-associated inflammation. J. Allergy Clin. Immunol. 105(4), 651–663 (2000).
  • Hogan SP, Rosenberg HF, Moqbel R et al. Eosinophils: biological properties and role in health and disease. Clin. Exp. Allergy 38(5), 709–750 (2008).
  • Ackerman SJ, Bochner BS. Mechanisms of eosinophilia in the pathogenesis of hypereosinophilic disorders. Immunol. Allergy Clin. North Am. 27(3), 357–375 (2007).
  • Ogbogu PU, Rosing DR, Horne MK 3rd. Cardiovascular manifestations of hypereosinophilic syndromes. Immunol. Allergy Clin. North Am. 27(3), 457–475 (2007).
  • Kay AB. The eosinophil in infection diseases. J. Infect. Dis. 129(5), 606–613 (1974).
  • Capron M. Eosinophils and parasites. Ann. Parasitol. Hum. Comp. 66(S1), 41–45 (1991).
  • Walsh SA, Creamer D. Drug reaction with eosinophilia and systemic symptoms (DRESS): a clinical update and review of current thinking. Clin. Exp. Dermatol. 36(1), 6–11 (2011).
  • Kargili A, Bavbek N, Kaya A, Koşar A, Karaaslan Y. Eosinophilia in rheumatologic diseases: a prospective study of 1000 cases. Rheumatol. Int. 24(6), 321–324 (2004).
  • Tefferi A, Patnaik MM, Pardanani A. Eosinophilia: secondary, clonal and idiopathic. Br. J. Haematol. 133(5), 468–492 (2006).
  • Sade K, Mysels A, Levo Y, Kivity S. Eosinophilia: a study of 100 hospitalized patients. Eur. J. Intern. Med. 18(3), 196–201 (2007).
  • Lotfi R, Lee JJ, Lotze MT. Eosinophilic granulocytes and damage-associated molecular pattern molecules (DAMPs): role in the inflammatory response within tumors. J. Immunother. 30(1), 16–28 (2007).
  • Nutman TB. Evaluation and differential diagnosis of marked, persistent eosinophilia. Immunol. Allergy Clin. North Am. 27(3), 529–549 (2007).
  • Simon D, Simon HU. Eosinophilic disorders. J. Allergy Clin. Immunol. 119(6), 1291–1300 (2007).
  • Tefferi A. Modern diagnosis and treatment of primary eosinophilia. Acta Haematol. 114(1), 52–60 (2005).
  • Gotlib J, Cross NC, Gilliland DG. Eosinophilic disorders: molecular pathogenesis, new classification, and modern therapy. Best Pract. Res. Clin. Haematol. 19(3), 535–569 (2006).
  • Bain BJ, Fletcher SH. Chronic eosinophilic leukemias and the myeloproliferative variant of the hypereosinophilic syndrome. Immunol. Allergy Clin. North Am. 27(3), 377–388 (2007).
  • Tefferi A, Vardiman JW. Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia 22(1), 14–22 (2008).
  • Haferlach T, Bacher U, Kern W, Schnittger S, Haferlach C. The diagnosis of BCR/ABL-negative chronic myeloproliferative diseases (CMPD): a comprehensive approach based on morphology, cytogenetics, and molecular markers. Ann. Hematol. 87(1), 1–10 (2008).
  • Valent P. Pathogenesis, classification, and therapy of eosinophilia and eosinophil disorders. Blood Rev. 23(4), 157–165 (2009).
  • Bain BJ. Review: eosinophils and eosinophilic leukemia. Clin. Adv. Hematol. Oncol. 8(12), 901–903 (2010).
  • Apperley JF, Gardembas M, Melo JV et al. Response to imatinib mesylate in patients with chronic myeloproliferative diseases with rearrangements of the platelet-derived growth factor receptor β. N. Engl. J. Med. 347(7), 481–487 (2002).
  • Cools J, DeAngelo DJ, Gotlib J et al. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N. Engl. J. Med. 348(13), 1201–1214 (2003).
  • Pardanani A, Reeder T, Porrata LF et al. Imatinib therapy for hypereosinophilic syndrome and other eosinophilic disorders. Blood 101(9), 3391–3397 (2003).
  • Cross NC, Reiter A. Fibroblast growth factor receptor and platelet-derived growth factor receptor abnormalities in eosinophilic myeloproliferative disorders. Acta Haematol. 119(4), 199–206 (2008).
  • Simon HU, Rothenberg ME, Bochner BS et al. Refining the definition of hypereosinophilic syndrome. J. Allergy Clin. Immunol. 126(1), 45–49 (1010).
  • Bain BJ, Pierre R, Imbert M, Vardiman JW, Brunning RD, Flandrin G. Chronic eosinophilic leukemia and the hypereosinophilic syndrome. In: World Health Organization (WHO) Classification of Tumours. Pathology & Genetics. Tumours of Haematopoietic and Lymphoid Tissues (Volume 1). Jaffe ES, Harris NL, Stein H, Vardiman JW (Eds). IARC Press, Lyon, France, 29–31 (2001).
