172
Views
16
CrossRef citations to date
0
Altmetric
Review

Augmentation of anti-tumor immunity by adoptive T-cell transfer after allogeneic hematopoietic stem cell transplantation

, &
Pages 409-425 | Published online: 10 Jan 2014

References

  • Gooley TA, Chien JW, Pergam SA et al. Reduced mortality after allogeneic hematopoietic-cell transplantation. N. Engl. J. Med. 363(22), 2091–2101 (2010).
  • Horowitz MM, Gale RP, Sondel PM et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood 75(3), 555–562 (1990).
  • Marmont AM, Horowitz MM, Gale RP et al. T-cell depletion of HLA-identical transplants in leukemia. Blood 78(8), 2120–2130 (1991).
  • Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3(7), 730–737 (1997).
  • Bonnet D, Warren EH, Greenberg PD, Dick JE, Riddell SR. CD8+ minor histocompatibility antigen-specific cytotoxic T lymphocyte clones eliminate human acute myeloid leukemia stem cells. Proc. Natl. Acad. Sci. USA 96(15), 8639–8644 (1999).
  • Gao L, Xue SA, Hasserjian R et al. Human cytotoxic T lymphocytes specific for Wilms’ tumor antigen-1 inhibit engraftment of leukemia-initiating stem cells in non-obese diabetic-severe combined immunodeficient recipients. Transplantation 75(9), 1429–1436 (2003).
  • Vago L, Perna SK, Zanussi M et al. Loss of mismatched HLA in leukemia after stem-cell transplantation. N. Engl. J. Med. 361(5), 478–488 (2009).
  • Molldrem J, Dermime S, Parker K et al. Targeted T-cell therapy for human leukemia: cytotoxic T lymphocytes specific for a peptide derived from proteinase 3 preferentially lyse human myeloid leukemia cells. Blood 88(7), 2450–2457 (1996).
  • Molldrem JJ, Clave E, Jiang YZ et al. Cytotoxic T lymphocytes specific for a nonpolymorphic proteinase 3 peptide preferentially inhibit chronic myeloid leukemia colony-forming units. Blood 90(7), 2529–2534 (1997).
  • Molldrem JJ, Lee PP, Wang C et al. Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nat. Med. 6(9), 1018–1023 (2000).
  • Gao L, Bellantuono I, Elsässer A et al. Selective elimination of leukemic CD34+ progenitor cells by cytotoxic T lymphocytes specific for WT1. Blood 95(7), 2198–2203 (2000).
  • Andersen MH, Pedersen LO, Capeller B, Bröcker EB, Becker JC, thor Straten P. Spontaneous cytotoxic T-cell responses against survivin-derived MHC class I-restricted T-cell epitopes in situ as well as ex vivo in cancer patients. Cancer Res. 61(16), 5964–5968 (2001).
  • Grube M, Moritz S, Obermann EC et al. CD8+ T cells reactive to survivin antigen in patients with multiple myeloma. Clin. Cancer Res. 13(3), 1053–1060 (2007).
  • Arai J, Yasukawa M, Ohminami H, Kakimoto M, Hasegawa A, Fujita S. Identification of human telomerase reverse transcriptase-derived peptides that induce HLA-A24-restricted antileukemia cytotoxic T lymphocytes. Blood 97(9), 2903–2907 (2001).
  • Minev B, Hipp J, Firat H, Schmidt JD, Langlade-Demoyen P, Zanetti M. Cytotoxic T cell immunity against telomerase reverse transcriptase in humans. Proc. Natl. Acad. Sci. USA 97(9), 4796–4801 (2000).
  • Greiner J, Ringhoffer M, Taniguchi M et al. Receptor for hyaluronan acid-mediated motility (RHAMM) is a new immunogenic leukemia-associated antigen in acute and chronic myeloid leukemia. Exp. Hematol. 30(9), 1029–1035 (2002).
  • Greiner J, Li L, Ringhoffer M et al. Identification and characterization of epitopes of the receptor for hyaluronic acid-mediated motility (RHAMM/CD168) recognized by CD8+ T cells of HLA-A2-positive patients with acute myeloid leukemia. Blood 106(3), 938–945 (2005).
  • Giannopoulos K, Li L, Bojarska-Junak A et al. Expression of RHAMM/CD168 and other tumor-associated antigens in patients with B-cell chronic lymphocytic leukemia. Int. J. Oncol. 29(1), 95–103 (2006).
  • Griffioen M, Kessler JH, Borghi M et al. Detection and functional analysis of CD8+ T cells specific for PRAME: a target for T-cell therapy. Clin. Cancer Res. 12(10), 3130–3136 (2006).
  • Quintarelli C, Dotti G, De Angelis B et al. Cytotoxic T lymphocytes directed to the preferentially expressed antigen of melanoma (PRAME) target chronic myeloid leukemia. Blood 112(5), 1876–1885 (2008).
