189
Views
27
CrossRef citations to date
0
Altmetric
Review

Toxoplasma gondii proteomics

, , &
Pages 303-313 | Published online: 09 Jan 2014

References

  • Nicolle C, Manceaux L. Sur une infection a coprs de Leshman (ou organisms voisons) due gondi. CR Acad. Sci.147, 763 (1908).
  • Splendore A. Un nuovo parassita deconigli incontrato nelle lesioni anatomiche d’une malattia che ricorda in molti punti il Kala-azar. Rev. Soc. Sci. Sao Paulo3, 109–112 (1908).
  • Frenkel JK, Dubey JP, Miller NL. Toxoplasma gondii in cats: fecal stages identified as coccidian oocysts. Science167(3919), 893–896 (1970).
  • Bowie WR, King AS, Werker DH et al. Outbreak of toxoplasmosis associated with municipal drinking water. The BC Toxoplasma Investigation Team. Lancet350(9072), 173–177 (1997).
  • Belfort-Neto R, Nussenblatt V, Rizzo L et al. High prevalence of unusual genotypes of Toxoplasma gondii infection in pork meat samples from Erechim, Southern Brazil. An. Acad. Bras. Ciênc79(1), 111–114 (2007).
  • Bahia-Oliveira LM, Jones JL, Azevedo-Silva J, Alves CC, Orefice F, Addiss DG. Highly endemic, waterborne toxoplasmosis in north Rio de Janeiro state, Brazil. Emerg. Infect. Dis.9(1), 55–62 (2003).
  • Howe DK, Sibley LD. Toxoplasma gondii comprises three clonal lineages: correlation of parasite genotype with human disease. J. Infect. Dis.172(6), 1561–1566 (1995).
  • Sibley LD, Boothroyd JC. Virulent strains of Toxoplasma gondii comprise a single clonal lineage. Nature359(6390), 82–85 (1992).
  • Su C, Evans D, Cole RH, Kissinger JC, Ajioka JW, Sibley LD. Recent expansion of Toxoplasma through enhanced oral transmission. Science299(5605), 414–416 (2003).
  • Grigg ME, Ganatra J, Boothroyd JC, Margolis TP. Unusual abundance of atypical strains associated with human ocular toxoplasmosis. J. Infect. Dis.184(5), 633–639 (2001).
  • Lehmann T, Marcet PL, Graham DH, Dahl ER, Dubey JP. Globalization and the population structure of Toxoplasma gondii. Proc. Natl Acad. Sci. USA103(30), 11423–11428 (2006).
  • Khan A, Fux B, Su C et al. Recent transcontinental sweep of Toxoplasma gondii driven by a single monomorphic chromosome. Proc. Natl Acad. Sci. USA104(37), 14872–14877 (2007).
  • Pena HF, Gennari SM, Dubey JP, Su C. Population structure and mouse-virulence of Toxoplasma gondii in Brazil. Int. J. Parasitol.38(5), 561–569 (2008).
  • Kissinger JC, Gajria B, Li L, Paulsen IT, Roos DS. ToxoDB: accessing the Toxoplasma gondii genome. Nucleic Acids Res.31(1), 234–236 (2003).
  • Gajria B, Bahl A, Brestelli J et al. ToxoDB: an integrated Toxoplasma gondii database resource. Nucleic Acids Res.36, D553–D556 (2008).
  • Khan A, Bohme U, Kelly KA et al. Common inheritance of chromosome Ia associated with clonal expansion of Toxoplasma gondii. Genome Res.16(9), 1119–1125 (2006).
  • Aurrecoechea C, Heiges M, Wang H et al. ApiDB: integrated resources for the apicomplexan bioinformatics resource center. Nucleic Acids Res.35, D427–D430 (2007).
  • Madrid-Aliste CJ, Dybas JM, Hogue Angeletti R et al. EPIC-DB: a proteomics database for studying Apicomplexan organisms. BMC Genomics10(1), 38 (2009).
  • Kremer A, Schneider R, Terstappen GC. A bioinformatics perspective on proteomics: data storage, analysis, and integration. Biosci. Rep.25(1–2), 95–106 (2005).
  • Souchelnytskyi S. Bridging proteomics and systems biology: what are the roads to be traveled? Proteomics5(16), 4123–4137 (2005).
  • Hamady M, Cheung TH, Resing K, Cios KJ, Knight R. Key challenges in proteomics and proteoinformatics. Progress in proteins. IEEE Eng. Med. Biol. Mag.24(3), 34–40 (2005).
  • Haley-Vicente D, Edwards DJ. Proteomic informatics: in silico methods lead to data management challenges. Curr. Opin. Drug Discov. Devel.6(3), 322–332 (2003).
  • Jones A, Hunt E, Wastling JM, Pizarro A, Stoeckert CJ Jr. An object model and database for functional genomics. Bioinformatics20(10), 1583–1590 (2004).
