163
Views
14
CrossRef citations to date
0
Altmetric
Review

Intrauterine growth and childhood leukemia and lymphoma risk

, &
Pages 559-576 | Published online: 10 Jan 2014

References

  • Kaatsch P. Epidemiology of childhood cancer. Cancer Treat. Rev. 36(4), 277–285 (2010).
  • Kochanek KD, Kirmeyer SE, Martin JA, Strobino DM, Guyer B. Annual summary of vital statistics: 2009. Pediatrics 129(2), 338–348 (2012).
  • Reulen RC, Winter DL, Frobisher C et al.; British Childhood Cancer Survivor Study Steering Group. Long-term cause-specific mortality among survivors of childhood cancer. JAMA 304(2), 172–179 (2010).
  • Stiller CA, Kroll ME, Eatock EM. Incidence of childhood cancer 1991–2000. In: Childhood Cancer in Britain: Incidence, Survival, Mortality. Stiller C (Ed.). Oxford University Press, Oxford, UK, 23–105 (2007).
  • Greaves M. In utero origins of childhood leukaemia. Early Hum. Dev. 81(1), 123–129 (2005).
  • Tower RL, Spector LG. The epidemiology of childhood leukemia with a focus on birth weight and diet. Crit. Rev. Clin. Lab. Sci. 44(3), 203–242 (2007).
  • Clavel J, Steliarova-Foucher E, Berger C, Danon S, Valerianova Z. Hodgkin’s disease incidence and survival in European children and adolescents (1978–1997): report from the Automated Cancer Information System project. Eur. J. Cancer 42(13), 2037–2049 (2006).
  • Morton LM, Wang SS, Devesa SS, Hartge P, Weisenburger DD, Linet MS. Lymphoma incidence patterns by WHO subtype in the United States, 1992–2001. Blood 107(1), 265–276 (2006).
  • Roman E, Smith AG. Epidemiology of lymphomas. Histopathology 58(1), 4–14 (2011).
  • Magrath I. Epidemiology: clues to the pathogenesis of Burkitt lymphoma. Br. J. Haematol. 156(6), 744–756 (2012).
  • Jaffe ES. The 2008 WHO classification of lymphomas: implications for clinical practice and translational research. Hematology Am. Soc. Hematol. Educ. Program, 523–531 (2009).
  • Brown RC, Dwyer T, Kasten C et al.; International Childhood Cancer Cohort Consortium (I4C). Cohort profile: the International Childhood Cancer Cohort Consortium (I4C). Int. J. Epidemiol. 36(4), 724–730 (2007).
  • Sherborne AL, Hemminki K, Kumar R et al. Rationale for an international consortium to study inherited genetic susceptibility to childhood acute lymphoblastic leukemia. Haematologica 96(7), 1049–1054 (2011).
  • Malinge S, Izraeli S, Crispino JD. Insights into the manifestations, outcomes, and mechanisms of leukemogenesis in Down syndrome. Blood 113(12), 2619–2628 (2009).
  • Wechsler J, Greene M, McDevitt MA et al. Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat. Genet. 32(1), 148–152 (2002).
  • Seif AE. Pediatric leukemia predisposition syndromes: clues to understanding leukemogenesis. Cancer Genet. 204(5), 227–244 (2011).
  • Stiller CA. Epidemiology and genetics of childhood cancer. Oncogene 23(38), 6429–6444 (2004).
  • Ripert M, Menegaux F, Perel Y et al. Familial history of cancer and childhood acute leukemia: a French population-based case–control study. Eur. J. Cancer Prev. 16(5), 466–470 (2007).
  • Rudant J, Menegaux F, Leverger G et al. Family history of cancer in children with acute leukemia, Hodgkin’s lymphoma or non-Hodgkin’s lymphoma: the ESCALE study (SFCE). Int. J. Cancer 121(1), 119–126 (2007).
  • Dorak MT, Pearce MS, Hammal DM, McNally RJ, Parker L. Examination of gender effect in birth weight and miscarriage associations with childhood cancer (United Kingdom). Cancer Causes Control 18(2), 219–228 (2007).
  • Ma X, Metayer C, Does MB, Buffler PA. Maternal pregnancy loss, birth characteristics, and childhood leukemia (United States). Cancer Causes Control 16(9), 1075–1083 (2005).