  • Rezvani K, Yong AS, Tawab A et al. Ex vivo characterization of polyclonal memory CD8+ T-cell responses to PRAME-specific peptides in patients with acute lymphoblastic leukemia and acute and chronic myeloid leukemia. Blood 113(10), 2245–2255 (2009).
  • Maecker B, Sherr DH, Vonderheide RH et al. The shared tumor-associated antigen cytochrome P450 1B1 is recognized by specific cytotoxic T cells. Blood 102(9), 3287–3294 (2003).
  • Siegel S, Wagner A, Kabelitz D et al. Induction of cytotoxic T-cell responses against the oncofetal antigen-immature laminin receptor for the treatment of hematologic malignancies. Blood 102(13), 4416–4423 (2003).
  • Fujiwara H, El Ouriaghli F, Grube M et al. Identification and in vitro expansion of CD4+ and CD8+ T cells specific for human neutrophil elastase. Blood 103(8), 3076–3083 (2004).
  • Cheever MA, Allison JP, Ferris AS et al. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin. Cancer Res. 15(17), 5323–5337 (2009).
  • Molldrem JJ, Lee PP, Kant S et al. Chronic myelogenous leukemia shapes host immunity by selective deletion of high-avidity leukemia-specific T cells. J. Clin. Invest. 111(5), 639–647 (2003).
  • Leisegang M, Wilde S, Spranger S et al. MHC-restricted fratricide of human lymphocytes expressing survivin-specific transgenic T cell receptors. J. Clin. Invest. 120(11), 3869–3877 (2010).
  • Pospori C, Xue SA, Holler A et al. Specificity for the tumor-associated self antigen WT1 drives the development of fully functional memory T cells in the absence of vaccination. Blood 117(25), 6813–6824 (2011).
  • Rezvani K, Grube M, Brenchley JM et al. Functional leukemia-associated antigen-specific memory CD8+ T cells exist in healthy individuals and in patients with chronic myelogenous leukemia before and after stem cell transplantation. Blood 102(8), 2892–2900 (2003).
  • Ohminami H, Yasukawa M, Fujita S. HLA class I-restricted lysis of leukemia cells by a CD8+ cytotoxic T-lymphocyte clone specific for WT1 peptide. Blood 95(1), 286–293 (2000).
  • Molldrem JJ, Lee PP, Wang C, Champlin RE, Davis MM. A PR1-human leukocyte antigen-A2 tetramer can be used to isolate low-frequency cytotoxic T lymphocytes from healthy donors that selectively lyse chronic myelogenous leukemia. Cancer Res. 59(11), 2675–2681 (1999).
  • Bornhäuser M, Thiede C, Platzbecker U et al. Prophylactic transfer of BCR-ABL-, PR1-, and WT1-reactive donor T cells after T cell-depleted allogeneic hematopoietic cell transplantation in patients with chronic myeloid leukemia. Blood 117(26), 7174–7184 (2011).
  • ten Bosch GJ, Toornvliet AC, Friede T, Melief CJ, Leeksma OC. Recognition of peptides corresponding to the joining region of p210BCR-ABL protein by human T cells. Leukemia 9(8), 1344–1348 (1995).
  • Clark RE, Dodi IA, Hill SC et al. Direct evidence that leukemic cells present HLA-associated immunogenic peptides derived from the BCR-ABL b3a2 fusion protein. Blood 98(10), 2887–2893 (2001).
  • Padua RA, Larghero J, Robin M et al. PML-RARA-targeted DNA vaccine induces protective immunity in a mouse model of leukemia. Nat. Med. 9(11), 1413–1417 (2003).
  • Yotnda P, Garcia F, Peuchmaur M et al. Cytotoxic T cell response against the chimeric ETV6-AML1 protein in childhood acute lymphoblastic leukemia. J. Clin. Invest. 102(2), 455–462 (1998).
  • Scholl S, Salzmann S, Kaufmann AM, Höffken K. Flt3-ITD mutations can generate leukaemia specific neoepitopes: potential role for immunotherapeutic approaches. Leuk. Lymphoma 47(2), 307–312 (2006).
  • Graf C, Heidel F, Tenzer S et al. A neoepitope generated by an FLT3 internal tandem duplication (FLT3-ITD) is recognized by leukemia-reactive autologous CD8+ T cells. Blood 109(7), 2985–2988 (2007).
  • Kwak LW, Campbell MJ, Czerwinski DK, Hart S, Miller RA, Levy R. Induction of immune responses in patients with B-cell lymphoma against the surface-immunoglobulin idiotype expressed by their tumors. N. Engl. J. Med. 327(17), 1209–1215 (1992).
  • Schuster SJ, Neelapu SS, Gause BL et al. Vaccination with patient-specific tumor-derived antigen in first remission improves disease-free survival in follicular lymphoma. J. Clin. Oncol. 29(20), 2787–2794 (2011).
