165
Views
16
CrossRef citations to date
0
Altmetric
Review

Utility of mass spectrometry for proteome analysis: part II. Ion-activation methods, statistics, bioinformatics and annotation

Pages 171-197 | Published online: 09 Jan 2014

References

  • Ahmed FE. Utility of mass spectrometry for proteome analysis: Part I. Conceptual and experimental approaches. Expert Rev. Proteomics5, 841–864 (2008).
  • Balogh MP. A mass spectrometry primer, Part II. LCGC N. Am.26, 1006–1021 (2008).
  • Peng J, Elias JE, Thoreen CC et al. Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large scale protein analysis: the yeast proteome. J. Proteome Res.2, 43–50 (2003).
  • Sleno L, Volmer DA. Ion activation methods for tandem mass spectrometry. J. Mass Spectrom.39, 1091–1112 (2004).
  • Rosenstock HM, Wallenstein MB, Warhartig A, Eyring H. Absolute rate theory for isolated systems and the mass spectra of polyatomic molecules. Proc. Natl Acad. Sci. USA38, 667–671 (1952).
  • Marcus RA. Unimolecular dissociations and free radical recombination reactions. J. Chem. Phys.20, 359–372 (1952).
  • Ervin KM. Microcanonical analysis of the kinetic method. The meaning of the apparent entropy. J. Am. Soc. Mass Spectrom.13, 435–452 (2002).
  • Aston FW. The distribution of intensity along the positive ray parabola of atoms and molecules of hydrogen and its possible explanation. Proc. Cambridge Philos. Soc.19, 317–329 (1919).
  • Hipple JA, Condon EU. Detection of metastable ions with the mass spectrometry. Phys. Rev.68, 54–62 (1945).
  • Wahlander A, Arrigoni G, Snel M et al. Parallel post-source decay for increasing protein identification confidence levels for 2D gels. Proteomics8, 1771–1779 (2008).
  • Spengler B, Kirsch D, Kaufmann R. Fundamentals of post source decay in MALDI-MS. 1. Residual gas effects. J. Phys. Chem.96, 9678–9685 (1992).
  • Kaufmann R, Spengler B, Lützenkirchen F. Mass spectrometric sequencing of linear peptides by product-ion analysis in a reflectron time-of-flight mass spectrometer using matrix-assisted laser desorption ionization. Rapid Commun. Mass Spectrom.7, 902–915 (1993).
  • Kaufman R, Kirsh D, Spengler B. Sequencing of peptides in a time-of-flight mass spectrometer: evaluation of postsource decay following matrix-assisted laser desorption ionization (MALDI). Int. J. Mass Spectrom. Ion Processes131, 355–367 (1994).
  • Jennings KR. The changing impact of the collision-induced decomposition of ions on mass spectrometry. Int. J. Mass Spectrom.200, 479–486 (2000).
  • Domon B, Aebersold R. Mass spectrometry and protein analysis. Science312, 212–217 (2006).
  • Lorenzen K, Versluis C, van Duijn E et al. Optimizing macromolecular tandem mass spectrometry of large non-covalent complexes using heavy collision gases. Int. J. Mass Spectrom.268, 198–206 (2007).
  • Cooks RG, Ast T, Beynon JH. Anomalous metastable peaks. Int. J. Mass Spectrom. Ion Processes16, 348–352 (1975).
  • Laskin J, Futrell JH. Collisional activation of peptide ions in FT-ICR mass spectrometry. Mass Spectrom. Rev.22(3), 158–181 (2003).
  • Dekrey MJ, Kenttaman HI, Wysocki VH, Cooks RG. Energy deposition in Fe(Co)5+. Upon collision with a metal-surface Org. Mass Spectrom.21, 193–195 (1986).
  • Laskin J, Futrell JH. Surface-induced dissociation of peptide ions: kinetics and dynamics. J. Am. Soc. Mass Spectrom.14, 1340–1349 (2003).