  • Treviño LR, Yang W, French D et al. Germline genomic variants associated with childhood acute lymphoblastic leukemia. Nat. Genet. 41(9), 1001–1005 (2009).
  • Papaemmanuil E, Hosking FJ, Vijayakrishnan J et al. Loci on 7p12.2, 10q21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia. Nat. Genet. 41(9), 1006–1010 (2009).
  • Sherborne AL, Hosking FJ, Prasad RB et al. Variation in CDKN2A at 9p21.3 influences childhood acute lymphoblastic leukemia risk. Nat. Genet. 42(6), 492–494 (2010).
  • Chow EJ, Puumala SE, Mueller BA et al. Childhood cancer in relation to parental race and ethnicity: a 5-state pooled analysis. Cancer 116(12), 3045–3053 (2010).
  • Carozza SE, Puumala SE, Chow EJ et al. Parental educational attainment as an indicator of socioeconomic status and risk of childhood cancers. Br. J. Cancer 103(1), 136–142 (2010).
  • Kroll ME, Stiller CA, Murphy MF, Carpenter LM. Childhood leukaemia and socioeconomic status in England and Wales 1976–2005: evidence of higher incidence in relatively affluent communities persists over time. Br. J. Cancer 105(11), 1783–1787 (2011).
  • Kinlen L. Infections and immune factors in cancer: the role of epidemiology. Oncogene 23(38), 6341–6348 (2004).
  • Orem J, Mbidde EK, Lambert B, de Sanjose S, Weiderpass E. Burkitt’s lymphoma in Africa, a review of the epidemiology and etiology. Afr. Health Sci. 7(3), 166–175 (2007).
  • Cader FZ, Kearns P, Young L, Murray P, Vockerodt M. The contribution of the Epstein–Barr virus to the pathogenesis of childhood lymphomas. Cancer Treat. Rev. 36(4), 348–353 (2010).
  • McNally RJ, Parker L. Environmental factors and childhood acute leukemias and lymphomas. Leuk. Lymphoma 47(4), 583–598 (2006).
  • Martin RM, Gunnell D, Owen CG, Smith GD. Breast-feeding and childhood cancer: a systematic review with metaanalysis. Int. J. Cancer 117(6), 1020–1031 (2005).
  • O’Connor SM, Boneva RS. Infectious etiologies of childhood leukemia: plausibility and challenges to proof. Environ. Health Perspect. 115(1), 146–150 (2007).
  • Kroll ME, Draper GJ, Stiller CA, Murphy MF. Childhood leukemia incidence in Britain, 1974–2000: time trends and possible relation to influenza epidemics. J. Natl Cancer Inst. 98(6), 417–420 (2006).
  • Gustafsson B, Huang W, Bogdanovic G et al. Adenovirus DNA is detected at increased frequency in Guthrie cards from children who develop acute lymphoblastic leukaemia. Br. J. Cancer 97(7), 992–994 (2007).
  • Lehtinen M, Koskela P, Ogmundsdottir HM et al. Maternal herpesvirus infections and risk of acute lymphoblastic leukemia in the offspring. Am. J. Epidemiol. 158(3), 207–213 (2003).
  • Tedeschi R, Bloigu A, Ogmundsdottir HM et al. Activation of maternal Epstein–Barr virus infection and risk of acute leukemia in the offspring. Am. J. Epidemiol. 165(2), 134–137 (2007).
  • Vasconcelos GM, Kang M, Pombo-de-Oliveira MS et al. Adenovirus detection in Guthrie cards from paediatric leukaemia cases and controls. Br. J. Cancer 99(10), 1668–1672 (2008).
  • Honkaniemi E, Talekar G, Huang W et al. Adenovirus DNA in Guthrie cards from children who develop acute lymphoblastic leukaemia (ALL). Br. J. Cancer 102(5), 796–798 (2010).
  • Tedeschi R, Luostarinen T, Marus A et al. No risk of maternal EBV infection for childhood leukemia. Cancer Epidemiol. Biomarkers Prev. 18(10), 2790–2792 (2009).