  • Bain BJ, Gilliland DG, Vardiman JW, Horny HP. Chronic eosinophilic leukemia, not otherwise specified. In: World Health Organization (WHO) Classification of Tumours. Pathology & Genetics. Tumours of Haematopoietic and Lymphoid Tissues (Volume 2). Swerdlow, SH, Campo E, Harris NL et al. (Eds). IARC Press, Lyon, France, 51–53 (2008).
  • Bain BJ, Gilliland DG, Horny HP, Vardiman JW. Myeloid and lymphoid neoplasms with eosinophilia and abnormalities of PDGFRA, PDGFRB or FGFR1. In: World Health Organization (WHO) Classification of Tumours. Pathology & Genetics. Tumours of Haematopoietic and Lymphoid Tissues (Volume 1). Swerdlow SH, Campo E, Harris NL et al. (Eds). IARC Press, Lyon, France, 68–73 (2008).
  • Valent P, Klion A, Horny HP et al. Contemporary consensus on criteria and classification of eosinophil disorders and related syndromes. J. Allergy Clin. Immunol. (2012) (In Press).
  • Leary AG, Ogawa M. Identification of pure and mixed basophil colonies in culture of human peripheral blood and marrow cells. Blood 64(1), 78–83 (1984).
  • Denburg JA, Telizyn S, Messner H et al. Heterogeneity of human peripheral blood eosinophil-type colonies: evidence for a common basophil–eosinophil progenitor. Blood 66(2), 312–318 (1985).
  • Shalit M, Sekhsaria S, Mauhorter S, Mahanti S, Malech HL. Early commitment to the eosinophil lineage by cultured human peripheral blood CD34+ cells: messenger RNA analysis. J. Allergy Clin. Immunol. 98(2), 344–354 (1996).
  • Denburg JA. Hemopoietic progenitors and cytokines in allergic inflammation. Allergy 53(Suppl. 45), 22–26 (1998).
  • Linden M, Svensson C, Andersson M et al. Circulating eosinophil/basophil progenitors and nasal mucosal cytokines in seasonal allergic rhinitis. Allergy 54(3), 212–219 (1999).
  • McNagny K, Graf T. Making eosinophils through subtle shifts in transcription factor expression. J. Exp. Med. 195(11), F43–F47 (2002).
  • Clutterbuck E, Shields JG, Gordon J et al. Recombinant human interleukin 5 is an eosinophil differentiation factor but has no activity in standard human B cell growth factor assays. Eur. J. Immunol. 17(12), 1743–1750 (1987).
  • Saito H, Hatake K, Dvorak AM et al. Selective differentiation and proliferation of hematopoietic cells induced by recombinant human interleukins. Proc. Natl Acad. Sci. USA 85(7), 2288–2292 (1988).
  • Valent P, Schmidt G, Besemer J et al. Interleukin-3 is a differentiation factor for human basophils. Blood 73(7), 1763–1769 (1989).
  • Feldmann M, Londei M, Haworth C. T cells and lymphokines. Br. Med. Bull. 45(1), 361–370 (1989).
  • Del Prete G. Human Th1 and Th2 lymphocytes: their role in the pathophysiology of atopy. Allergy 47(5), 450–455 (1992).
  • Spencer LA, Szela CT, Perez SA et al. Human eosinophils constitutively express multiple Th1, Th2 and immunoregulatory cytokines that are secreted rapidly and differentially. J. Leukoc. Biol. 85(1), 117–123 (2009).
  • Denburg JA. Microenvironmental influences on inflammatory cell differentiation. Allergy 50(S25), 25–28 (1995).
  • Shakoory B, Fitzgerald SM, Lee SA, Chi DS, Krishnaswamy G. The role of human mast cell-derived cytokines in eosinophil biology. J. Interferon Cytokine Res. 24(5), 271–281 (2004).
  • Lopez AF, Vadas MA, Woodcock JM et al. Interleukin-5, interleukin-3, and granulocyte–macrophage colony-stimulating factor cross-compete for binding to cell surface receptors on human eosinophils. J. Biol. Chem. 266(36), 24741–24747 (1991).
  • Lopez AF, Elliott MJ, Woodcock J, Vadas MA. GM-CSF, IL-3 and IL-5: cross-competition on human haemopoietic cells. Immunol. Today 13(12), 495–500 (1992).
  • Yoshimura-Uchiyama C, Yamaguchi M, Nagase H et al. Changing expression of IL-3 and IL-5 receptors in cultured human eosinophils. Biochem. Biophys. Res. Commun. 309(1), 26–31 (2003).
  • Simon HU, Yousefi S, Schranz C, Schapowal A, Bachert C, Blaser K. Direct demonstration of delayed eosinophil apoptosis as a mechanism causing tissue eosinophilia. J. Immunol. 158(8), 3902–3908 (1997).
  • Bach MK, Brashler JR, Stout BK et al. Activation of human eosinophils by platelet-derived growth factor. Int. Arch. Allergy Immunol. 97(2), 121–129 (1992).