  • Wysocki VH, Ding J-M, Jones JL et al. Surface-induced dissociation in tandem quadrupole mass spectrometers: a comparison of three designs. J. Am. Soc. Mass Spectrom.3, 27–39 (1992).
  • Wysocki VH, Joyce KE, Jones CM, Beardsley RL. Surface-induced dissociation of small molecules, peptides, and non-covalent protein complexes. J. Am. Soc. Mass Spectrom.19, 190–208 (2008).
  • Stone E, Gillig KJ, Ruotolo B et al. Surface-induced dissociation on a MALDI-ion mobility-orthogonal time-of-flight mass spectrometer: sequencing peptides from an ‘in-solution’ protein digest. Anal. Chem.73, 2233–2239 (2001).
  • Laskin J, Futrell JH. Energy transfer in collision of peptide ions with surfaces. J. Chem. Phys.119, 3410–3420 (2003).
  • Wysocki VH, Jones CM. Surface-induced dissociation shows potential to be more informative than collision-induced dissociation for structural studies of large systems. J. Am. Soc. Mass Spectrom.19, 903–913 (2008).
  • Laskin J, Denisov E, Futrell JH. Study of collision-induced and surface-induced dissociation. 2. Fragmentation of small alanine-containing peptide in FT-ICR MS. J. Phys. Chem. B105, 1895–19001 (2001).
  • Grill V, Shen J, Evans C, Cooks RG. Collisions of ions with surfaces at chemically relevant energies: instrumentation and phenomena. Rev. Sci. Instrum.72, 3149–3179 (2001).
  • Galhena AS, Dagan S, Jones CM et al. Surface-induced dissociation of peptides and protein complexes in quadrupole/time-of-flight mass spectrometers. Anal. Chem.80, 1425–1436 (2008).
  • Zubarev RA, Kelleher NL, McLafferty FW. Electron capture dissociation of multiply charged protein cations. A nonergodic process. J. Am. Soc. Chem.120, 3265–3274 (1998).
  • Zubarev RA. Reactions of polypeptide ions with electrons in the gas phase. Mass Spectrom. Rev.22, 57–84 (2003).
  • Shaw MA, Watanabe M, Nabetani T et al. Post translational modification via electron capture dissociation using a linear ion trap time-of-flight mass spectrometer. Curr. Trend Mass Spectrom.23, 26–29 (2008).
  • Zubarev RA, Kruger NA, Fridriksson EK et al. Electron capture dissociation of gaseous multiply-charged proteins is favored at disulfide bonds and other sites of high hydrogen atom affinity. J. Am. Chem. Soc.121, 2857–2862 (1999).
  • Zubarev RA, Haselmann KF, Budnik BA et al. Towards an understanding of the mechanism of electron capture dissociation: a historical perspective. Eur. J. Mass Spectrom.8, 337–349 (2002).
  • Haselmann KF, Budnik BA, Olsen JV et al. Advantages of external accumulation for electron capture dissociation in Fourier transform mass spectrometry. Anal. Chem.73, 2998–3005 (2001).
  • Zubarev RA. Horn DM, Fridriksson EK et al. Electron capture dissociation for structural characterization of multiply charged protein cations. Anal. Chem.72, 563–570 (2000).
  • Kiedsen F, Haselmann KF, Budnick BK et al. Dissociation capture of hot (3–13 eV) electrons by polypeptide polycations: an efficient process accompanied by secondary fragmentation. Chem. Phys. Lett.356, 201–209 (2002).
  • Cooper HJ, Håkansson K, Marshall AG. The role of electron capture dissociation in biomolecular analysis. Mass Spectrom. Rev.24, 201–222 (2005).
  • Budnik BA, Haselmann KF, Zubarev RA. Electron detachment dissociation of peptide di-anions: an electron-hole recombination phenomenon. Chem. Phys. Lett.342, 299–302 (2000).
  • Cooper HT, Hudhins RR, Håkansson K, Marshall AG. Secondary fragmentation of linear peptides in electron capture dissociation. Int. J. Mass Spectrom.228, 723–728 (2003).