  • Rudant J, Orsi L, Menegaux F et al. Childhood acute leukemia, early common infections, and allergy: the ESCALE Study. Am. J. Epidemiol. 172(9), 1015–1027 (2010).
  • Urayama KY, Ma X, Selvin S et al. Early life exposure to infections and risk of childhood acute lymphoblastic leukemia. Int. J. Cancer 128(7), 1632–1643 (2011).
  • Greaves M. Infection, immune responses and the aetiology of childhood leukaemia. Nat. Rev. Cancer 6(3), 193–203 (2006).
  • Kinlen L. Childhood leukaemia, nuclear sites, and population mixing. Br. J. Cancer 104(1), 12–18 (2011).
  • Schmiegelow K, Vestergaard T, Nielsen SM, Hjalgrim H. Etiology of common childhood acute lymphoblastic leukemia: the adrenal hypothesis. Leukemia 22(12), 2137–2141 (2008).
  • Pearce MS, Salotti JA, Little MP et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380(9840), 499–505(2012).
  • Wakeford R, Little MP, Kendall GM. Risk of childhood leukemia after low-level exposure to ionizing radiation. Expert Rev. Hematol. 3(3), 251–254 (2010).
  • Kendall GM, Little MP, Wakeford R et al. A record-based case-control study of natural background radiation and the incidence of childhood leukaemia and other cancers in Great Britain during 1980–2006. Leukemia doi:10.1038/leu.2012.151 (2012) (Epub ahead of print).
  • Calvente I, Fernandez MF, Villalba J, Olea N, Nuñez MI. Exposure to electromagnetic fields (non-ionizing radiation) and its relationship with childhood leukemia: a systematic review. Sci. Total Environ. 408(16), 3062–3069 (2010).
  • Vinson F, Merhi M, Baldi I, Raynal H, Gamet-Payrastre L. Exposure to pesticides and risk of childhood cancer: a meta-analysis of recent epidemiological studies. Occup. Environ. Med. 68(9), 694–702 (2011).
  • Pyatt D, Hays S. A review of the potential association between childhood leukemia and benzene. Chem. Biol. Interact. 184(1–2), 151–164 (2010).
  • de Klerk N, Milne E. Overview of recent studies on childhood leukaemia, intra-uterine growth and diet. Radiat. Prot. Dosimetry 132(2), 255–258 (2008).
  • Yoshida K, Hirabayashi Y, Watanabe F, Sado T, Inoue T. Caloric restriction prevents radiation-induced myeloid leukemia in C3H/HeMs mice and inversely increases incidence of tumor-free death: implications in changes in number of hemopoietic progenitor cells. Exp. Hematol. 34(3), 274–283 (2006).
  • Fasal E, Jackson EW, Klauber MR. Birth characteristics and leukemia in childhood. J. Natl Cancer Inst. 47(3), 501–509 (1971).
  • Wertelecki W, Mantel N. Increased birth weight in leukemia. Pediatr. Res. 7(3), 132–138 (1973).
  • Hjalgrim LL, Westergaard T, Rostgaard K et al. Birth weight as a risk factor for childhood leukemia: a meta-analysis of 18 epidemiologic studies. Am. J. Epidemiol. 158(8), 724–735 (2003).
  • Caughey RW, Michels KB. Birth weight and childhood leukemia: a meta-analysis and review of the current evidence. Int. J. Cancer 124(11), 2658–2670 (2009).
  • Johnson KJ, Soler JT, Puumala SE, Ross JA, Spector LG. Parental and infant characteristics and childhood leukemia in Minnesota. BMC Pediatr. 8, 7 (2008).
  • Milne E, Royle JA, de Klerk NH et al. Fetal growth and risk of childhood acute lymphoblastic leukemia: results from an Australian case-control study. Am. J. Epidemiol. 170(2), 221–228 (2009).
  • Samuelsen SO, Bakketeig LS, Tretli S, Johannesen TB, Magnus P. Birth weight and childhood cancer. Epidemiology 20(4), 484–487 (2009).
  • Sprehe MR, Barahmani N, Cao Y et al. Comparison of birth weight corrected for gestational age and birth weight alone in prediction of development of childhood leukemia and central nervous system tumors. Pediatr. Blood Cancer 54(2), 242–249 (2010).
