201
Views
54
CrossRef citations to date
0
Altmetric
Review

Advanced proteomic technologies for cancer biomarker discovery

, , , , , , & show all
Pages 123-134 | Published online: 09 Jan 2014

References

  • Duffy MJ, van Dalen A, Haglund C et al. Tumor markers in colorectal caner: European Group on Tumor Markers (EGTM) guidelines for clinical use. Eur. J. Cancer43(9), 1348–1360 (2007).
  • Duffy MJ. Role of tumor markers in patients with solid cancers: a critical review. Eur. J. Intern. Med.18(3), 175–184 (2007).
  • Bertucci F, Birnbaum D, Goncalves A. Proteomics of breast cancer: principles and potential clinical applications. Mol. Cell. Proteomics5(10), 1772–1786 (2006).
  • Feng JT, Shang S, Beretta L. Proteomics for the early detection and treatment of hepatocellular carcinoma. Oncogene25(27), 3810–3817 (2006).
  • Miller I, Crawford J, Gianazza E. Protein stains for proteomic applications: which, when, why? Proteomics6(20), 5385–5408 (2006).
  • Kumarathasan P, Mohottalage S, Goegan P, Vincent R. An optimized protein in-gel digest method for reliable proteome characterization by MALDI-TOF-MS analysis. Anal. Biochem.346(1), 85–89 (2005).
  • Meunier B, Bouley J, Piec I, Bernard C, Picard B, Hocquette JF. Data analysis methods for detection of differential protein expression in two-dimensional gel electrophoresis. Anal. Biochem.340(2), 226–230 (2005).
  • Chan CM, Wong SC, Lam MY et al. Proteomic comparison of nasopharyngeal cancer cell lines C666–1 and NP69 identifies down-regulation of annexin II and β2-tubulin for nasopharyngeal carcinoma. Arch. Pathol. Lab. Med.132(4), 675–683 (2008).
  • Wong SC, Wong VW, Chan CM et al. Identification of 5-fluorouracil response proteins in colorectal carcinoma cell line SW480 by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. Oncol. Rep.20(1), 89–98 (2008).
  • Marouga R, David S, Hawkins E. The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal. BioAnal. Chem.382(3), 669–678 (2005).
  • Timms JF, Cramer R. Difference gel electrophoresis. Proteomics8(23–24), 4886–4897 (2008).
  • Minden J. Comparative proteomics and difference gel electrophoresis. Biotechniques43(6), 739–745 (2007).
  • Kondo T, Hirohashi S. Application of highly sensitive fluorescent dyes (CyDye DIGE Fluor saturation dyes) to laser microdissection and two-dimensional difference gel electrophoresis (2D-DIGE) for cancer proteomics. Nat. Protoc.1(6), 2940–2986 (2007).
  • Kang Y, Techanukul T, Mantalaris A, Nagy JM. Comparison of three commercially available DIGE analysis software packages: minimal user intervention in gel-based proteomics. J. Proteome Res.8(2), 1077–1084 (2009).
  • Kreil DP, Karp NA, Lilley KS. DNA microarray normalization methods can remove bias from differential protein expression analysis of 2D difference gel electrophoresis results. Bioinformatics20(13), 2026–2034 (2004).
  • Karp NA, McCormick PS, Russell MR, Lilley KS. Experimental and statistical considerations to avoid false conclusions in proteomics studies using differential in-gel electrophoresis. Mol. Cell. Proteomics6(8), 1354–1364 (2007).
  • Kleno TG, Leonardsen LR, Kjeldal HØ, Laursen SM, Jensen ON, Baunsgaard D. Mechanisms of hydrazine toxicity in rat liver investigated by proteomics and multivariate data analysis. Proteomics4(3), 868–880 (2004).
  • Smit S, Hoefsloot HCJ, Smilde AK. Statistical data processing in clinical proteomics. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.866(1–2), 77–88 (2008).
  • Karp NA, Griffin JL, Lilley KS. Application of partial least squares discriminant analysis to two-dimensional difference gel studies in expression proteomics. Proteomics5(1), 81–90 (2005).
  • Grove H, Jørgensen BM, Jessen F et al. Combination of statistical approaches for analysis of 2-DE data gives complementary results. J. Proteome Res.7(12), 5119–5124 (2008).
  • Yu KH, Rustgi AK, Blair IA. Characterization of proteins in human pancreatic serum using differential gel electrophoresis and tandem mass spectrometry. J. Proteome Res.4(5), 1742–1751 (2005).
