1,491
Views
121
CrossRef citations to date
0
Altmetric
Review

Protein microarrays: high-throughput tools for proteomics

, &
Pages 145-157 | Published online: 09 Jan 2014

References

  • Pandey A, Mann M. Proteomics to study genes and genomes. Nature405(6788), 837–846 (2000).
  • Gordus A, MacBeath G. Circumventing the problems caused by protein diversity in microarrays: implications for protein interaction networks. J. Am. Chem. Soc.128(42), 13668–13669 (2006).
  • He M, Stoevesandt O, Palmer EA, Khan F, Ericsson O, Taussig MJ. Printing protein arrays from DNA arrays. Nat. Methods5(2), 175–177 (2008).
  • Ramachandran N, Hainsworth E, Bhullar B et al. Self-assembling protein microarrays. Science305(5680), 86–90 (2004).
  • He M, Taussig MJ. Single step generation of protein arrays from DNA by cell-free expression and in situ immobilization (PISA method). Nucleic Acids Res.29(15), E73–E73 (2001).
  • Merkel JS, Michaud GA, Salcius M, Schweitzer B, Predki PF. Functional protein microarrays: just how functional are they? Curr. Opin. Biotechnol.16(4), 447–452 (2005).
  • Zhu H, Snyder M. Protein chip technology. Curr. Opin. Chem. Biol.7(1), 55–63 (2003)
  • Dietrich HR, Knoll J, van den Doel LR et al. Nanoarrays: a method for performing enzymatic assays. Anal. Chem76(14), 4112–4117 (2004).
  • Hamelinck D, Zhou H, Li L et al. Optimized normalization for antibody microarrays and application to serum-protein profiling. Mol. Cell. Proteomics4(6), 773–784 (2005).
  • Sanchez-Carbayo M, Socci ND, Lozano JJ, Haab BB, Cordon-Cardo C. Profiling bladder cancer using targeted antibody arrays. Am. J. Pathol.168(1), 93–103 (2006).
  • Hartmann M, Schrenk M, Döttinger A et al. Expanding assay dynamics: a combined competitive and direct assay system for the quantification of proteins in multiplexed immunoassays. Clin. Chem.54(6), 956–963 (2008).
  • Paweletz CP, Charboneau L, Bichsel VE et al. Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene20(16), 1981–1989 (2001).
  • Geho D, Lahar N, Gurnani P et al. Pegylated, steptavidin-conjugated quantum dots are effective detection elements for reverse-phase protein microarrays. Bioconjug. Chem.16(3), 559–566 (2005).
  • Janzi M, Odling J, Pan-Hammarstrom Q et al. Serum microarrays for large scale screening of protein levels. Mol. Cell. Proteomics4(12), 1942–1947 (2005).
  • Graslund S, Nordlund P, Weigelt J et al. Protein production and purification. Nat. Methods5(2), 135–146 (2008).
  • Goshima N, Kawamura Y, Fukumoto A et al. Human protein factory for converting the transcriptome into an in vitro-expressed proteome. Nat. Methods5(12), 1011–1017 (2008).
  • Waldo GS. Genetic screens and directed evolution for protein solubility. Curr. Opin. Chem. Biol.7(1), 33–38 (2003).
  • Lesley SA, Graziano J, Cho CY, Knuth MW, Klock HE. Gene expression response to misfolded protein as a screen for soluble recombinant protein. Protein Eng.15(2), 153–160 (2002).
  • Wigley WC, Stidham RD, Smith NM, Hunt JF, Thomas PJ. Protein solubility and folding monitored in vivo by structural complementation of a genetic marker protein. Nat. Biotechnol.19(2), 131–136 (2001).
  • He M. Cell-free protein synthesis: applications in proteomics and biotechnology. N. Biotechnol.25(2–3), 126–232 (2008).
  • Braun P, Hu Y, Shen B et al. Proteome-scale purification of human proteins from bacteria. Proc. Natl Acad. Sci. USA99(5), 2654–2659 (2002).