  • Osterroth F, Garbe A, Fisch P, Veelken H. Stimulation of cytotoxic T cells against idiotype immunoglobulin of malignant lymphoma with protein-pulsed or idiotype-transduced dendritic cells. Blood 95(4), 1342–1349 (2000).
  • Pasqualucci L, Trifonov V, Fabbri G et al. Analysis of the coding genome of diffuse large B-cell lymphoma. Nat. Genet. 43(9), 830–837 (2011).
  • Trojan A, Schultze JL, Witzens M et al. Immunoglobulin framework-derived peptides function as cytotoxic T-cell epitopes commonly expressed in B-cell malignancies. Nat. Med. 6(6), 667–672 (2000).
  • Fontaine P, Roy-Proulx G, Knafo L, Baron C, Roy DC, Perreault C. Adoptive transfer of minor histocompatibility antigen-specific T lymphocytes eradicates leukemia cells without causing graft-versus-host disease. Nat. Med. 7(7), 789–794 (2001).
  • Bleakley M, Riddell SR. Molecules and mechanisms of the graft-versus-leukaemia effect. Nat. Rev. Cancer 4(5), 371–380 (2004).
  • Bleakley M, Riddell SR. Exploiting T cells specific for human minor histocompatibility antigens for therapy of leukemia. Immunol. Cell Biol. 89(3), 396–407 (2011).
  • Reinsmoen NL, Kersey JH, Bach FH. Detection of HLA restricted anti-minor histocompatibility antigen(s) reactive cells from skin GVHD lesions. Hum. Immunol. 11(4), 249–257 (1984).
  • de Bueger M, Bakker A, Van Rood JJ, Van der Woude F, Goulmy E. Tissue distribution of human minor histocompatibility antigens. Ubiquitous versus restricted tissue distribution indicates heterogeneity among human cytotoxic T lymphocyte-defined non-MHC antigens. J. Immunol. 149(5), 1788–1794 (1992).
  • Niederwieser D, Grassegger A, Auböck J et al. Correlation of minor histocompatibility antigen-specific cytotoxic T lymphocytes with graft-versus-host disease status and analyses of tissue distribution of their target antigens. Blood 81(8), 2200–2208 (1993).
  • Goulmy E, Gratama JW, Blokland E, Zwaan FE, van Rood JJ. A minor transplantation antigen detected by MHC-restricted cytotoxic T lymphocytes during graft-versus-host disease. Nature 302(5904), 159–161 (1983).
  • Warren EH, Fujii N, Akatsuka Y et al. Therapy of relapsed leukemia after allogeneic hematopoietic cell transplantation with T cells specific for minor histocompatibility antigens. Blood 115(19), 3869–3878 (2010).
  • Spierings E, Hendriks M, Absi L et al. Phenotype frequencies of autosomal minor histocompatibility antigens display significant differences among populations. PLoS Genet. 3(6), e103 (2007).
  • Rooney CM, Smith CA, Ng CY et al. Infusion of cytotoxic T cells for the prevention and treatment of Epstein–Barr virus-induced lymphoma in allogeneic transplant recipients. Blood 92(5), 1549–1555 (1998).
  • Heslop HE, Slobod KS, Pule MA et al. Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood 115(5), 925–935 (2010).
  • Haque T, Wilkie GM, Jones MM et al. Allogeneic cytotoxic T-cell therapy for EBV-positive posttransplantation lymphoproliferative disease: results of a Phase 2 multicenter clinical trial. Blood 110(4), 1123–1131 (2007).
  • Bollard CM, Gottschalk S, Leen AM et al. Complete responses of relapsed lymphoma following genetic modification of tumor-antigen presenting cells and T-lymphocyte transfer. Blood 110(8), 2838–2845 (2007).
  • Bollard CM, Aguilar L, Straathof KC et al. Cytotoxic T lymphocyte therapy for Epstein–Barr virus+ Hodgkin’s disease. J. Exp. Med. 200(12), 1623–1633 (2004).
  • Stanislawski T, Voss RH, Lotz C et al. Circumventing tolerance to a human MDM2-derived tumor antigen by TCR gene transfer. Nat. Immunol. 2(10), 962–970 (2001).
  • Ochi T, Fujiwara H, Okamoto S et al. Novel adoptive T-cell immunotherapy using a WT1-specific TCR vector encoding silencers for endogenous TCRs shows marked antileukemia reactivity and safety. Blood 118(6), 1495–1503 (2011).
  • Johnson LA, Morgan RA, Dudley ME et al. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 114(3), 535–546 (2009).
  • Morgan RA, Dudley ME, Wunderlich JR et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314(5796), 126–129 (2006).
  • Heemskerk MH, Hoogeboom M, de Paus RA et al. Redirection of antileukemic reactivity of peripheral T lymphocytes using gene transfer of minor histocompatibility antigen HA-2-specific T-cell receptor complexes expressing a conserved alpha joining region. Blood 102(10), 3530–3540 (2003).