  • Noga O, Englmann C, Hanf G, Grützkau A, Guhl S, Kunkel G. Activation of the specific neurotrophin receptors TrkA, TrkB and TrkC influences the function of eosinophils. Clin. Exp. Allergy 32(9), 1348–1354 (2002).
  • Wang JM, Rambaldi A, Biondi A, Chen ZG, Sanderson CJ, Mantovani A. Recombinant human interleukin 5 is a selective eosinophil chemoattractant. Eur. J. Immunol. 19(4), 701–705 (1989).
  • Rot A, Krieger M, Brunner T, Bischoff SC, Schall TJ, Dahinden CA. RANTES and macrophage inflammatory protein 1 α induce the migration and activation of normal human eosinophil granulocytes. J. Exp. Med. 176(6), 1489–1495 (1992).
  • Dahinden CA, Geiser T, Brunner T et al. Monocyte chemotactic protein 3 is a most effective basophil- and eosinophil-activating chemokine. J. Exp. Med. 179(2), 751–756 (1994).
  • Noso N, Proost P, van Damme J, Schröder JM. Human monocyte chemotactic proteins-2 and 3 (MCP-2 and MCP-3) attract human eosinophils and desensitize the chemotactic responses towards RANTES. Biochem. Biophys. Res. Commun. 200(3), 1470–1476 (1994).
  • Ponath PD, Qin S, Ringler DJ et al. Cloning of the human eosinophil chemoattractant, eotaxin. Expression, receptor binding, and functional properties suggest a mechanism for the selective recruitment of eosinophils. J. Clin. Invest. 97(3), 604–612 (1996).
  • Rothenberg ME, Ownbey R, Mehlhop PD et al. Eotaxin triggers eosinophil-selective chemotaxis and calcium flux via a distinct receptor and induces pulmonary eosinophilia in the presence of interleukin 5 in mice. Mol. Med. 2(3), 334–348 (1996).
  • Okada S, Kita H, George TJ, Gleich GJ, Leiferman KM. Transmigration of eosinophils through basement membrane components in vitro: synergistic effects of platelet-activating factor and eosinophil-active cytokines. Am. J. Respir. Cell. Mol. Biol. 16(4), 455–463 (1997).
  • Petering H, Götze O, Kimmig D, Smolarski R, Kapp A, Elsner J. The biologic role of interleukin-8: functional analysis and expression of CXCR1 and CXCR2 on human eosinophils. Blood 93(2), 694–702 (1999).
  • Bochner BS, Bickel CA, Taylor ML et al. Macrophage-derived chemokine induces human eosinophil chemotaxis in a CC chemokine receptor 3- and CC chemokine receptor 4-independent manner. J. Allergy Clin. Immunol. 103(3), 527–532 (1999).
  • White JR, Lee JM, Dede K et al. Identification of potent, selective non-peptide CC chemokine receptor-3 antagonist that inhibits eotaxin-, eotaxin-2-, and monocyte chemotactic protein-4-induced eosinophil migration. J. Biol. Chem. 275(47), 36626–36631 (2000).
  • Menzies-Gow A, Ying S, Sabroe I et al. Eotaxin (CCL11) and eotaxin-2 (CCL24) induce recruitment of eosinophils, basophils, neutrophils, and macrophages as well as features of early- and late-phase allergic reactions following cutaneous injection in human atopic and nonatopic volunteers. J. Immunol. 169(5), 2712–2718 (2002).
  • Feistritzer C, Kaneider NC, Sturn DH et al. Expression and function of the vascular endothelial growth factor receptor FLT-1 in human eosinophils. Am. J. Respir. Cell. Mol. Biol. 30(5), 729–735 (2004).
  • Ferland C, Flamand N, Davoine F, Chakir J, Laviolette M. IL-16 activates plasminogen-plasmin system and promotes human eosinophil migration into extracellular matrix via CCR3-chemokine-mediated signaling and by modulating CD4 eosinophil expression. J. Immunol. 173(7), 4417–4424 (2004).
  • Feistritzer C, Mosheimer BA, Sturn DH, Bijuklic K, Patsch JR, Wiedermann CJ. Expression and function of the angiopoietin receptor Tie-2 in human eosinophils. J. Allergy Clin. Immunol. 114(5), 1077–1084 (2004).
  • Kishimoto S, Oka S, Gokoh M, Sugiura T. Chemotaxis of human peripheral blood eosinophils to 2-arachidonoylglycerol: comparison with other eosinophil chemoattractants. Int. Arch. Allergy Immunol. 140(Suppl. 1), 3–7 (2006).
  • Jung YJ, Woo SY, Jang MH et al. Human eosinophils show chemotaxis to lymphoid chemokines and exhibit antigen-presenting-cell-like properties upon stimulation with IFN-γ, IL-3 and GM-CSF. Int. Arch. Allergy Immunol. 146(3), 227–234 (2008).
  • Bates ME, Sedgwick JB, Zhu Y et al. Human airway eosinophils respond to chemoattractants with greater eosinophil-derived neurotoxin release, adherence to fibronectin, and activation of the Ras-ERK pathway when compared with blood eosinophils. J. Immunol. 184(12), 7125–7133 (2010).