  • Spix C, Schulze-Rath R, Kaatsch P, Blettner M. Case–control study on risk factors for leukaemia and brain tumours in children under 5 years in Germany. Klin. Padiatr. 221(6), 362–368 (2009).
  • Smith A, Lightfoot T, Simpson J, Roman E; UKCCS investigators. Birth weight, sex and childhood cancer: a report from the United Kingdom Childhood Cancer Study. Cancer Epidemiol. 33(5), 363–367 (2009).
  • Rangel M, Cypriano M, de Martino Lee ML et al. Leukemia, non-Hodgkin’s lymphoma, and Wilms tumor in childhood: the role of birth weight. Eur. J. Pediatr. 169(7), 875–881 (2010).
  • O’Neill KA, Bunch KJ, Vincent TJ, Spector LG, Moorman AV, Murphy MF. Immunophenotype and cytogenetic characteristics in the relationship between birth weight and childhood leukemia. Pediatr. Blood Cancer 58(1), 7–11 (2012).
  • Milne E, Laurvick CL, Blair E, Bower C, de Klerk N. Fetal growth and acute childhood leukemia: looking beyond birth weight. Am. J. Epidemiol. 166(2), 151–159 (2007).
  • Schüz J, Forman MR. Birthweight by gestational age and childhood cancer. Cancer Causes Control 18(6), 655–663 (2007).
  • Glinianaia SV, Pearce MS, Rankin J, Pless-Mulloli T, Parker L, McNally RJ. Birth weight by gestational age and risk of childhood acute leukemia: a population-based study 1961–2002. Leuk. Lymphoma 52(4), 709–712 (2011).
  • Hjalgrim LL, Rostgaard K, Hjalgrim H et al. Birth weight and risk for childhood leukemia in Denmark, Sweden, Norway, and Iceland. J. Natl Cancer Inst. 96(20), 1549–1556 (2004).
  • Ou SX, Han D, Severson RK et al. Birth characteristics, maternal reproductive history, hormone use during pregnancy, and risk of childhood acute lymphocytic leukemia by immunophenotype (United States). Cancer Causes Control 13(1), 15–25 (2002).
  • Paltiel O, Harlap S, Deutsch L et al. Birth weight and other risk factors for acute leukemia in the Jerusalem Perinatal Study cohort. Cancer Epidemiol. Biomarkers Prev. 13(6), 1057–1064 (2004).
  • Roman E, Simpson J, Ansell P, Lightfoot T, Mitchell C, Eden TO. Perinatal and reproductive factors: a report on haematological malignancies from the UKCCS. Eur. J. Cancer 41(5), 749–759 (2005).
  • Milne E, Laurvick CL, Blair E, Bower C, de Klerk N. No sex difference observed in the association between intra-uterine growth and risk of childhood acute lymphoblastic leukaemia. Cancer Causes Control 18(10), 1227–8; author reply 1229 (2007).
  • Storms MR, Van Howe RS. Birthweight by gestational age and sex at a rural referral center. J. Perinatol. 24(4), 236–240 (2004).
  • Podvin D, Kuehn CM, Mueller BA, Williams M. Maternal and birth characteristics in relation to childhood leukaemia. Paediatr. Perinat. Epidemiol. 20(4), 312–322 (2006).
  • Westergaard T, Andersen PK, Pedersen JB et al. Birth characteristics, sibling patterns, and acute leukemia risk in childhood: a population-based cohort study. J. Natl Cancer Inst. 89(13), 939–947 (1997).
  • Yeazel MW, Ross JA, Buckley JD, Woods WG, Ruccione K, Robison LL. High birth weight and risk of specific childhood cancers: a report from the Children’s Cancer Group. J. Pediatr. 131(5), 671–677 (1997).
  • McKinney PA, Juszczak E, Findlay E, Smith K, Thomson CS. Pre- and perinatal risk factors for childhood leukaemia and other malignancies: a Scottish case control study. Br. J. Cancer 80(11), 1844–1851 (1999).
  • Petridou E, Andrie E, Dessypris N, Dikalioti SK, Trichopoulos D; Childhood Hematology-Oncology Group. Incidence and characteristics of childhood Hodgkin’s lymphoma in Greece: a nationwide study (Greece). Cancer Causes Control 17(2), 209–215 (2006).