  • Steinhauer C, Wingren C, Khan F, He M, Taussig MJ, Borrebaeck CA. Improved affinity coupling for antibody microarrays: engineering of double-(His)-6-tagged single framework recombinant antibody fragments. Proteomics6(15), 4227–4234 (2006).
  • Cretich M, Damin F, Pirri G, Chiari M. Protein and peptide arrays: recent trends and new directions. Biomol. Eng.23(2–3), 77–88 (2006).
  • Espejo A, Cote J, Bednarek A, Richard S, Bedford MT. A protein-domain microarray identifies novel protein-protein interactions. Biochem. J.367(Pt 3), 697–702 (2002).
  • Mateo C, Fernandez-Lorente G, Abian O, Fernandez-Lafuente R, Guisan JM. Multifunctional epoxy supports: a new tool to improve the covalent immobilization of proteins. Biomacromolecules1(4), 739–745 (2000).
  • Zhu H, Bilgin M, Bangham R et al. Global analysis of protein activities using proteome chips. Science293(5537), 2101–2105 (2001).
  • Ofir K, Berdichevsky Y, Benhar I et al. Versatile protein microarray based on carbohydrate-binding modules. Proteomics5(7), 1806–1814 (2005).
  • Wong LS, Thirlway J, Micklefield J. Direct site-selective covalent protein immobilization catalyzed by a phosphopantetheinyl transferase. J. Am. Chem. Soc.130(37), 12456–12464 (2008).
  • Kiyonaka S, Sada K, Yoshimura I, Shinkai S, Kato N, Hamachi I. Semi-wet peptide/protein array using supramolecular hydrogel. Nat. Mater.3(1), 58–64 (2004).
  • Guilleaume B, Buness A, Schmidt C et al. Systematic comparison of surface coatings for protein microarrays. Proteomics5(18), 4705–4712 (2005).
  • Wu P, Grainger DW. Comparison of hydroxylated print additives on antibody microarray performance. J. Proteome Res.5(11), 2956–2965 (2006).
  • Kusnezow W, Jacob A, Walijew A, Diehl F, Hoheisel JD. Antibody microarrays: an evaluation of production parameters. Proteomics3(3), 254–264 (2003).
  • Mace CR, Yadav AR, Miller BL. Investigation of non-nucleophilic additives for the reduction of morphological anomalies in protein arrays. Langmuir24(22), 12754–12757 (2008).
  • Hartmann M, Sjodahl J, Stjernstrom M, Redeby J, Joos T, Roeraade J. Non-contact protein microarray fabrication using a procedure based on liquid bridge formation. Anal. Bioanal. Chem393(2), 591–598 (2008).
  • Bertone P, Snyder M. Advances in functional protein microarray technology. FEBS J.272(21), 5400–5411 (2005).
  • He M, Stoevesandt O, Taussig MJ. In situ synthesis of protein arrays. Curr. Opin. Biotechnol.19(1), 4–9 (2008).
  • Khan F, He M, Taussig MJ. Double-hexahistidine tag with high-affinity binding for protein immobilization, purification, and detection on Ni-nitrilotriacetic acid surfaces. Anal. Chem.78(9), 3072–3079 (2006).
  • Angenendt P, Kreutzberger J, Glokler J, Hoheisel JD. Generation of high density protein microarrays by cell-free in situ expression of unpurified PCR products. Mol. Cell. Proteomics5(9), 1658–1666 (2006).
  • Ramachandran N, Raphael JV, Hainsworth E et al. Next-generation high-density self-assembling functional protein arrays. Nat. Methods5(6), 535–538 (2008).
  • Anderson KS, Ramachandran N, Wong J et al. Application of protein microarrays for multiplexed detection of antibodies to tumor antigens in breast cancer. J. Proteome Res.7(4), 1490–1499 (2008).
  • Rolfs A, Montor WR, Yoon SS et al. Production and sequence validation of a complete full length ORF collection for the pathogenic bacterium Vibrio cholerae. Proc. Natl Acad. Sci. USA105(11), 4364–4369 (2008).
  • Tao SC, Zhu H. Protein chip fabrication by capture of nascent polypeptides. Nat. Biotechnol.24(10), 1253–1254 (2006).