  • Huang H-L, Stasyk T, Morandell S et al. Biomarker discovery in breast cancer serum using 2-D differential gel electrophoresis/MALDI-TOF/TOF and data validation by routine clinical assays. Electrophoresis27(8), 1641–1650 (2006).
  • Sun W, Xing B, Sun Y et al. Proteome analysis of hepatocellular carcinoma by two-dimensional difference gel electrophoresis. Mol. Cell. Proteomics6(10), 1798–1808 (2007).
  • Wong SC, Chan AT, Chan JK, Lo YM. Nuclear β-catenin and Ki-67 expression in chriocarcinoma and its pre-malignant form. J. Clin. Pathol.59(4), 387–392 (2006).
  • Chan CM, Ma BB, Hui EP et al. Cyclooxygenase-2 expression in advanced nasopharyngeal carcinoma: a prognostic evaluation and correlation with hypoxia inducible factor 1 α and vascular endothelial growth factor. Oral Oncol.43(4), 373–378 (2007).
  • Groseclose MR, Massion PP, Chaurand P, Caprioli RM. High throughput proteomic analysis of formalin-fixed paraffin embedded tissue microarrays using MALDI imaging mass spectrometry. Proteomics8(18), 3715–3724 (2008).
  • Lemaire R, Desmons A, Tabet JC, Day R, Salzet M, Fournier I. Direct analysis and MALDI imaging of formalin-fixed, paraffin-embedded tissue sections. J. Proteome Res.6(4), 1295–1305 (2007).
  • Meistermann H, Norris JL, Aerni HR et al. Biomarker discovery by imaging mass spectrometry: transthyretin is a biomarker for gentamicin-induced nephrotoxicity in rat. Mol. Cell Proteomics5(10), 1876–1886 (2006).
  • Cornett DS, Reyzer ML, Chaurand P, Caprioli RM. MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat. Methods4(10), 828–823 (2007).
  • Shimma S, Sugiura Y, Hayasaka T, Zaima N, Matsumoto M, Setou M. Mass imaging and identification of biomolecules with MALDI-QIT-TOF-based system. Anal. Chem.80(3), 878–885 (2008).
  • Taban IM, Altelaar AFM, van der Burgt YEM et al. Imaging of peptides in the rat brain using MALDI-FTICR mass spectrometry. J. Am. Soc. Mass Spectrom.18(1), 145–151 (2007).
  • Hsieh Y, Casale R, Fukuda E et al. Matrix-assisted laser desorption/ionization imaging mass spectrometry for direct measurement of clozapine in rat brain tissue. Rapid Commun. Mass Spectrom.20(6), 965–972 (2006).
  • Goodwin RJA, Penington SR, Pitt AR. Protein and peptides in pictures: imaging with MALDI mass spectrometry. Proteomics8(18), 3785–3800 (2008).
  • Chaurand P, Norris JL, Cornett DS, Mobley JA, Caprioli RM. New developments in profiling and imaging of proteins from tissue sections by MALDI mass spectrometry. J. Proteome Res.5(11), 2889–2900 (2006).
  • Yao I, Sugiura Y, Matsumoto M, Setou M. In situ proteomics with imaging mass spectrometry and principal component analysis in the Scrapper-knockout mouse brain. Proteomics8(18), 3692–3701 (2008).
  • Schwartz SA, Weil RJ, Thompson RC et al. Proteomic-based prognosis of brain tumor patients using direct-tissue matrix-assisted laser desorption ionization mass spectrometry. Cancer Res.65(17), 7674–7681 (2005).
  • Lemaire R, Menguellet SA, Stauber J et al. Specific MALDI imaging and profiling for biomarler hunting and validation: fragment of the 11S proteasome activator complex, Reg α fragment, is a new potential ovary cancer biomarker. J. Proteome Res.6(11), 4127–4134 (2007).
  • Walch A, Rauser S, Deninger SO, Höfler H. MALDI imaging mass spectrometry for direct tissue analysis: a new frontier for molecular histology. Histochem. Cell Biol.130(3), 421–434 (2008).
  • Deninger SO, Ebert MP, Fütterer A, Gerhard M, Röcken C. MALDI imaging combined with hierarchical clustering as a new tool for the interpretation of complex human cancers. J. Proteome Res.7(12), 5230–5236 (2008).