  • Bochner BS. Siglec-8 on human eosinophils and mast cells, and Siglec-F on murine eosinophils, are functionally related inhibitory receptors. Clin. Exp. Allergy 39(3), 317–324 (2009).
  • Munitz A, Levi-Schaffer F. Inhibitory receptors on eosinophils: a direct hit to a possible Achilles heel? J. Allergy Clin. Immunol. 119(6), 1382–1387 (2007).
  • Sillaber C, Geissler K, Scherrer R et al. Type β transforming growth factors promote interleukin-3 (IL-3)-dependent differentiation of human basophils but inhibit IL-3-dependent differentiation of human eosinophils. Blood 80(3), 634–641 (1992).
  • Atsuta J, Fujisawa T, Iguchi K, Terada A, Kamiya H, Sakurai M. Inhibitory effect of transforming growth factor β 1 on cytokine-enhanced eosinophil survival and degranulation. Int. Arch. Allergy Immunol. 108(Suppl. 1), 31–35 (1995).
  • de Bruin AM, Buitenhuis M, van der Sluijs KF, van Gisbergen KP, Boon L, Nolte MA. Eosinophil differentiation in the bone marrow is inhibited by T cell-derived IFN-γ. Blood 116(14), 2559–2569 (2010).
  • Alam R, Forsythe P, Stafford S, Fukuda Y. Transforming growth factor β abrogates the effects of hematopoietins on eosinophils and induces their apoptosis. J. Exp. Med. 179(3), 1041–1045 (1994).
  • Park CS, Choi EN, Kim JS et al. Interferon-γ inhibits in vitro mobilization of eosinophils by interleukin-5. Int. Arch. Allergy Immunol. 136(3), 295–302 (2005).
  • Peterson AP, Altman LC, Hill JS, Gosney K, Kadin ME. Glucocorticoid receptors in normal human eosinophils: comparison with neutrophils. J. Allergy Clin. Immunol. 68(3), 212–217 (1981).
  • Prin L, Lefebvre P, Gruart V et al. Heterogeneity of human eosinophil glucocorticoid receptor expression in hypereosinophilic patients: absence of detectable receptor correlates with resistance to corticotherapy. Clin. Exp. Immunol. 78(3), 383–389 (1989).
  • Valent P. The phenotype of human eosinophils, basophils, and mast cells. J. Allergy Clin. Immunol. 94(6), 1177–1183 (1994).
  • Bochner BS. Systemic activation of basophils and eosinophils: markers and consequences. J. Allergy Clin. Immunol. 106(Suppl. 5), S292–S302 (2000).
  • Tachimoto H, Bochner BS. The surface phenotype of human eosinophils. Chem. Immunol. 76, 45–62 (2000).
  • Hartnell A, Moqbel R, Walsh GM, Bradley B, Kay AB. Fc γ and CD11/CD18 receptor expression on normal density and low density human eosinophils. Immunology 69(2), 264–270 (1990).
  • Lamas AM, Mulroney CM, Schleimer RP. Studies on the adhesive interaction between purified human eosinophils and cultured vascular endothelial cells. J. Immunol. 140(5), 1500–1505 (1988).
  • Bochner BS, Luscinskas FW, Gimbrone MA et al. Adhesion of human basophils, eosinophils, and neutrophils to interleukin 1-activated human vascular endothelial cells: contributions of endothelial cell adhesion molecules. J. Exp. Med. 173(6), 1553–1557 (1991).
  • Ebisawa M, Bochner BS, Georas SN, Schleimer RP. Eosinophil transendothelial migration induced by cytokines. I. Role of endothelial and eosinophil adhesion molecules in IL-1 β-induced transendothelial migration. J. Immunol. 149(12), 4021–4028 (1992).
  • Bochner BS, Schleimer RP. The role of adhesion molecules in human eosinophil and basophil recruitment. J. Allergy Clin. Immunol. 94(3), 427–438 (1994).
  • Knol EF, Tackey F, Tedder TF et al. Comparison of human eosinophil and neutrophil adhesion to endothelial cells under nonstatic conditions. Role of L-selectin. J. Immunol. 153(5), 2161–2167 (1994).
  • Wein M, Sterbinsky SA, Bickel CA, Schleimer RP, Bochner BS. Comparison of human eosinophil and neutrophil ligands for P-selectin: ligands for P-selectin differ from those for E-selectin. Am. J. Respir. Cell. Mol. Biol. 12(3), 315–319 (1995).
  • Seminario MC, Bochner BS. Expression and function of β 1 integrins on human eosinophils. Mem. Inst. Oswaldo Cruz. 92(Suppl. 2), 157–164 (1997).
  • Matsumoto K, Sterbinsky SA, Bickel CA, Zhou DF, Kovach NL, Bochner BS. Regulation of α 4 integrin-mediated adhesion of human eosinophils to fibronectin and vascular cell adhesion molecule-1. J. Allergy Clin. Immunol. 99(5), 648–656 (1997).
  • Horie S, Okubo Y, Hossain M et al. Intercellular adhesion molecule-1 on eosinophils is involved in eosinophil protein X release induced by cytokines. Immunology 90(2), 301–307 (1997).