  • Ramachandran N, Larson DN, Stark PR, Hainsworth E, LaBaer J. Emerging tools for real-time label-free detection of interactions on functional protein microarrays. FEBS J.272(21), 5412–5425 (2005).
  • Miller JC, Zhou H, Kwekel J et al. Antibody microarray profiling of human prostate cancer sera: antibody screening and identification of potential biomarkers. Proteomics3(1), 56–63 (2003).
  • Mamaev S, Olejnik J, Olejnik EK, Rothschild KJ. Cell-free N-terminal protein labeling using initiator suppressor tRNA. Anal. Biochem.326(1), 25–32 (2004).
  • Nemoto N, Miyamoto-Sato E, Yanagawa H. Fluorescence labeling of the C-terminus of proteins with a puromycin analogue in cell-free translation systems. FEBS Lett.462(1–2), 43–46 (1999).
  • Yamaguchi J, Nemoto N, Sasaki T et al. Rapid functional analysis of protein–protein interactions by fluorescent C-terminal labeling and single-molecule imaging. FEBS Lett.502(3), 79–83 (2001).
  • Stoevesandt O, Köhler K, Wolf S, Andre T, Hummel W, Brock R. A network analysis of changes in molecular interactions in cellular signaling. Mol. Cell. Proteomics6(3), 503–513 (2007).
  • Kattah MG, Alemi GR, Thibault DL, Balboni I, Utz PJ. A new two-color Fab labeling method for autoantigen protein microarrays. Nat. Methods3(9), 745–751 (2006).
  • Nishizuka S, Charboneau L, Young L et al. Proteomic profiling of the NCI-60 cancer cell lines using new high-density reverse-phase lysate microarrays. Proc. Natl Acad. Sci. USA100(24), 14229–14234 (2003).
  • Nallur G, Luo C, Fang L et al. Signal amplification by rolling circle amplification on DNA microarrays. Nucleic Acids Res.29(23), E118 (2001).
  • Schweitzer B, Roberts S, Grimwade B et al. Multiplexed protein profiling on microarrays by rolling-circle amplification. Nat. Biotechnol.20(4), 359–365 (2002).
  • Mullenix MC, Wiltshire S, Shao W, Kitos G, Schweitzer B. Allergen-specific IgE detection on microarrays using rolling circle amplification: correlation with in vitro assays for serum IgE. Clin. Chem.47(10), 1926–1929 (2001).
  • Melin J, Jarvius J, Larsson C, Soderberg O, Landegren U, Nilsson M. Ligation-based molecular tools for lab-on-a-chip devices. N. Biotechnol.25(1), 42–48 (2008).
  • Gustafsdottir SM, Schallmeiner E, Fredrikkson S et al. Proximity ligation assays for sensitive and specific protein analyses. Anal. Chem.345(1), 2–9 (2005)
  • Ghazani AA, Lee JA, Klostranec J et al. High throughput quantification of protein expression of cancer antigens in tissue microarray using quantum dot nanocrystals. Nano. Lett.6(12), 2881–2886 (2006)
  • Chen Z, Tabakman SM, Goodwin AP et al. Protein microarrays with carbon nanotubes as multicolor Raman labels. Nat. Biotechnol.26(11), 1285–1292 (2008).
  • Gavin IM, Kukhtin A, Glesne D, Schabacker D, Chandler DP. Analysis of protein interaction and function with a 3-dimensional MALDI-MS protein array. Biotechniques39, 99–107 (2005).
  • Finnskog D, Jaras K, Ressine A et al. High-speed biomarker identification utilizing porous silicon nanovial arrays and MALDI-TOF mass spectrometry. Electrophoresis27(5–6), 1093–1103 (2006).
  • Kanda V, Kariuki JK, Harrison DJ, McDermott MT. Label-free reading of microarray-based immunoassays with surface plasmon resonance imaging. Anal. Chem.76(24), 7257–7262 (2004).
  • Homola J. Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem.377(3), 528–539 (2003).
  • Unfricht DW, Colpitts SL, Fernandez SM, Lynes MA. Grating-coupled surface plasmon resonance: a cell and protein microarray platform. Proteomics5(17), 4432–4442 (2005).