  • McCombie G, Staab D, Stoeckli M, Knochenmuss R. Spatial and spectral correlations in MALDI mass spectrometry images by clustering and multivariate analysis. Anal. Chem.77(19), 6118–6124 (2005).
  • Groseclose MR, Andersson M, Hardesty WM et al. Identification of proteins directly from tissue: in situ tryptic digestions coupled with imaging mass spectrometry. J. Mass Spectrom.42(2), 254–262 (2007).
  • Stauber J, Lemaire R, Franck J et al. MALDI imaging of formalin-fixed paraffin-embedded tissues: application to model animals of Parkinson disease for biomarker hunting. J. Proteome Res.7(3), 969–978 (2008).
  • Chen Y, Choong LY, Lin Q et al. Differential expression of novel tyrosine kinase substrates during breast cancer development. Mol. Cell Proteomics6(12), 2072–2087 (2007).
  • Huang PY, Cavenee WK, Furnari FB, White FM. Uncovering therapeutic targets for glioblastoma: a systems biology approach. Cell Cycle6(22), 2750–2754 (2007).
  • Guha U, Chaerkady R, Marimuthu A et al. Comparisons of tyrosine phosphorylated proteins in cells expressing lung cancer-specific alleles of EGFR and KRAS. Proc. Natl Acad. Sci. USA105(37), 14112–14117 (2008).
  • Rikova K, Guo A, Zeng Q et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell131(6), 1190–1203 (2007).
  • Singh AP, Senapati S, Ponnusamy MP et al. Clinical potential of mucins in diagnosis, prognosis, and therapy of ovarian cancer. Lancet Oncol.9(11), 1076–1085 (2008).
  • Syka JEP, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl Acad. Sci. USA101(26), 9528–9533 (2004).
  • Wiesner J, Premsler T, Sickmann A. Application of electron transfer dissociation (ETD) for the analysis of posttranslational modifications. Proteomics8(21), 4466–4483 (2008).
  • Hayakawa S, Hashimoto M, Matsubara H, Turecek F. Dissecting the proline effect: dissociations of proline radicals formed by electron transfer to protonated Pro-Gly and Gly-Pro dipeptides in the gas phase. J. Am. Chem. Soc.129(25), 7936–7949 (2007).
  • Good DM, Wirtala M, McAlister GC, Coon JJ. Performance characteristics of electron transfer dissociation mass spectrometry. Mol. Cell Proteomics6(11), 1942–1951 (2007).
  • Han H, Xia Y, Yang M, McLuckey SA. Rapidly alternating transmission mode electron-transfer dissociation and collisional activation for the characterization of polypeptide ions. Anal. Chem.80(9), 3492–3497 (2008).
  • Han H, Xia Y, McLuckey SA. Ion trap collisional activation of c and z• ions formed via gas-phase ion/ion electron-transfer dissociation. J. Proteome Res.6(8), 3062–3069 (2007).
  • Chi A, Huttenhower C, Geer LY et al. Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry. Proc. Natl Acad. Sci. USA104(7), 2193–2198 (2007).
  • Molina H, Matthiesen R, Kandasamy K, Pandey A. Comprehensive comparison of collision induced dissociation and electron transfer dissociation. Anal. Chem.80(13), 4825–4835 (2008).
  • Catalina MI, Koeleman CAM, Deelder AM, Wuhrer M. Electron transfer dissociation of N-glycopeptides: loss of the entire N-glycosylated asparagine side chain. Rapid Commun. Mass Spectrom.21(6), 1053–1061 (2007).
  • Abbott KL, Aoki K, Lim JM et al. Targeted glycoproteomic identification of biomarkers for human breast carcinoma. J. Proteome Res.7(4), 1470–1480 (2008).
  • Yan A, Lennarz WJ. Unraveling the mechanism of protein N-glycosylation. J. Biol. Chem.280(5), 3121–3124 (2005).
  • Danielle H, Bertozzi CR. Glycans in cancer and inflammation – potential for therapeutics and diagnostics. Nat. Rev. Drug Discov.4(6), 477–488 (2005).
  • Morelle W, Canis K, Chirat F, Faid V, Michalski J-C. The use of mass spectrometry for the proteomic analysis of glycosylation. Proteomics6(14), 3993–4015 (2006).
  • Hogan JM, Pitteri SJ, Chrisman PA, McLuckey SA. Complementary structural information from a tryptic N-linked glycopeptide via electron transfer ion/ion reactions and collision induced dissociation. J. Proteome Res.4(2), 628–632 (2005).