  • Heemskerk MH, Hoogeboom M, Hagedoorn R, Kester MG, Willemze R, Falkenburg JH. Reprogramming of virus-specific T cells into leukemia-reactive T cells using T cell receptor gene transfer. J. Exp. Med. 199(7), 885–894 (2004).
  • van der Veken LT, Hagedoorn RS, van Loenen MM, Willemze R, Falkenburg JH, Heemskerk MH. Alpha beta T-cell receptor engineered gamma delta T cells mediate effective antileukemic reactivity. Cancer Res. 66(6), 3331–3337 (2006).
  • Heemskerk MH, Hagedoorn RS, van der Hoorn MA et al. Efficiency of T-cell receptor expression in dual-specific T cells is controlled by the intrinsic qualities of the TCR chains within the TCR-CD3 complex. Blood 109(1), 235–243 (2007).
  • van Loenen MM, de Boer R, Hagedoorn RS, van Egmond EH, Falkenburg JH, Heemskerk MH. Optimization of the HA-1-specific T-cell receptor for gene therapy of hematologic malignancies. Haematologica 96(3), 477–481 (2011).
  • Ochi T, Fujiwara H, Yasukawa M. Application of adoptive T-cell therapy using tumor antigen-specific T-cell receptor gene transfer for the treatment of human leukemia. J. Biomed. Biotechnol. 2010, 521248 (2010).
  • Xue SA, Gao L, Thomas S et al. Development of a Wilms’ tumor antigen-specific T-cell receptor for clinical trials: engineered patient’s T cells can eliminate autologous leukemia blasts in NOD/SCID mice. Haematologica 95(1), 126–134 (2010).
  • van Loenen MM, de Boer R, Amir AL et al. Mixed T cell receptor dimers harbor potentially harmful neoreactivity. Proc. Natl. Acad. Sci. USA 107(24), 10972–10977 (2010).
  • Bendle GM, Linnemann C, Hooijkaas AI et al. Lethal graft-versus-host disease in mouse models of T cell receptor gene therapy. Nat. Med. 16(5), 565–70, 1p following 570 (2010).
  • Kuball J, Dossett ML, Wolfl M et al. Facilitating matched pairing and expression of TCR chains introduced into human T cells. Blood 109(6), 2331–2338 (2007).
  • Bialer G, Horovitz-Fried M, Ya’acobi S, Morgan RA, Cohen CJ. Selected murine residues endow human TCR with enhanced tumor recognition. J. Immunol. 184(11), 6232–6241 (2010).
  • Sommermeyer D, Uckert W. Minimal amino acid exchange in human TCR constant regions fosters improved function of TCR gene-modified T cells. J. Immunol. 184(11), 6223–6231 (2010).
  • Scholten KB, Kramer D, Kueter EW et al. Codon modification of T cell receptors allows enhanced functional expression in transgenic human T cells. Clin. Immunol. 119(2), 135–145 (2006).
  • Okamoto S, Mineno J, Ikeda H et al. Improved expression and reactivity of transduced tumor-specific TCRs in human lymphocytes by specific silencing of endogenous TCR. Cancer Res. 69(23), 9003–9011 (2009).
  • Provasi E, Genovese P, Lombardo A et al. Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer. Nat. Med. 18(5), 807–815 (2012).
  • van der Veken LT, Coccoris M, Swart E, Falkenburg JH, Schumacher TN, Heemskerk MH. Alpha beta T cell receptor transfer to gamma delta T cells generates functional effector cells without mixed TCR dimers in vivo. J. Immunol. 182(1), 164–170 (2009).
  • Kalos M, Levine BL, Porter DL et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci. Transl. Med. 3(95), 95ra73 (2011).
  • Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 365(8), 725–733 (2011).
  • Terakura S, Yamamoto TN, Gardner RA, Turtle CJ, Jensen MC, Riddell SR. Generation of CD19-chimeric antigen receptor modified CD8+ T cells derived from virus-specific central memory T cells. Blood 119(1), 72–82 (2012).
  • Sallusto F, Geginat J, Lanzavecchia A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu. Rev. Immunol. 22, 745–763 (2004).
  • Berger C, Jensen MC, Lansdorp PM, Gough M, Elliott C, Riddell SR. Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. J. Clin. Invest. 118(1), 294–305 (2008).
  • Wang X, Berger C, Wong CW, Forman SJ, Riddell SR, Jensen MC. Engraftment of human central memory-derived effector CD8+ T cells in immunodeficient mice. Blood 117(6), 1888–1898 (2011).
  • Hinrichs CS, Borman ZA, Cassard L et al. Adoptively transferred effector cells derived from naive rather than central memory CD8+ T cells mediate superior antitumor immunity. Proc. Natl. Acad. Sci. USA 106(41), 17469–17474 (2009).
  • Anderson BE, McNiff J, Yan J et al. Memory CD4+ T cells do not induce graft-versus-host disease. J. Clin. Invest. 112(1), 101–108 (2003).