  • Ozkumur E, Needham JW, Bergstein DA et al. Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications. Proc. Natl Acad. Sci. USA105(23), 7988–7992 (2008).
  • Ji J, O’Connell JG, Carter DJ, Larson DN. High-throughput nanohole array based system to monitor multiple binding events in real time. Anal. Chem.80(7), 2491–2498 (2008).
  • Cui Y, Wei Q, Park H, Lieber CM. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science293(5533), 1289–1292 (2001).
  • Li Y, Yang HH, You QH, Zhuang ZX, Wang XR. Protein recognition via surface molecularly imprinted polymer nanowires. Anal. Chem.78(1), 317–320 (2006).
  • Newman JR, Keating AE. Comprehensive identification of human bZIP interactions with coiled-coil arrays. Science300(5628), 2097–2101 (2003).
  • Popescu SC, Popescu GV, Bachan S et al. Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays. Proc. Natl Acad. Sci. USA104(11), 4730–4735 (2007).
  • Kim SH, Tamrazi A, Carlson KE, Katzenellenbogen JA. A proteomic microarray approach for exploring ligand-initiated nuclear hormone receptor pharmacology, receptor selectivity, and heterodimer functionality. Mol. Cell. Proteomics4(3), 267–277 (2005).
  • Salamat-Miller N, Fang J, Seidel CW, Assenov Y, Albrecht M, Middaugh CR. A network-based analysis of polyanion-binding proteins utilizing human protein arrays. J. Biol. Chem.282(14), 10153–10163 (2007).
  • Sakanyan V. High-throughput and multiplexed protein array technology: protein–DNA and protein–protein interactions. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.815(1–2), 77–95 (2005).
  • Hall DA, Zhu H, Zhu X, Royce T, Gerstein M, Snyder M. Regulation of gene expression by a metabolic enzyme. Science306 (5695), 482–484 (2004).
  • Stansfield HE, Kulczewski BP, Lybrand KE, Jamieson ER. Identifying protein interactions with metal-modified DNA using microarray technology. J. Biol. Inorg. Chem.14(2), 193–199 (2009).
  • Ho SW, Jona G, Chen CT, Johnston M, Snyder M. Linking DNA-binding proteins to their recognition sequences by using protein microarrays. Proc. Natl Acad. Sci. USA103(26), 9940–9945 (2006).
  • Snapyan M, Lecocq M, Guevel L, Arnaud MC, Ghochikyan A, Sakanyan V. Dissecting DNA–protein and protein–protein interactions involved in bacterial transcriptional regulation by a sensitive protein array method combining a near-infrared fluorescence detection. Proteomics3(5), 647–657 (2003).
  • Boutell JM, Hart DJ, Godber BL, Kozlowski RZ, Blackburn JM. Functional protein microarrays for parallel characterisation of p53 mutants. Proteomics4(7), 1950–1958 (2004).
  • MacBeath G, Schreiber SL. Printing proteins as microarrays for high-throughput function determination. Science289(5485), 1760–1763 (2000).
  • Schweitzer B, Predki P, Snyder M. Microarrays to characterize protein interactions on a whole-proteome scale. Proteomics3(11), 2190–2199 (2003).
  • Fang Y, Frutos AG, Lahiri J. Membrane protein microarrays. J. Am. Chem. Soc.124(11), 2394–2395 (2002).
  • Huang J, Zhu H, Haggarty SJ et al. Finding new components of the target of rapamycin (TOR) signaling network through chemical genetics and proteome chips. Proc. Natl Acad. Sci. USA101(47), 16594–16599 (2004).
  • Salcius M, Michaud GA, Schweitzer B, Predki PF. Identification of small molecule targets on functional protein microarrays. Methods Mol. Biol.382, 239–248 (2007).
  • Korf U, Henjes F, Schmidt C et al. Antibody microarrays as an experimental platform for the analysis of signal transduction networks. Adv. Biochem. Eng. Biotechnol.110, 153–175 (2008).
  • Pavlickova P, Schneider EM, Hug H. Advances in recombinant antibody microarrays. Clin. Chim. Acta343(1–2), 17–35 (2004).