  • Mikesh LM, Ueberheide B, Chi A et al. The utility of ETD mass spectrometry in proteomic analysis. Biochim. Biophys. Acta1764(12), 1811–1822 (2006).
  • States DJ, Omenn GS, Blackwell TW et al. Challenges in deriving high-confidence protein identifications from data gathered by a HUPO plasma proteome collaborative study. Nat. Biotechnol.24(3), 333–338 (2006).
  • Wulfkuhle JD, Edmiston KH, Liotta LA, Petricoin EF 3rd. Technology insight: pharmacoproteomics for cancer – promises of patient-tailored medicine using protein microarrays. Nat. Clin. Pract. Oncol.3(5), 256–268 (2006).
  • Tibes R, Qiu Y, Lu Y et al. Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells. Mol. Cancer Ther.5(10), 2512–2521 (2006).
  • LaBaer J, Ramachandran N. Protein microarrays as tools for functional proteomics. Curr. Opin. Chem. Biol.9(1), 14–19 (2005).
  • Ramalingam S, Honkanen P, Young L et al. Quantitative assessment of the p53-Mdm2 feedback loop using protein lysate microarrays. Cancer Res.67(13), 6247–6252 (2007).
  • Nishizuka S, Ramalingam S, Spurrier B et al. Quantitative protein network monitoring in response to DNA damage. J. Proteome Res.7(2), 803–808 (2008).
  • Petricoin EF 3rd, Bichsel VE, Calvert VS et al. Mapping molecular networks using proteomics: a vision for patient-tailored combination therapy. J. Clin. Oncol.23(15), 3614–3621 (2005).
  • Sheehan KM, Calvert VS, Kay EW et al. Use of reverse-phase protein microarrays and reference standard development for molecular network analysis of metastatic ovarian carcinoma. Mol. Cell Proteomics4(4), 346–355 (2005).
  • Zha H, Raffled M, Charboneau L et al. Similarities of prosurvival signals in Bcl 2-positive and Bcl 2-negative follicular lymphomas identified by reverse phase protein microarray. Lab. Invest.84(2), 235–244 (2004).
  • Major SM, Nishizuka S, Morita D et al. AbMiner: a bioinformatic resource on available monoclonal antibodies and corresponding gene identifiers for genomic, proteomic, and immunologic studies. BMC Bioinformatics7, 192 (2006).
  • Spurrier B, Washburn FL, Asin S, Ramalingam S, Nishizuka S. Antibody screening database for protein kinetic modeling. Proteomics7(18), 3259–3263 (2007).
  • Ciliberto A, Novak B, Tyson JJ. Steady states and oscillations in the p53/Mdm2 network. Cell Cycle4(3), 488–493 (2005).
  • Ma L, Wagner J, Rice JJ, Hu W, Levine AJ, Stolovitzky GA. A plausible model for the digital response of p53 to DNA damage. Proc. Natl Acad. Sci. USA102(40), 14266–14271 (2005).
  • Madoz-Gurpide J, Kuick R, Wang H, Misek DE, Hanash SM. Integral protein microarrays for the identification of lung cancer antigens in sera that induce a humoral immune response. Mol. Cell. Proteomics7(2), 268–281 (2007).
  • Canterbury JD, Yi X, Hoopmann MR, MacCoss MJ. Assessing the dynamic range and peak capacity of nanoflow LC-FAIMS-MS on an ion trap mass spectrometer for proteomics. Anal. Chem.80(18), 6888–6897 (2008).
  • Coombes KR, Morris JS, Hu J, Edmonson SR, Baggerly KA. Serum proteomics – a young technology begins to mature. Nat. Biotechnol.23(3), 291–292 (2005).
  • Hortin GL. Can mass spectrometric protein profiling meet desired standards of clinical laboratory practice? Clin. Chem.51(1), 3–5 (2005).
  • Omenn GS, States DJ, Adamski M et al. Overview of the HUPO plasma proteome project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics5(13), 3226–3245 (2005).
  • Rai AJ, Gelfrand CA, Haywood BC et al. HUPO plasma proteome project specimen collection and handling: towards the standardization of parameters for plasma proteome samples. Proteomics5(13), 3262–3277 (2005).
  • Mann M. Can proteomics retire the western blot? J. Proteome Res.7(8), 3065 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.