  • Petridou ET, Dikalioti SK, Skalkidou A, Andrie E, Dessypris N, Trichopoulos D; Childhood Hematology–Oncology Group. Sun exposure, birth weight, and childhood lymphomas: a case control study in Greece. Cancer Causes Control 18(9), 1031–1037 (2007).
  • McKinney PA, Cartwright RA, Saiu JM et al. The inter-regional epidemiological study of childhood cancer (IRESCC): a case control study of aetiological factors in leukaemia and lymphoma. Arch. Dis. Child. 62(3), 279–287 (1987).
  • Schüz J, Kaatsch P, Kaletsch U, Meinert R, Michaelis J. Association of childhood cancer with factors related to pregnancy and birth. Int. J. Epidemiol. 28(4), 631–639 (1999).
  • Milne E, Laurvick CL, Blair E, de Klerk N, Charles AK, Bower C. Fetal growth and the risk of childhood CNS tumors and lymphomas in western Australia. Int. J. Cancer 123(2), 436–443 (2008).
  • Spector LG, Puumala SE, Carozza SE et al. Cancer risk among children with very low birth weights. Pediatrics 124(1), 96–104 (2009).
  • Lee J, Chia KS, Cheung KH, Chia SE, Lee HP. Birthweight and the risk of early childhood cancer among Chinese in Singapore. Int. J. Cancer 110(3), 465–467 (2004).
  • Papadopoulou C, Antonopoulos CN, Sergentanis TN, Panagopoulou P, Belechri M, Petridou ET. Is birth weight associated with childhood lymphoma? A meta-analysis. Int. J. Cancer 130(1), 179–189 (2012).
  • Harder T, Plagemann A, Harder A. Birth weight and risk of neuroblastoma: a meta-analysis. Int. J. Epidemiol. 39(3), 746–756 (2010).
  • Chu A, Heck JE, Ribeiro KB et al. Wilms’ tumour: a systematic review of risk factors and meta-analysis. Paediatr. Perinat. Epidemiol. 24(5), 449–469 (2010).
  • Harder T, Plagemann A, Harder A. Birth weight and subsequent risk of childhood primary brain tumors: a meta-analysis. Am. J. Epidemiol. 168(4), 366–373 (2008).
  • Grotmol T, Weiderpass E, Tretli S. Conditions in utero and cancer risk. Eur. J. Epidemiol. 21(8), 561–570 (2006).
  • Xu X, Dailey AB, Peoples-Sheps M, Talbott EO, Li N, Roth J. Birth weight as a risk factor for breast cancer: a meta-analysis of 18 epidemiological studies. J. Womens Health (Larchmt) 18(8), 1169–1178 (2009).
  • Pearce MS, Tennant PW, Mann KD et al. Lifecourse predictors of mammographic density: the Newcastle Thousand Families cohort study. Breast Cancer Res. Treat. 131(1), 187–195 (2012).
  • Rossing MA, Cushing-Haugen KL, Doherty JA, Wicklund KG. Characteristics related to the maternal intrauterine environment and risk of epithelial ovarian cancer. Ann. Epidemiol. 18(5), 411–415 (2008).
  • Eriksson M, Wedel H, Wallander MA et al. The impact of birth weight on prostate cancer incidence and mortality in a population-based study of men born in 1913 and followed up from 50 to 85 years of age. Prostate 67(11), 1247–1254 (2007).
  • Cnattingius S, Lundberg F, Sandin S, Grönberg H, Iliadou A. Birth characteristics and risk of prostate cancer: the contribution of genetic factors. Cancer Epidemiol. Biomarkers Prev. 18(9), 2422–2426 (2009).
  • Hemminki K, Chen B. Are twins at risk of cancer: results from the Swedish family-cancer database. Twin Res. Hum. Genet. 8(5), 509–514 (2005).
  • Murphy MF, Whiteman D, Hey K et al. Childhood cancer incidence in a cohort of twin babies. Br. J. Cancer 84(11), 1460–1462 (2001).
  • Murphy MF, Bunch KJ, Chen B, Hemminki K. Reduced occurrence of childhood cancer in twins compared to singletons: protection but by what mechanism? Pediatr. Blood Cancer 51(1), 62–65 (2008).