  • Bleakley M, Otterud BE, Richardt JL et al. Leukemia-associated minor histocompatibility antigen discovery using T-cell clones isolated by in vitro stimulation of naive CD8+ T cells. Blood 115(23), 4923–4933 (2010).
  • Gattinoni L, Lugli E, Ji Y et al. A human memory T cell subset with stem cell-like properties. Nat. Med. 17(10), 1290–1297 (2011).
  • Antony PA, Piccirillo CA, Akpinarli A et al. CD8+ T cell immunity against a tumor/self antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. J. Immunol. 174(5), 2591–2601 (2005).
  • Brentjens RJ, Rivière I, Park JH et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 118(18), 4817–4828 (2011).
  • Bennett SR, Carbone FR, Karamalis F, Miller JF, Heath WR. Induction of a CD8+ cytotoxic T lymphocyte response by cross-priming requires cognate CD4+ T cell help. J. Exp. Med. 186(1), 65–70 (1997).
  • Walter EA, Greenberg PD, Gilbert MJ et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N. Engl. J. Med. 333(16), 1038–1044 (1995).
  • Melenhorst JJ, Leen AM, Bollard CM et al. Allogeneic virus-specific T cells with HLA alloreactivity do not produce GVHD in human subjects. Blood 116(22), 4700–4702 (2010).
  • Zhang Y, Joe G, Zhu J et al. Dendritic cell-activated CD44hiCD8+ T cells are defective in mediating acute graft-versus-host disease but retain graft-versus-leukemia activity. Blood 103(10), 3970–3978 (2004).
  • Chen BJ, Cui X, Sempowski GD, Liu C, Chao NJ. Transfer of allogeneic CD62L- memory T cells without graft-versus-host disease. Blood 103(4), 1534–1541 (2004).
  • Dutt S, Tseng D, Ermann J et al. Naive and memory T cells induce different types of graft-versus-host disease. J. Immunol. 179(10), 6547–6554 (2007).
  • Chen BJ, Deoliveira D, Cui X et al. Inability of memory T cells to induce graft-versus-host disease is a result of an abortive alloresponse. Blood 109(7), 3115–3123 (2007).
  • Zheng H, Matte-Martone C, Li H et al. Effector memory CD4+ T cells mediate graft-versus-leukemia without inducing graft-versus-host disease. Blood 111(4), 2476–2484 (2008).
  • André-Schmutz I, Le Deist F, Hacein-Bey-Abina S et al. Immune reconstitution without graft-versus-host disease after haemopoietic stem-cell transplantation: a Phase 1/2 study. Lancet 360(9327), 130–137 (2002).
  • Amrolia PJ, Muccioli-Casadei G, Yvon E et al. Selective depletion of donor alloreactive T cells without loss of antiviral or antileukemic responses. Blood 102(6), 2292–2299 (2003).
  • Solomon SR, Mielke S, Savani BN et al. Selective depletion of alloreactive donor lymphocytes: a novel method to reduce the severity of graft-versus-host disease in older patients undergoing matched sibling donor stem cell transplantation. Blood 106(3), 1123–1129 (2005).
  • Amrolia PJ, Muccioli-Casadei G, Huls H et al. Adoptive immunotherapy with allodepleted donor T-cells improves immune reconstitution after haploidentical stem cell transplantation. Blood 108(6), 1797–1808 (2006).
  • Mielke S, Rezvani K, Savani BN et al. Reconstitution of FOXP3+ regulatory T cells (Tregs) after CD25-depleted allotransplantation in elderly patients and association with acute graft-versus-host disease. Blood 110(5), 1689–1697 (2007).
  • Mielke S, Nunes R, Rezvani K et al. A clinical-scale selective allodepletion approach for the treatment of HLA-mismatched and matched donor-recipient pairs using expanded T lymphocytes as antigen-presenting cells and a TH9402-based photodepletion technique. Blood 111(8), 4392–4402 (2008).
  • McIver ZA, Melenhorst JJ, Grim A et al. Immune reconstitution in recipients of photodepleted HLA-identical sibling donor stem cell transplantations: T cell subset frequencies predict outcome. Biol. Blood Marrow Transplant. 17(12), 1846–1854 (2011).
  • Mielke S, McIver ZA, Shenoy A et al. Selectively T cell-depleted allografts from HLA-matched sibling donors followed by low-dose posttransplantation immunosuppression to improve transplantation outcome in patients with hematologic malignancies. Biol. Blood Marrow Transplant. 17(12), 1855–1861 (2011).
  • Di Stasi A, Tey SK, Dotti G et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N. Engl. J. Med. 365(18), 1673–1683 (2011).
  • Mielke S, Solomon SR, Barrett AJ. Selective depletion strategies in allogeneic stem cell transplantation. Cytotherapy 7(2), 109–115 (2005).