  • Chaga GS. Antibody arrays for determination of relative protein abundances. Methods Mol. Biol.441, 129–151 (2008).
  • Sreekumar A, Nyati MK, Varambally S et al. Profiling of cancer cells using protein microarrays: discovery of novel radiation-regulated proteins. Cancer Res.61(20), 7585–7593 (2001).
  • Li S, Sack R, Vijmasi T et al. Antibody protein array analysis of the tear film cytokines. Optom. Vis. Sci.85(8), 653–660 (2008).
  • Ingvarsson J, Wingren C, Carlsson A et al. Detection of pancreatic cancer using antibody microarray-based serum protein profiling. Proteomics8(11), 2211–2219 (2008).
  • Bartling B, Hofmann HS, Boettger T et al. Comparative application of antibody and gene array for expression profiling in human squamous cell lung carcinoma. Lung Cancer49(2), 145–154 (2005).
  • Schwenk JM, Gry M, Rimini R, Uhlen M, Nilsson P. Antibody suspension bead arrays within serum proteomics. J. Proteome Res.7(8), 3168–3179 (2008).
  • Björling E, Uhlen M. Antibodypedia, a portal for sharing antibody and antigen validation data. Mol. Cell. Proteomics7(10), 2028–2037 (2008).
  • Davies DH, Liang X, Hernandez JE et al. Profiling the humoral immune response to infection by using proteome microarrays: high-throughput vaccine and diagnostic antigen discovery. Proc. Natl Acad. Sci. USA102(3), 547–552 (2005).
  • Davies DH, Molina DM, Wrammert J et al. Proteome-wide analysis of the serological response to vaccinia and smallpox. Proteomics7(10), 1678–1686 (2007).
  • Eyles JE, Unal B, Hartley MG et al. Immunodominant Francisella tularensis antigens identified using proteome microarray. Proteomics7(13), 2172–2183 (2007).
  • Davies DH, McCausland MM, Valdez C et al. Vaccinia virus H3L envelope protein is a major target of neutralizing antibodies in humans and elicits protection against lethal challenge in mice. J. Virol.79(18), 11724–11733 (2005).
  • Li B, Jiang L, Song Q et al. Protein microarray for profiling antibody responses to Yersinia pestis live vaccine. Infect. Immun.73(6), 3734–3739 (2005).
  • Doolan DL, Mu Y, Unal B et al. Profiling humoral immune responses to P. falciparum infection with protein microarrays. Proteomics8(22), 4680–4694 (2008).
  • Quintana FJ, Farez MF, Viglietta V et al. Antigen microarrays identify unique serum autoantibody signatures in clinical and pathologic subtypes of multiple sclerosis. Proc. Natl Acad. Sci. USA105(48), 18889–18894 (2008).
  • Robinson WH, Fontoura P, Lee BJ et al. Protein microarrays guide tolerizing DNA vaccine treatment of autoimmune encephalomyelitis. Nat. Biotechnol.21(9), 1033–1039 (2003).
  • Roche S, Dauvilliers Y, Tiers L et al. Autoantibody profiling on high-density protein microarrays for biomarker discovery in the cerebrospinal fluid. J. Immunol. Methods338(1–2), 75–78 (2008).
  • Chatterjee M, Draghici S, Tainsky MA. Immunotheranostics: breaking tolerance in immunotherapy using tumor autoantigens identified on protein microarrays. Curr. Opin. Drug Discov. Devel.9(3), 380–385 (2006).
  • Gnjatic S, Wheeler C, Ebner M et al. Seromic analysis of antibody responses in non-small cell lung cancer patients and healthy donors using conformational protein arrays. J. Immunol. Methods341(1–2), 50–8 (2009).
  • Tibes R, Qiu Y, Lu Y et al. Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells. Mol. Cancer Ther.5(10), 2512–2521 (2006).
  • Michaud GA, Salcius M, Zhou F et al. Analyzing antibody specificity with whole proteome microarrays. Nat. Biotechnol.21(12), 1509–1512 (2003).