  • Grayson MH, van der Vieren M, Sterbinsky SA et al. αβ2 integrin is expressed on human eosinophils and functions as an alternative ligand for vascular cell adhesion molecule 1 (VCAM-1). J. Exp. Med. 188(11), 2187–2191 (1998).
  • Davenpeck KL, Berens KL, Dixon RA, Dupre B, Bochner BS. Inhibition of adhesion of human neutrophils and eosinophils to P-selectin by the sialyl Lewis antagonist TBC1269: preferential activity against neutrophil adhesion in vitro. J. Allergy Clin. Immunol. 105(4), 769–775 (2000).
  • Bochner BS, Schleimer RP. Mast cells, basophils, and eosinophils: distinct but overlapping pathways for recruitment. Immunol. Rev. 179, 5–15 (2001).
  • Schleimer RP, Bochner BS. The effects of glucocorticoids on human eosinophils. J. Allergy Clin. Immunol. 94(6), 1202–1213 (1994).
  • Kaiser J, Bickel CA, Bochner BS, Schleimer RP. The effects of the potent glucocorticoid budesonide on adhesion of eosinophils to human vascular endothelial cells and on endothelial expression of adhesion molecules. J. Pharmacol. Exp. Ther. 267(1), 245–249 (1993).
  • Nagase H, Okugawa S, Ota Y et al. Expression and function of Toll-like receptors in eosinophils: activation by Toll-like receptor 7 ligand. J. Immunol. 171(8), 3977–3982 (2003).
  • Aizawa H, Plitt J, Bochner BS. Human eosinophils express two Siglec-8 splice variants. J. Allergy Clin. Immunol. 109(1), 176 (2002).
  • Hudson SA, Herrmann H, Du J et al. Developmental, malignancy-related and cross-species analysis of eosinophil, mast cell and basophil Siglec-8 expression. J. Clin. Immunol. 31(6), 1045–1053 (2011).
  • Kikly KK, Bochner BS, Freeman S et al. Identification of SAF-2, a novel siglec expressed on eosinophils, mast cells and basophils. J. Allergy Clin. Immunol. 105(6), 1093–1100 (2000).
  • Hudson SA, Bovin NV, Schnaar RL, Crocker PR, Bochner BS. Eosinophil-selective binding and proapoptotic effect in vitro of a synthetic Siglec-8 ligand, polymeric 6’-sulfated sialyl Lewis x. J. Pharmacol. Exp. Ther. 330(2), 608–612 (2009).
  • Nutku E, Aizawa H, Hudson SA, Bochner BS. Ligation of Siglec-8: a selective mechanism for induction of human eosinophil apoptosis. Blood 101(12), 5014–5020 (2003).
  • Wein M, Bochner BS. Adhesion molecule antagonists: future therapies for allergic diseases? Eur. Respir. J. 6(9), 1239–1242 (1993).
  • Robinson AJ, Kashanin D, O’Dowd F, Fitzgerald K, Williams V, Walsh GM. Fluvastatin and lovastatin inhibit granulocyte macrophage-colony stimulating factor-stimulated human eosinophil adhesion to inter-cellular adhesion molecule-1 under flow conditions. Clin. Exp. Allergy 39(12), 1866–1874 (2009).
  • Bochner BS, Gleich GJ. What targeting eosinophils has taught us about their role in diseases. J. Allergy Clin. Immunol. 126(1), 16–25 (2010).
  • Moqbel R, Hamid Q, Sun Y et al. Expression of mRNA and immunoreactivity for the granulocyte-macrophage colony stimulating factor in activated human eosinophils. J. Exp. Med. 174(3), 749–752 (1991).
  • Desremaux P, Janin A, Colombel JF et al. Interleukin 5 messenger RNA expression by eosinophils in the intestinal mucosa of patients with coeliac disease. J. Exp. Med. 175(1), 293–296 (1992).
  • Weller PF. Eicosanoids, cytokines and other mediators elaborated by eosinophils. In: Eosinophils: Biological and Clinical Aspects. Makino S, Fukuda T (Eds). CRC Press, FL, USA, 125–154 (1993).
  • Moqbel R, Levi-Schaffer F, Kay AB. Cytokine generation by eosinophils. J. Allergy Clin. Immunol. 94(6), 1183–1188 (1994).
  • Moqbel R, Ying S, Barkans, J et al. Identification of messenger RNA for IL-4 in human eosinophils with granule localisation and release of the translated product. J. Immunol. 155(10), 4939–4947 (1995).
  • Kay AB, Barata L, Meng Q, Durham SR, Ying S. Eosinophils and eosinophil-associated cytokines in allergic inflammation. Int. Arch. Allergy Immunol. 113(1–3), 196–199 (1997).
  • Walsh GM. Advances in the immunobiology of eosinophils and their role in disease. Crit. Rev. Clin. Lab. Sci. 36(5), 453–496 (1999).
  • Lehrer RI, Szklarek D, Barton A, Ganz T, Hamann KJ, Gleich GJ. Antibacterial properties of eosinophil major basic protein and eosinophil cationic protein. J. Immunol. 142(12), 4428–4434 (1989).