  • Puumala SE, Carozza SE, Chow EJ et al. Childhood cancer among twins and higher order multiples. Cancer Epidemiol. Biomarkers Prev. 18(1), 162–168 (2009).
  • Chen GG, Zeng Q, Tse GM. Estrogen and its receptors in cancer. Med. Res. Rev. 28(6), 954–974 (2008).
  • Yager JD, Davidson NE. Estrogen carcinogenesis in breast cancer. N. Engl. J. Med. 354(3), 270–282 (2006).
  • Gaikwad NW, Yang L, Weisenburger DD et al. Urinary biomarkers suggest that estrogen–DNA adducts may play a role in the aetiology of non-Hodgkin lymphoma. Biomarkers 14(7), 502–512 (2009).
  • Pombo-de-Oliveira MS, Koifman S; Brazilian Collaborative Study Group of Infant Acute Leukemia. Infant acute leukemia and maternal exposures during pregnancy. Cancer Epidemiol Biomarkers Prev. 15(12), 2336–2341 (2006).
  • Schnyder S, Du NT, Le HB, Singh S, Loredo GA, Vaughan AT. Estrogen treatment induces MLL aberrations in human lymphoblastoid cells. Leuk. Res. 33(10), 1400–1404 (2009).
  • Mucci LA, Lagiou P, Tamimi RM, Hsieh CC, Adami HO, Trichopoulos D. Pregnancy estriol, estradiol, progesterone and prolactin in relation to birth weight and other birth size variables (United States). Cancer Causes Control 14(4), 311–318 (2003).
  • Troisi R, Potischman N, Roberts J et al. Associations of maternal and umbilical cord hormone concentrations with maternal, gestational and neonatal factors (United States). Cancer Causes Control 14(4), 347–355 (2003).
  • Nagata C, Iwasa S, Shiraki M, Shimizu H. Estrogen and alpha-fetoprotein levels in maternal and umbilical cord blood samples in relation to birth weight. Cancer Epidemiol. Biomarkers Prev. 15(8), 1469–1472 (2006).
  • Hurley S, Goldberg D, Von Behren J, Quach T, Layefsky M, Reynolds P. Birth size and breast cancer risk among young California-born women. Cancer Causes Control 22(10), 1461–1470 (2011).
  • Callan AC, Milne E. Involvement of the IGF system in fetal growth and childhood cancer: an overview of potential mechanisms. Cancer Causes Control 20(10), 1783–1798 (2009).
  • Fowden AL. The insulin-like growth factors and feto-placental growth. Placenta 24(8–9), 803–812 (2003).
  • Garrett RW, Emerson SG. The role of parathyroid hormone and insulin-like growth factors in hematopoietic niches: physiology and pharmacology. Mol. Cell. Endocrinol. 288(1–2), 6–10 (2008).
  • Baik I, Devito WJ, Ballen K et al. Association of fetal hormone levels with stem cell potential: evidence for early life roots of human cancer. Cancer Res. 65(1), 358–363 (2005).
  • Wilpshaar J, Joekes EC, Lim FT et al. Magnetic resonance imaging of fetal bone marrow for quantitative definition of the human fetal stem cell compartment. Blood 100(2), 451–457 (2002).
  • Varela-Nieto I, Hartl M, Gorospe I, León Y. Anti-apoptotic actions of insulin-like growth factors: lessons from development and implications in neoplastic cell transformation. Curr. Pharm. Des. 13(7), 687–703 (2007).
  • Steuerman R, Shevah O, Laron Z. Congenital IGF1 deficiency tends to confer protection against post-natal development of malignancies. Eur. J. Endocrinol. 164(4), 485–489 (2011).
  • Pollak M. Insulin and insulin-like growth factor signalling in neoplasia. Nat. Rev. Cancer 8(12), 915–928 (2008).
  • Davis E, Jacoby P, de Klerk NH, Cole C, Milne E. Western Australian children with acute lymphoblastic leukemia are taller at diagnosis than unaffected children of the same age and sex. Pediatr. Blood Cancer 56(5), 767–770 (2011).
  • Yu ZB, Han SP, Zhu GZ et al. Birth weight and subsequent risk of obesity: a systematic review and meta-analysis. Obes. Rev. 12(7), 525–542 (2011).