  • Kijanka G, Ipcho S, Baars S et al. Rapid characterization of binding specificity and cross-reactivity of antibodies using recombinant human protein arrays. J. Immunol. Methods340(2), 132–137 (2009).
  • Nielsen UB, Cardone MH, Sinskey AJ, MacBeath G, Sorger PK. Profiling receptor tyrosine kinase activation by using Ab microarrays. Proc. Natl Acad. Sci. USA100(16), 9330–9335 (2003).
  • Ivanov SS, Chung AS, Yuan ZL et al. Antibodies immobilized as arrays to profile protein post-translational modifications in mammalian cells. Mol. Cell. Proteomics3(8), 788–795 (2004).
  • Kopf E, Shnitzer D, Zharhary D. Panorama Ab Microarray Cell Signaling kit: a unique tool for protein expression analysis. Proteomics5(9), 2412–2416 (2005).
  • Boyd ZS, Wu QJ, O’Brien C et al. Proteomic analysis of breast cancer molecular subtypes and biomarkers of response to targeted kinase inhibitors using reverse-phase protein microarrays. Mol. Cancer Ther.7(12), 3695–3706 (2008).
  • Kung LA, Snyder M. Proteome chips for whole-organism assays. Nat. Rev. Mol. Cell. Biol.7(8), 617–622 (2006).
  • Pilobello KT, Slawek DE, Mahal LK. A ratiometric lectin microarray approach to analysis of the dynamic mammalian glycome. Proc. Natl Acad. Sci. USA104(28), 11534–11539 (2007).
  • Zhao J, Patwa TH, Qiu W et al. Glycoprotein microarrays with multi-lectin detection: unique lectin binding patterns as a tool for classifying normal, chronic pancreatitis and pancreatic cancer sera. J. Proteome Res.6(5), 1864–1874 (2007).
  • Feilner T, Hultschig C, Lee J et al. High throughput identification of potential Arabidopsis mitogen-activated protein kinases substrates. Mol. Cell. Proteomics4(10), 1558–1568 (2005).
  • Ptacek J, Devgan G, Michaud G et al. Global analysis of protein phosphorylation in yeast. Nature438(7068), 679–684 (2005).
  • Chan SM, Ermann J, Su L, Fathman CG, Utz PJ. Protein microarrays for multiplex analysis of signal transduction pathways. Nat. Med.10(12), 1390–1396 (2004).
  • Korf U, Derdak S, Tresch A et al. Quantitative protein microarrays for time-resolved measurements of protein phosphorylation. Proteomics8(21), 4603–4612 (2008).
  • Chen GY, Uttamchandani M, Zhu Q, Wang G, Yao SQ. Developing a strategy for activity-based detection of enzymes in a protein microarray. ChemBioChem4(4), 336–339 (2003).
  • Funeriu DP, Eppinger J, Denizot L, Miyake M, Miyake J. Enzyme family-specific and activity-based screening of chemical libraries using enzyme microarrays. Nat. Biotechnol.23(5), 622–627 (2005).
  • Cha T, Guo A, Zhu XY. Enzymatic activity on a chip: the critical role of protein orientation. Proteomics5(2), 416–419 (2005).
  • Jung GY, Stephanopoulos G. A functional protein chip for pathway optimization and in vitro metabolic engineering. Science304(5669), 428–431 (2004).
  • Lee MY, Park CB, Dordick JS, Clark DS. Metabolizing enzyme toxicology assay chip (MetaChip) for high-throughput microscale toxicity analyses. Proc. Natl Acad. Sci. USA102(4), 983–987 (2005).
  • Poetz O, Ostendorp R, Brocks B et al. Protein microarrays for antibody profiling: specificity and affinity determination on a chip. Proteomics5(9), 2402–2411 (2005).
  • Lu DD, Chen SH, Zhang SM et al. Screening of specific antigens for SARS clinical diagnosis using a protein microarray. Analyst130(4), 474–482 (2005).
  • Chen Z, Pei D, Jiang L et al. Antigenicity analysis of different regions of the severe acute respiratory syndrome coronavirus nucleocapsid protein. Clin. Chem.50(6), 988–995 (2004).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.