  • Hamann KJ, Barker RL, Ten RM, Gleich GJ. The molecular biology of eosinophil granule proteins. Int. Arch. Allergy Appl. Immunol. 94(1–4), 202–209 (1991).
  • Plager DA, Stuart S, Gleich GJ. Human eosinophil granule major basic protein and its novel homolog. Allergy 53(Suppl. 45), 33–40 (1998).
  • Yousefi S, Gold JA, Andina N et al. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat. Med. 14(9), 949–953 (2008).
  • Dworski R, Simon HU, Hoskins A, Yousefi S. Eosinophil and neutrophil extracellular DNA traps in human allergic asthmatic airways. J. Allergy Clin. Immunol. 127(5), 1260–1266 (2011).
  • Simon D, Hoesli S, Roth N, Staedler S, Yousefi S, Simon HU. Eosinophil extracellular DNA traps in skin diseases. J. Allergy Clin. Immunol. 127(1), 194–199 (2011).
  • Schmid-Grendelmeier P, Altznauer F, Fischer B et al. Eosinophils express functional IL-13 in eosinophilic inflammatory diseases. J. Immunol. 169(2), 1021–1027 (2002).
  • Swartz JM, Byström J, Dyer KD, Nitto T, Wynn TA, Rosenberg HF. Plasminogen activator inhibitor-2 (PAI-2) in eosinophilic leukocytes. J. Leukoc. Biol. 76(4), 812–819 (2004).
  • Kato M, Kephart GM, Talley NJ et al. Eosinophil infiltration and degranulation in normal human tissue. Anat. Record. 252(3), 418–425 (1998).
  • Noguchi H, Kephart GM, Colby TV, Gleich GJ. Tissue eosinophilia and eosinophil degranulation in syndromes associated with fibrosis. Am. J. Pathol. 140(2), 521–528 (1992).
  • Neves JS, Weller PF. Functional extracellular eosinophil granules: novel implications in eosinophil immunobiology. Curr. Opin. Immunol. 21(6), 694–699 (2009).
  • Hardy WR, Anderson RE. The hypereosinophilic syndromes. Ann. Intern. Med. 68(6), 1220–1229 (1968).
  • Chusid MJ, Dale DC, West BC, Wolff SM. The hypereosinophilic syndrome: analysis of fourteen cases with review of the literature. Medicine 54(1), 1–27 (1975).
  • Wilkins HJ, Crane MM, Copeland K, Williams WV. Hypereosinophilic syndrome: an update. Am. J. Hematol. 80(2), 148–157 (2005).
  • Weller PF, Bubley GJ. The idiopathic hypereosinophilic syndrome. Blood 83(10), 2759–2779 (1994).
  • Vandenberghe P, Wlodarska I, Michaux L et al. Clinical and molecular features of FIP1L1-PDFGRA (+) chronic eosinophilic leukemias. Leukemia 18(4), r734–742 (2004).
  • Liapis H, Ho AK, Brown D, Mindel G, Gleich G. Thrombotic microangiopathy associated with the hypereosinophilic syndrome. Kidney Int. 67(5), 1806–1811 (2005).
  • Hii MW, Firkin FC, MacIsaac AI, Yii M. Obstructive prosthetic mitral valve thrombosis in idiopathic hypereosinophilic syndrome: a case report and review of the literature. J. Heart Valve Dis. 15(5), 721–725 (2006).
  • Numagami Y, Tomita T, Murakami K, Masaki I, Kubo K, Michiharu N. Sinus thrombosis in idiopathic hypereosinophilic syndrome causing fatal cerebral haemorrhage. J. Clin. Neurosci. 15(5), 585–587 (2008).
  • Take M, Sekiguchi M, Hiroe M et al. Clinical spectrum and endomyocardial biopsy findings in eosinophilic heart disease. Heart Vessels Suppl. 1, 243–249 (1985).
  • Corradi D, Vaglio A, Maestri R et al. Eosinophilic myocarditis in a patient with idiopathic hypereosinophilic syndrome: insights into mechanisms of myocardial cell death. Hum. Pathol. 35(9), 1160–1163 (2004).
  • Tai PC, Ackerman SJ, Spry CJ, Dunnette S, Olsen EG, Gleich GJ. Deposits of eosinophil granule proteins in cardiac tissues of patients with eosinophilic endomyocardial disease. Lancet 1(8534), 643–647 (1987).
  • Pardanani A, Ketterling RP, Brockman SR et al. CHIC2 deletion, a surrogate for FIP1L1-PDGFRA fusion, occurs in systemic mastocytosis associated with eosinophilia and predicts response to imatinib mesylate therapy. Blood 102(9), 3093–3096 (2003).
  • Metzgeroth G, Walz C, Erben P et al. Safety and efficacy of imatinib in chronic eosinophilic leukaemia and hypereosinophilic syndrome: a Phase-II study. Br. J. Haematol. 143(5), 707–715 (2008).