  • Taylor CF, Paton NW, Garwood KL et al. A systematic approach to modeling, capturing, and disseminating proteomics experimental data. Nat. Biotechnol.21(3), 247–254 (2003).
  • Bradshaw RA, Burlingame AL. From proteins to proteomics. IUBMB Life57(4–5), 267–272 (2005).
  • Phillips CI, Bogyo M. Proteomics meets microbiology: technical advances in the global mapping of protein expression and function. Cell. Microbiol.7(8), 1061–1076 (2005).
  • Lane CS. Mass spectrometry-based proteomics in the life sciences. Cell. Mol. Life Sci.62(7–8), 848–869 (2005).
  • Yates JR 3rd. Mass spectral analysis in proteomics. Annu. Rev. Biophys. Biomol. Struct.33, 297–316 (2004).
  • Johnson JR, Florens L, Carucci DJ, Yates JR 3rd. Proteomics in malaria. J. Proteome Res.3(2), 296–306 (2004).
  • Washburn MP, Wolters D, Yates JR 3rd. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol.19(3), 242–247 (2001).
  • Jaffe JD, Berg HC, Church GM. Proteogenomic mapping as a complementary method to perform genome annotation. Proteomics4(1), 59–77 (2004).
  • Sanderson SJ, Xia D, Prieto H et al. Determining the protein repertoire of Cryptosporidium parvum sporozoites. Proteomics8(7), 1398–1414 (2008).
  • Dybas JM, Madrid-Aliste CJ, Che FY et al. Computational analysis and experimental validation of gene predictions in Toxoplasma gondii. PLoS ONE3(12), e3899 (2008).
  • Xia D, Sanderson SJ, Jones AR et al. The proteome of Toxoplasma gondii: integration with the genome provides novel insights into gene expression and annotation. Genome Biol.9(7), R116 (2008).
  • Wang R, Prince JT, Marcotte EM. Mass spectrometry of the M. smegmatis proteome: protein expression levels correlate with function, operons, and codon bias. Genome Res.15(8), 1118–1126 (2005).
  • Bradley PJ, Ward C, Cheng SJ et al. Proteomic analysis of rhoptry organelles reveals many novel constituents for host–parasite interactions in Toxoplasma gondii. J. Biol. Chem.280(40), 34245–34258 (2005).
  • Zhou XW, Kafsack BF, Cole RN, Beckett P, Shen RF, Carruthers VB. The opportunistic pathogen Toxoplasma gondii deploys a diverse legion of invasion and survival proteins. J. Biol. Chem.280(40), 34233–34244 (2005).
  • Zhou XW, Blackman MJ, Howell SA, Carruthers VB. Proteomic analysis of cleavage events reveals a dynamic two-step mechanism for proteolysis of a key parasite adhesive complex. Mol. Cell Proteomics3(6), 565–576 (2004).
  • Fauquenoy S, Morelle W, Hovasse A et al. Proteomics and glycomics analyses of N-glycosylated structures involved in Toxoplasma gondii – host cell interactions. Mol Cell Proteomics, 7(5), 891–910 (2008).
  • Wastling JM, Xia D, Sohal A, Chaussepied M, Pain A, Langsley G. Proteomes and transcriptomes of the Apicomplexa – where’s the message? Int. J. Parasitol.39(2), 135–143 (2009).
  • Cox J, Mann M. Is proteomics the new genomics? Cell130(3), 395–398 (2007).
  • Mair GR, Braks JA, Garver LS et al. Regulation of sexual development of Plasmodium by translational repression. Science313(5787), 667–669 (2006).
  • Cohen AM, Rumpel K, Coombs GH, Wastling JM. Characterisation of global protein expression by two-dimensional electrophoresis and mass spectrometry: proteomics of Toxoplasma gondii. Int. J. Parasitol.32(1), 39–51 (2002).
  • Leriche MA, Dubremetz JF. Characterization of the protein contents of rhoptries and dense granules of Toxoplasma gondii tachyzoites by subcellular fractionation and monoclonal antibodies. Mol. Biochem. Parasitol.45(2), 249–259 (1991).
  • Liu T, Martin AM, Sinai AP, Lynn BC. Three-layer sandwich gel electrophoresis: a method of salt removal and protein concentration in proteome analysis. J. Proteome Res.7(10), 4256–4265 (2008).
  • Martin AM, Liu T, Lynn BC, Sinai AP. Elimination of affinity reagent interference for the mass spectrometric detection of low-abundance proteins following immunoprecipitation. J. Proteome Res.6(12), 4758–4762 (2007).
  • Huynh MH, Rabenau KE, Harper JM, Beatty WL, Sibley LD, Carruthers VB. Rapid invasion of host cells by Toxoplasma requires secretion of the MIC2–M2AP adhesive protein complex. EMBO J.22(9), 2082–2090 (2003).