  • Samarasinghe S, Mancao C, Pule M et al. Functional characterization of alloreactive T cells identifies CD25 and CD71 as optimal targets for a clinically applicable allodepletion strategy. Blood 115(2), 396–407 (2010).
  • Kasamon YL, Luznik L, Leffell MS et al. Nonmyeloablative HLA-haploidentical bone marrow transplantation with high-dose posttransplantation cyclophosphamide: effect of HLA disparity on outcome. Biol. Blood Marrow Transplant. 16(4), 482–489 (2010).
  • Luznik L, Bolaños-Meade J, Zahurak M et al. High-dose cyclophosphamide as single-agent, short-course prophylaxis of graft-versus-host disease. Blood 115(16), 3224–3230 (2010).
  • Luznik L, O’Donnell PV, Symons HJ et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol. Blood Marrow Transplant. 14(6), 641–650 (2008).
  • Leventhal J, Abecassis M, Miller J et al. Chimerism and tolerance without GVHD or engraftment syndrome in HLA-mismatched combined kidney and hematopoietic stem cell transplantation. Sci. Transl. Med. 4(124), 124ra28 (2012).
  • De Angelis B, Dotti G, Quintarelli C et al. Generation of Epstein–Barr virus-specific cytotoxic T lymphocytes resistant to the immunosuppressive drug tacrolimus (FK506). Blood 114(23), 4784–4791 (2009).
  • Brewin J, Mancao C, Straathof K et al. Generation of EBV-specific cytotoxic T cells that are resistant to calcineurin inhibitors for the treatment of posttransplantation lymphoproliferative disease. Blood 114(23), 4792–4803 (2009).
  • Yam P, Jensen M, Akkina R et al. Ex vivo selection and expansion of cells based on expression of a mutated inosine monophosphate dehydrogenase 2 after HIV vector transduction: effects on lymphocytes, monocytes, and CD34+ stem cells. Mol. Ther. 14(2), 236–244 (2006).
  • Maher J, Brentjens RJ, Gunset G, Rivière I, Sadelain M. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta /CD28 receptor. Nat. Biotechnol. 20(1), 70–75 (2002).
  • Hoyos V, Savoldo B, Quintarelli C et al. Engineering CD19-specific T lymphocytes with interleukin-15 and a suicide gene to enhance their anti-lymphoma/leukemia effects and safety. Leukemia 24(6), 1160–1170 (2010).
  • Stephan MT, Moon JJ, Um SH, Bershteyn A, Irvine DJ. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nat. Med. 16(9), 1035–1041 (2010).
  • Dudley ME, Wunderlich JR, Robbins PF et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298(5594), 850–854 (2002).
  • Dudley ME, Wunderlich JR, Yang JC et al. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J. Clin. Oncol. 23(10), 2346–2357 (2005).
  • Savoldo B, Ramos CA, Liu E et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J. Clin. Invest. 121(5), 1822–1826 (2011).
  • Parkhurst MR, Yang JC, Langan RC et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol. Ther. 19(3), 620–626 (2011).
  • Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol. Ther. 18(4), 843–851 (2010).
  • Brentjens R, Yeh R, Bernal Y, Riviere I, Sadelain M. Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: case report of an unforeseen adverse event in a Phase I clinical trial. Mol. Ther. 18(4), 666–668 (2010).
  • Straathof KC, Pulè MA, Yotnda P et al. An inducible caspase-9 safety switch for T-cell therapy. Blood 105(11), 4247–4254 (2005).
  • Bonini C, Bordignon C. Potential and limitations of HSV-TK-transduced donor peripheral blood lymphocytes after allo-BMT. Hematol. Cell Ther. 39(5), 273–274 (1997).
  • Bonini C, Ferrari G, Verzeletti S et al. HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science 276(5319), 1719–1724 (1997).
  • Tiberghien P, Ferrand C, Lioure B et al. Administration of herpes simplex-thymidine kinase-expressing donor T cells with a T-cell-depleted allogeneic marrow graft. Blood 97(1), 63–72 (2001).
  • Berger C, Flowers ME, Warren EH, Riddell SR. Analysis of transgene-specific immune responses that limit the in vivo persistence of adoptively transferred HSV-TK-modified donor T cells after allogeneic hematopoietic cell transplantation. Blood 107(6), 2294–2302 (2006).
  • Wang X, Chang WC, Wong CW et al. A transgene-encoded cell surface polypeptide for selection, in vivo tracking, and ablation of engineered cells. Blood 118(5), 1255–1263 (2011).
  • Scharnhorst V, van der Eb AJ, Jochemsen AG. WT1 proteins: functions in growth and differentiation. Gene 273(2), 141–161 (2001).
  • Inoue K, Ogawa H, Sonoda Y et al. Aberrant overexpression of the Wilms tumor gene (WT1) in human leukemia. Blood 89(4), 1405–1412 (1997).