  • Krauth MT, Binder T, Ohler L, Jäger U, Valent P. Improvement of cardiac function, mitral regurgitation and pulmonary hypertension in a patient with chronic eosinophilic leukemia (CEL) after low dose imatinib therapy. Leuk. Res. 32(11), 1779–1783 (2008).
  • Klion A. Hypereosinophilic syndrome: current approach to diagnosis and treatment. Annu. Rev. Med. 60, 293–306 (2009).
  • Roufosse F, Weller PF. Practical approach to the patient with marked hypereosinophilia. J. Allergy Clin. Immunol. 126(1), 39–44 (2010).
  • Peters MS, Gleich GJ, Dunnette SL, Fukuda T. Ultrastructural study of eosinophils from patients with the hypereosinophilic syndrome: a morphological basis of hypodense eosinophils. Blood 71(3), 780–785 (1988).
  • Horny HP, Sotlar K, Valent P. Eosinophil, basophil, and mast infiltrates in the bone marrow: crossing the boundaries of diagnosis. J. Hematopathol. 4, 101–111 (2011).
  • Simon HU, Plötz SG, Dummer R, Blaser K. Abnormal clones of T cells producing interleukin-5 in idiopathic eosinophilia. N. Engl. J. Med. 341(15), 1112–1120 (1999).
  • Roufosse F, Schandené L, Sibille C et al. Clonal Th2 lymphocytes in patients with the idiopathic hypereosinophilic syndrome. Br. J. Haematol. 109(3), 540–548 (2000).
  • Gleich GJ, Schroeter AL, Marcoux JP, Sachs MI, O’Connell EJ, Kohler PF. Episodic angioedema associated with eosinophilia. N. Engl. J. Med. 310(25), 1621–1626 (1984).
  • Butterfield JH, Leiferman KM, Abrams J et al. Elevated serum levels of interleukin-5 in patients with the syndrome of episodic angioedema and eosinophilia. Blood 79(3), 688–692 (1992).
  • Roufosse F, Cogan E, Goldman M. The hypereosinophilic syndrome revisited. Annu. Rev. Med. 54, 169–184 (2003).
  • Gross WL. Churg–Strauss syndrome: update on recent developments. Curr. Opin. Rheumatol. 14(1), 11–14 (2002).
  • Keogh KA, Specks U. Churg–Strauss syndrome. Semin. Respir. Crit. Care Med. 27(2), 148–157 (2006).
  • Pagnoux C, Guillevin L. Churg–Strauss syndrome: evidence for disease subtypes? Curr. Opin. Rheumatol. 22(1), 21–28 (2010).
  • Silver RM. Eosinophilia-myalgia syndrome, toxic-oil syndrome, and diffuse fasciitis with eosinophilia. Curr. Opin. Rheumatol. 4(6), 851–856 (1992).
  • Kaufman LD, Krupp LB. Eosinophilia-myalgia syndrome, toxic-oil syndrome, and diffuse fasciitis with eosinophilia. Curr. Opin. Rheumatol. 7(6), 560–567 (1995).
  • Belongia EA, Gleich GJ. The eosinophilia-myalgia syndrome revisited. J. Rheumatol. 23(10), 1682–1685 (1996).
  • Klion AD, Bochner BS, Gleich GJ et al. Approaches to the treatment of hypereosinophilic syndromes: a workshop summary report. J. Allergy Clin. Immunol. 117(6), 1292–1302 (2006).
  • Ogbogu PU, Bochner BS, Butterfield JH et al. Hypereosinophilic syndrome: a multicenter, retrospective analysis of clinical characteristics and response to therapy. J. Allergy Clin. Immunol. 124(6), 1319–1325 (2009).
  • Simon HU, Cools J. Novel approaches to therapy of hypereosinophilic syndromes. Immunol. Allergy Clin. North. Am. 27(3), 519–527 (2007).
  • Klion AD. How I treat hypereosinophilic syndromes. Blood 114(18), 3736–3741 (2009).
  • Plötz SG, Simon HU, Darsow U et al. Use of an anti-interleukin-5 antibody in the hypereosinophilic syndrome with eosinophilic dermatitis. N. Engl. J. Med. 349(24), 2334–2339 (2003).
  • Garrett JK, Jameson SC, Thomson B et al. Anti-interleukin-5 (mepolizumab) therapy for hypereosinophilic syndromes. J. Allergy Clin. Immunol. 113(1), 115–119 (2004).
  • Rothenberg ME, Klion AD, Roufosse FE et al. Treatment of patients with the hypereosinophilic syndrome with mepolizumab. N. Engl. J. Med. 358(12), 1215–1228 (2008).
  • Roufosse F, de Lavareille A, Schandené L et al. Mepolizumab as a corticosteroid-sparing agent in lymphocytic variant hypereosinophilic syndrome. J. Allergy Clin. Immunol. 126(4), 828–835 (2010).
  • Reiter A, Grimwade D, Cross NC. Diagnostic and therapeutic management of eosinophilia-associated chronic myeloproliferative disorders. Haematologica 92(2), 1153–1158 (2007).
  • Gotlib J, Cools J. Five years since the discovery of FIP1L1-PDGFRA: what we have learned about the fusion and other molecularly defined eosinophilias. Leukemia 22(11), 1999–2010 (2008).