  • Wolin KY, Carson K, Colditz GA. Obesity and cancer. Oncologist 15(6), 556–565 (2010).
  • Dunger DB, Petry CJ, Ong KK. Genetic variations and normal fetal growth. Horm. Res. 65(Suppl. 3), 34–40 (2006).
  • Okubo Y, Siddle K, Firth H et al. Cell proliferation activities on skin fibroblasts from a short child with absence of one copy of the type 1 insulin-like growth factor receptor (IGF1R) gene and a tall child with three copies of the IGF1R gene. J. Clin. Endocrinol. Metab. 88(12), 5981–5988 (2003).
  • Ester WA, Hokken-Koelega AC. Polymorphisms in the IGF1 and IGF1R genes and children born small for gestational age: results of large population studies. Best Pract. Res. Clin. Endocrinol. Metab. 22(3), 415–431 (2008).
  • Chen X, Guan J, Song Y et al. IGF-I (CA) repeat polymorphisms and risk of cancer: a meta-analysis. J. Hum. Genet. 53(3), 227–238 (2008).
  • Jogie-Brahim S, Feldman D, Oh Y. Unraveling insulin-like growth factor binding protein-3 actions in human disease. Endocr. Rev. 30(5), 417–437 (2009).
  • Johnston LB, Clark AJ, Savage MO. Genetic factors contributing to birth weight. Arch. Dis. Child. Fetal Neonatal Ed. 86(1), F2–F3 (2002).
  • Souren NY, Paulussen AD, Steyls A et al. Common SNPs in LEP and LEPR associated with birth weight and Type 2 diabetes-related metabolic risk factors in twins. Int. J. Obes. (Lond.) 32(8), 1233–1239 (2008).
  • Dorak MT, Mackay RK, Relton CL, Worwood M, Parker L, Hall AG. Hereditary hemochromatosis gene (HFE) variants are associated with birth weight and childhood leukemia risk. Pediatr. Blood Cancer 53(7), 1242–1248 (2009).
  • Nurk E, Tell GS, Refsum H, Ueland PM, Vollset SE. Associations between maternal methylenetetrahydrofolate reductase polymorphisms and adverse outcomes of pregnancy: the Hordaland Homocysteine Study. Am. J. Med. 117(1), 26–31 (2004).
  • Gambling L, Kennedy C, McArdle HJ. Iron and copper in fetal development. Semin. Cell Dev. Biol. 22(6), 637–644 (2011).
  • Dorak MT, Burnett AK, Worwood M. HFE gene mutations in susceptibility to childhood leukemia: HuGE review. Genet. Med. 7(3), 159–168 (2005).
  • Tong N, Sheng X, Wang M et al. Methylenetetrahydrofolate reductase gene polymorphisms and acute lymphoblastic leukemia risk: a meta-analysis based on 28 case–control studies. Leuk. Lymphoma 52(10), 1949–1960 (2011).
  • Baylin SB, Jones PA. A decade of exploring the cancer epigenome – biological and translational implications. Nat. Rev. Cancer 11(10), 726–734 (2011).
  • Chao W, D’Amore PA. IGF2: epigenetic regulation and role in development and disease. Cytokine Growth Factor Rev. 19(2), 111–120 (2008).
  • Chernausek SD. Update: consequences of abnormal fetal growth. J. Clin. Endocrinol. Metab. 97(3), 689–695 (2012).
  • Adkins RM, Somes G, Morrison JC et al. Association of birth weight with polymorphisms in the IGF2, H19, and IGF2R genes. Pediatr. Res. 68(5), 429–434 (2010).
  • Eggermann T. Russell-Silver syndrome. Am. J. Med. Genet. C. Semin. Med. Genet. 154C(3), 355–364 (2010).
  • Choufani S, Shuman C, Weksberg R. Beckwith-Wiedemann syndrome. Am. J. Med. Genet. C. Semin. Med. Genet. 154C(3), 343–354 (2010).
  • Turan N, Ghalwash MF, Katari S, Coutifaris C, Obradovic Z, Sapienza C. DNA methylation differences at growth related genes correlate with birth weight: a molecular signature linked to developmental origins of adult disease? BMC Med. Genomics 5, 10 (2012).