  • Scheibenbogen C, Letsch A, Thiel E et al. CD8 T-cell responses to Wilms tumor gene product WT1 and proteinase 3 in patients with acute myeloid leukemia. Blood 100(6), 2132–2137 (2002).
  • Rezvani K, Yong AS, Savani BN et al. Graft-versus-leukemia effects associated with detectable Wilms tumor-1 specific T lymphocytes after allogeneic stem-cell transplantation for acute lymphoblastic leukemia. Blood 110(6), 1924–1932 (2007).
  • Oka Y, Tsuboi A, Taguchi T et al. Induction of WT1 (Wilms’ tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Proc. Natl. Acad. Sci. USA 101(38), 13885–13890 (2004).
  • Rezvani K, Yong AS, Mielke S et al. Leukemia-associated antigen-specific T-cell responses following combined PR1 and WT1 peptide vaccination in patients with myeloid malignancies. Blood 111(1), 236–242 (2008).
  • Keilholz U, Letsch A, Busse A et al. A clinical and immunologic Phase 2 trial of Wilms tumor gene product 1 (WT1) peptide vaccination in patients with AML and MDS. Blood 113(26), 6541–6548 (2009).
  • Ochsenreither S, Majeti R, Schmitt T et al. Cyclin-A1 represents a new immunogenic targetable antigen expressed in acute myeloid leukemia stem cells with characteristics of a cancer-testis antigen. Blood 119(23), 5492–5501 (2012).
  • Torikai H, Akatsuka Y, Miyauchi H et al. The HLA-A*0201-restricted minor histocompatibility antigen HA-1H peptide can also be presented by another HLA-A2 subtype, A*0206. Bone Marrow Transplant. 40(2), 165–174 (2007).
  • den Haan JM, Meadows LM, Wang W et al. The minor histocompatibility antigen HA-1: a diallelic gene with a single amino acid polymorphism. Science 279(5353), 1054–1057 (1998).
  • den Haan JM, Sherman NE, Blokland E et al. Identification of a graft versus host disease-associated human minor histocompatibility antigen. Science 268(5216), 1476–1480 (1995).
  • Pierce RA, Field ED, Mutis T et al. The HA-2 minor histocompatibility antigen is derived from a diallelic gene encoding a novel human class I myosin protein. J. Immunol. 167(6), 3223–3230 (2001).
  • de Rijke B, van Horssen-Zoetbrood A, Beekman JM et al. A frameshift polymorphism in P2X5 elicits an allogeneic cytotoxic T lymphocyte response associated with remission of chronic myeloid leukemia. J. Clin. Invest. 115(12), 3506–3516 (2005).
  • Akatsuka Y, Nishida T, Kondo E et al. Identification of a polymorphic gene, BCL2A1, encoding two novel hematopoietic lineage-specific minor histocompatibility antigens. J. Exp. Med. 197(11), 1489–1500 (2003).
  • Kawase T, Nannya Y, Torikai H et al. Identification of human minor histocompatibility antigens based on genetic association with highly parallel genotyping of pooled DNA. Blood 111(6), 3286–3294 (2008).
  • Kawase T, Akatsuka Y, Torikai H et al. Alternative splicing due to an intronic SNP in HMSD generates a novel minor histocompatibility antigen. Blood 110(3), 1055–1063 (2007).
  • Warren EH, Vigneron NJ, Gavin MA et al. An antigen produced by splicing of noncontiguous peptides in the reverse order. Science 313(5792), 1444–1447 (2006).
  • Stumpf AN, van der Meijden ED, van Bergen CA, Willemze R, Falkenburg JH, Griffioen M. Identification of 4 new HLA-DR-restricted minor histocompatibility antigens as hematopoietic targets in antitumor immunity. Blood 114(17), 3684–3692 (2009).
  • Armistead PM, Liang S, Li H et al. Common minor histocompatibility antigen discovery based upon patient clinical outcomes and genomic data. PLoS ONE 6(8), e23217 (2011).
  • Spaapen RM, Lokhorst HM, van den Oudenalder K et al. Toward targeting B cell cancers with CD4+ CTLs: identification of a CD19-encoded minor histocompatibility antigen using a novel genome-wide analysis. J. Exp. Med. 205(12), 2863–2872 (2008).
  • Dolstra H, Fredrix H, Maas F et al. A human minor histocompatibility antigen specific for B cell acute lymphoblastic leukemia. J. Exp. Med. 189(2), 301–308 (1999).
  • Dolstra H, de Rijke B, Fredrix H et al. Bi-directional allelic recognition of the human minor histocompatibility antigen HB-1 by cytotoxic T lymphocytes. Eur. J. Immunol. 32(10), 2748–2758 (2002).
  • Till BG, Jensen MC, Wang J et al. Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. Blood 112(6), 2261–2271 (2008).