  • Tefferi A. Molecular drug targets in myeloproliferative neoplasms: mutant ABL1, JAK2, MPL, KIT, PDGFRA, PDGFRB and FGFR1. J. Cell. Mol. Med. 13(2), 215–237 (2009).
  • Elling C, Erben P, Walz C et al. Novel imatinib-sensitive PDGFRA-activating point mutations in hypereosinophilic syndrome induce growth factor independence and leukemia-like disease. Blood 117(10), 2935–2943 (2011).
  • Stover EH, Chen J, Lee BH et al. The small molecule tyrosine kinase inhibitor AMN107 inhibits TEL-PDGFRβ and FIP1L1-PDGFRα in vitro and in vivo. Blood 106(9), 3206–3213 (2005).
  • Baumgartner C, Gleixner KV, Peter B et al. Dasatinib inhibits the growth and survival of neoplastic human eosinophils (EOL-1) through targeting of FIP1L1-PDGFR α. Exp. Hematol. 36(10), 1244–1253 (2008).
  • Tabouret E, Charbonnier A Mozziconacci MJ, Ivanov V. Low-dose Nilotinib can maintain complete molecular remissions in FIP1L1/PDGFRA-positive hyper-eosinophilic syndrome. Leuk. Res. 35(1), 136 (2011).
  • Jovanovic JV, Score J, Waghorn K et al. Low-dose imatinib mesylate leads to rapid induction of major molecular responses and achievement of complete molecular remission in FIP1L1-PDGFRA-positive chronic eosinophilic leukemia. Blood 109(11), 4635–4640 (2007).
  • Wang LN, Pan Q, Fu JF et al. FIP1L1-PDGFRα alone or with other genetic abnormalities reveals disease progression in chronic eosinophilic leukemia but good response to imatinib. Chin. Med. J. 121(10), 867–873 (2008).
  • Salemi S, Yousefi S, Simon D et al. A novel FIP1L1-PDGFRA mutant destabilizing the inactive conformation of the kinase domain in chronic eosinophilic leukemia/hypereosinophilic syndrome. Allergy 64(6), 913–918 (2009).
  • Lierman E, Michaux L, Beullens E et al. FIP1L1-PDGFRα D842V, a novel panresistant mutant, emerging after treatment of FIP1L1-PDGFRα T674I eosinophilic leukemia with single agent sorafenib. Leukemia 23(5), 845–851 (2009).
  • Cools J, Stover EH, Boulton CL et al. PKC412 overcomes resistance to imatinib in a murine model of FIP1L1-PDGFRα-induced myeloproliferative disease. Cancer Cell 3(5), 459–469 (2003).
  • Lierman E, Folens C, Stover EH et al. Sorafenib is a potent inhibitor of FIP1L1-PDGFRα and the imatinib-resistant FIP1L1-PDGFRα T674I mutant. Blood 108(4), 1374–1376 (2006).
  • von Bubnoff N, Gorantla SP, Thöne S, Peschel C, Duyster J. The FIP1L1-PDGFRA T674I mutation can be inhibited by the tyrosine kinase inhibitor AMN107 (nilotinib). Blood 107(12), 4970–4971 (2006).
  • Metzgeroth G, Erben P, Martin H et al. Limited clinical activity of nilotinib and sorafenib in FIP1L1-PDGFRA positive chronic eosinophilic leukemia with imatinib-resistant T674I mutation. Leukemia 26(1), 162–164 (2012).
  • Kalac M, Quintás-Cardama A, Vrhovac R, Kantarjian H, Verstovsek S. A critical appraisal of conventional and investigational drug therapy in patients with hypereosinophilic syndrome and clonal eosinophilia. Cancer 110(5), 955–964 (2007).
  • Verstovsek S, Tefferi A, Kantarjian H et al. Alemtuzumab therapy for hypereosinophilic syndrome and chronic eosinophilic leukemia. Clin. Cancer Res. 15(1), 368–373 (2009).
  • Burgstaller S, Kreil S, Waghorn K et al. The severity of FIP1L1-PDGFRA-positive chronic eosinophilic leukaemia is associated with polymorphic variation at the IL5RA locus. Leukemia 21(12), 2428–2432 (2007).
  • Chen J, DeAngelo DJ, Kutok JL et al. PKC412 inhibits the zinc finger 198-fibroblast growth factor receptor 1 fusion tyrosine kinase and is active in treatment of stem cell myeloproliferative disorder. Proc. Natl Acad. Sci. USA 101(40), 14479–14484 (2004).
  • Chase A, Grand FH, Cross NC. Activity of TKI258 against primary cells and cell lines with FGFR1 fusion genes associated with the 8p11 myeloproliferative syndrome. Blood 110(10), 3729–3734 (2007).
  • Wasag B, Lierman E, Meeus P, Cools J, Vandenberghe P. The kinase inhibitor TKI258 is active against the novel CUX1-FGFR1 fusion detected in a patient with T-lymphoblastic leukemia/lymphoma and t(7;8)(q22;p11). Haematologica 96(6), 922–926 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.