  • Fryer AA, Emes RD, Ismail KM et al. Quantitative, high-resolution epigenetic profiling of CpG loci identifies associations with cord blood plasma homocysteine and birth weight in humans. Epigenetics 6(1), 86–94 (2011).
  • Einstein F, Thompson RF, Bhagat TD et al. Cytosine methylation dysregulation in neonates following intrauterine growth restriction. PLoS ONE 5(1), e8887 (2010).
  • Wu HK, Weksberg R, Minden MD, Squire JA. Loss of imprinting of human insulin-like growth factor II gene, IGF2, in acute myeloid leukemia. Biochem. Biophys. Res. Commun. 231(2), 466–472 (1997).
  • Vorwerk P, Wex H, Bessert C, Hohmann B, Schmidt U, Mittler U. Loss of imprinting of IGF-II gene in children with acute lymphoblastic leukemia. Leuk. Res. 27(9), 807–812 (2003).
  • Garcia-Manero G, Yang H, Kuang SQ, O’Brien S, Thomas D, Kantarjian H. Epigenetics of acute lymphocytic leukemia. Semin. Hematol. 46(1), 24–32 (2009).
  • Schoofs T, Müller-Tidow C. DNA methylation as a pathogenic event and as a therapeutic target in AML. Cancer Treat. Rev. 37(Suppl. 1), S13–S18 (2011).
  • Shaknovich R, Melnick A. Epigenetics and B-cell lymphoma. Curr. Opin. Hematol. 18(4), 293–299 (2011).
  • Pang D, McNally R, Birch JM. Parental smoking and childhood cancer: results from the United Kingdom Childhood Cancer Study. Br. J. Cancer 88(3), 373–381 (2003).
  • Lestou VS, Kalousek DK. Confined placental mosaicism and intrauterine fetal growth. Arch. Dis. Child. Fetal Neonatal Ed. 79(3), F223–F226 (1998).
  • Wilkins-Haug L, Quade B, Morton CC. Confined placental mosaicism as a risk factor among newborns with fetal growth restriction. Prenat. Diagn. 26(5), 428–432 (2006).
  • Ruager-Martin R, Hyde MJ, Modi N. Maternal obesity and infant outcomes. Early Hum. Dev. 86(11), 715–722 (2010).
  • Johnson W, Choh AC, Soloway LE, Czerwinski SA, Towne B, Demerath EW. Eighty-year trends in infant weight and length growth: the Fels Longitudinal Study. J. Pediatr. 160(5), 762–768 (2012).
  • Bell R. Trends in birthweight in the north of England. Hum. Fertil. (Camb). 11(1), 1–8 (2008).
  • Wang Y, Lim H. The global childhood obesity epidemic and the association between socio-economic status and childhood obesity. Int. Rev. Psychiatry 24(3), 176–188 (2012).
  • Steliarova-Foucher E, Stiller C, Kaatsch P et al. Geographical patterns and time trends of cancer incidence and survival among children and adolescents in Europe since the 1970s (the ACCISproject): an epidemiological study. Lancet 364(9451), 2097–2105 (2004).
  • Dreifaldt AC, Carlberg M, Hardell L. Increasing incidence rates of childhood malignant diseases in Sweden during the period 1960–1998. Eur. J. Cancer 40(9), 1351–1360 (2004).
  • Dalmasso P, Pastore G, Zuccolo L et al. Temporal trends in the incidence of childhood leukemia, lymphomas and solid tumors in north-west Italy, 1967–2001. A report of the Childhood Cancer Registry of Piedmont. Haematologica 90(9), 1197–1204 (2005).
  • Spix C, Eletr D, Blettner M, Kaatsch P. Temporal trends in the incidence rate of childhood cancer in Germany 1987–2004. Int. J. Cancer 122(8), 1859–1867 (2008).
  • Linabery AM, Ross JA. Trends in childhood cancer incidence in the U.S. (1992–2004). Cancer 112(2), 416–432 (2008).
  • Baade PD, Youlden DR, Valery PC et al. Trends in incidence of childhood cancer in Australia, 1983–2006. Br. J. Cancer 102(3), 620–626 (2010).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.