  • James SE, Orgun NN, Tedder TF et al. Antibody-mediated B-cell depletion before adoptive immunotherapy with T cells expressing CD20-specific chimeric T-cell receptors facilitates eradication of leukemia in immunocompetent mice. Blood 114(27), 5454–5463 (2009).
  • James SE, Greenberg PD, Jensen MC et al. Antigen sensitivity of CD22-specific chimeric TCR is modulated by target epitope distance from the cell membrane. J. Immunol. 180(10), 7028–7038 (2008).
  • Giordano Attianese GM, Marin V, Hoyos V et al. In vitro and in vivo model of a novel immunotherapy approach for chronic lymphocytic leukemia by anti-CD23 chimeric antigen receptor. Blood 117(18), 4736–4745 (2011).
  • Hombach A, Heuser C, Sircar R et al. Characterization of a chimeric T-cell receptor with specificity for the Hodgkin’s lymphoma-associated CD30 antigen. J. Immunother. 22(6), 473–480 (1999).
  • Shaffer DR, Savoldo B, Yi Z et al. T cells redirected against CD70 for the immunotherapy of CD70-positive malignancies. Blood 117(16), 4304–4314 (2011).
  • Vera J, Savoldo B, Vigouroux S et al. T lymphocytes redirected against the kappa light chain of human immunoglobulin efficiently kill mature B lymphocyte-derived malignant cells. Blood 108(12), 3890–3897 (2006).
  • Hudecek M, Schmitt TM, Baskar S et al. The B-cell tumor-associated antigen ROR1 can be targeted with T cells modified to express a ROR1-specific chimeric antigen receptor. Blood 116(22), 4532–4541 (2010).
  • Pizzitola I, Agostoni V, Cribioli E et al. In vitro comparison of three different chimeric receptor-modified effector T-cell populations for leukemia cell therapy. J. Immunother. 34(6), 469–479 (2011).
  • Nicholls S, Piper KP, Mohammed F et al. Secondary anchor polymorphism in the HA-1 minor histocompatibility antigen critically affects MHC stability and TCR recognition. Proc. Natl. Acad. Sci. USA 106(10), 3889–3894 (2009).
  • Spierings E, Gras S, Reiser JB et al. Steric hindrance and fast dissociation explain the lack of immunogenicity of the minor histocompatibility HA-1Arg Null allele. J. Immunol. 182(8), 4809–4816 (2009).
  • Falkenburg JH, Goselink HM, van der Harst D et al. Growth inhibition of clonogenic leukemic precursor cells by minor histocompatibility antigen-specific cytotoxic T lymphocytes. J. Exp. Med. 174(1), 27–33 (1991).
  • van der Harst D, Goulmy E, Falkenburg JH et al. Recognition of minor histocompatibility antigens on lymphocytic and myeloid leukemic cells by cytotoxic T-cell clones. Blood 83(4), 1060–1066 (1994).
  • Kircher B, Stevanovic S, Urbanek M et al. Induction of HA-1-specific cytotoxic T-cell clones parallels the therapeutic effect of donor lymphocyte infusion. Br. J. Haematol. 117(4), 935–939 (2002).
  • Marijt WA, Heemskerk MH, Kloosterboer FM et al. Hematopoiesis-restricted minor histocompatibility antigens HA-1- or HA-2-specific T cells can induce complete remissions of relapsed leukemia. Proc. Natl. Acad. Sci. USA 100(5), 2742–2747 (2003).
  • Kloosterboer FM, van Luxemburg-Heijs SA, van Soest RA et al. Direct cloning of leukemia-reactive T cells from patients treated with donor lymphocyte infusion shows a relative dominance of hematopoiesis-restricted minor histocompatibility antigen HA-1 and HA-2 specific T cells. Leukemia 18(4), 798–808 (2004).
  • Wilke M, Dolstra H, Maas F et al. Quantification of the HA-1 gene product at the RNA level; relevance for immunotherapy of hematological malignancies. Hematol. J. 4(5), 315–320 (2003).
  • Fujii N, Hiraki A, Ikeda K et al. Expression of minor histocompatibility antigen, HA-1, in solid tumor cells. Transplantation 73(7), 1137–1141 (2002).
  • Torikai H, Akatsuka Y, Yatabe Y et al. Aberrant expression of BCL2A1-restricted minor histocompatibility antigens in melanoma cells: application for allogeneic transplantation. Int. J. Hematol. 87(5), 467–473 (2008).
  • Dickinson AM, Wang XN, Sviland L et al. In situ dissection of the graft-versus-host activities of cytotoxic T cells specific for minor histocompatibility antigens. Nat. Med. 8(4), 410–414 (2002).
  • Mutis T, Gillespie G, Schrama E, Falkenburg JH, Moss P, Goulmy E. Tetrameric HLA class I-minor histocompatibility antigen peptide complexes demonstrate minor histocompatibility antigen-specific cytotoxic T lymphocytes in patients with graft-versus-host disease. Nat. Med. 5(7), 839–842 (1999).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.