  • Cerede O, Dubremetz JF, Soete M et al. Synergistic role of micronemal proteins in Toxoplasma gondii virulence. J. Exp. Med.201(3), 453–463 (2005).
  • Rabenau KE, Sohrabi A, Tripathy A et al. TgM2AP participates in Toxoplasma gondii invasion of host cells and is tightly associated with the adhesive protein TgMIC2. Mol. Microbiol.41(3), 537–547 (2001).
  • Alexander DL, Mital J, Ward GE, Bradley P, Boothroyd JC. Identification of the moving junction complex of Toxoplasma gondii: a collaboration between distinct secretory organelles. PLoS Pathog.1(2), e17 (2005).
  • Boothroyd JC, Dubremetz JF. Kiss and spit: the dual roles of Toxoplasma rhoptries. Nat. Rev. Microbiol.6(1), 79–88 (2008).
  • Coppens I, Dunn JD, Romano JD et al.Toxoplasma gondii sequesters lysosomes from mammalian hosts in the vacuolar space. Cell125(2), 261–274 (2006).
  • Bradley PJ, Sibley LD. Rhoptries: an arsenal of secreted virulence factors. Curr. Opin. Microbiol.10(6), 582–587 (2007).
  • El Hajj H, Demey E, Poncet J et al. The ROP2 family of Toxoplasma gondii rhoptry proteins: proteomic and genomic characterization and molecular modeling. Proteomics6(21), 5773–5784 (2006).
  • Carruthers VB. Proteolysis and Toxoplasma invasion. Int. J. Parasitol.36(5), 595–600 (2006).
  • Carruthers VB, Tomley FM. Microneme proteins in apicomplexans. Subcell. Biochem.47, 33–45 (2008).
  • Kawase O, Nishikawa Y, Bannai H et al. Proteomic analysis of calcium-dependent secretion in Toxoplasma gondii. Proteomics7(20), 3718–3725 (2007).
  • Hu K, Johnson J, Florens L et al. Cytoskeletal components of an invasion machine – the apical complex of Toxoplasma gondii. PLoS Pathog.2(2), e13 (2006).
  • Plessmann U, Reiter-Owona I, Lechtreck KF. Posttranslational modifications of α-tubulin of Toxoplasma gondii. Parasitol Res, 94(5), 386–389 (2004).
  • Braun L, Cannella D, Pinheiro AM et al. The small ubiquitin-like modifier (SUMO)-conjugating system of Toxoplasma gondii. Int. J. Parasitol.39(1), 81–90 (2009).
  • Novoselov SV, Lobanov AV, Hua D, Kasaikina MV, Hatfield DL, Gladyshev VN. A highly efficient form of the selenocysteine insertion sequence element in protozoan parasites and its use in mammalian cells. Proc. Natl Acad. Sci. USA104(19), 7857–7862 (2007).
  • Dlugonska H, Dytnerska K, Reichmann G, Stachelhaus S, Fischer HG. Towards the Toxoplasma gondii proteome: postion of 13 excretory antigens on a standardized map of two-dimensionally separated tachyzoite proteins. Parasitol. Res.87, 634–638 (2001).
  • Ansong C, Purvine SO, Adkins JN, Lipton MS, Smith RD. Proteogenomics: needs and roles to be filled by proteomics in genome annotation. Brief Funct. Genomic Proteomic7(1), 50–62 (2008).
  • Webb-Robertson BJ, Cannon WR. Current trends in computational inference from mass spectrometry-based proteomics. Brief Bioinform.8(5), 304–317 (2007).
  • Majoros WH, Pertea M, Salzberg SL. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics20(16), 2878–2879 (2004).
  • Korf I, Flicek P, Duan D, Brent MR. Integrating genomic homology into gene structure prediction. Bioinformatics17(Suppl. 1), S140–S148 (2001).
  • Radke JR, Behnke MS, Mackey AJ, Radke JB, Roos DS, White MW. The transcriptome of Toxoplasma gondii. BMC Biol.3, 26 (2005).
  • Altschul SF, Madden TL, Schaffer AA et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res.25(17), 3389–3402 (1997).
  • Finn RD, Mistry J, Schuster-Bockler B et al. Pfam: clans, web tools and services. Nucleic Acids Res.34, D247–D251 (2006).
  • Stevens TJ, Arkin IT. Do more complex organisms have a greater proportion of membrane proteins in their genomes? Proteins39(4), 417–420 (2000).
  • Carruthers VB. Armed and dangerous: Toxoplasma gondii uses an arsenal of secretory proteins to infect host cells. Parasitol Int.48(1), 1–10 (1999).
  • Pierleoni A, Martelli PL, Casadio R. PredGPI: a GPI-anchor predictor. BMC Bioinformatics9, 392 (2008).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.