  • Turecek F, McLafferty FW. Non-ergodic behavior in acetone-enol ion dissociations. J. Am. Chem. Soc.106, 2525–2536 (1984).
  • Coon JJ, Shabanowitz J, Hunt DF, Syka JEP. Electron transfer dissociation of peptide ions. J. Am. Soc. Mass Spectrom.16, 880–882 (2005).
  • Horn DM, Ge Y, McLafferty FW. Activated electron capture dissociation for mass spectral sequencing of larger (42 kDa) proteins. Anal. Chem.72, 4778–4786 (2000).
  • Papayannopoulos IA. The interpretation of collision-induced dissociation tandem mass spectra of peptides. Mass Spectrom. Rev.24, 201–222 (2005).
  • Uechi GT, Dunbar RC. The kinetics of infrared laser photodissociation of n-butylbenzene ions at low pressure. J. Chem. Phys.96, 8897–8906 (1992).
  • Mikesh LM, Ueberheide B, Vhi A et al. The utility of ETD mass spectrometry in proteome analysis. Biochim. Biophys. Acta1764, 1811–1822 (2006).
  • McAlister GC, Berggren WT, Grieg-Raming J et al. A proteomics grade electron transfer dissociation-enabled hybrid linear ion trap-orbitrap mass spectrometer. J. Proteome Res.7, 3127–3130 (2008).
  • Coon JJ, Syka JEP, Schwartz JC et al. Anion dependence in the partitioning between proton and electron transfer in ion/ion reactions. Int. J. Mass Spectrom.236, 33–42 (2004).
  • Swaney DL, McAlister GC, Coon JJ. Decision tree-driven tandem mass spectrometry for shotgun proteomics. Nat. Methods5, 959–964 (2008).
  • Molina H, Horn DM, Tang N, Mathivanan S, Pandey A. Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometer. Proc. Natl Acad. Sci. USA104, 2199–2204 (2007).
  • Scherperel G, Reid GE. Emerging methods in proteomics: top-down protein characterization by multistage tandem mass spectrometry. Analyst132, 500–506 (2007).
  • Li W, Hendrickson CL, Emmett MR, Marshall AG. Identification of intact proteins in mixtures by altered capillary liquid chromatography electrospray ionization and LC ESI infrared multiphoton dissociation Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem.71, 4397–4405 (1999).
  • Håkansson K, Chalmers MJ, Quinn JP et al. Combined electron capture and infrared multiphoton dissociation for multistage MS/MS in a Fourier transform ion cyclotron resonance mass spectrometer. Anal. Chem.75, 3256–3264 (1999).
  • Hashimoto Y, Hasegawa H, Yoshinari K et al. Collision-activated infrared multiphoton dissociation in a quadrupole ion trap mass spectrometer. Anal. Chem.75, 420–428 (1999).
  • Zürbig P, Renfrow MB, Schiffer E et al. Biomarker discovery by CE-MS enables sequence analysis via MS/MS with platform-independent separation. Electrophoresis27, 2111–2125 (2006).
  • Chalmers, MJ, Mackay CL, Hendrickson CL et al. Combined top-down and bottom-up mass spectrometric approach to characterization of biomarkers for renal disease. Anal. Chem.77, 7163–7171 (2005).
  • Price WD, Schnier PD, Williams ER. Tandem mass spectrometry of large biomolecule ions by blackbody infrared radiative dissociation. Anal. Chem.68, 859–868 (1999).
  • Price WD, Williams ER. Activation of peptide ions by blackbody radiation: factors that lead to dissociation kinetics in the rapid energy exchange limit. J. Phys. Chem. A101, 8844–8853 (1997).
  • Freitas MA, Hendrickson CL, Marshall AG. Gas phase activation energy for unimolecular dissociation of biomolecular ions determined by Focused Radiation for Gaseous Multiphoton Energy Transfer (FRAGMENT). Rapid Commun. Mass Spectrom.13, 1639–1647 (1999).
  • Felitsyn N, Kitova EN, Klassen JS. Thermal decomposition of gaseous multiprotein complex studied by blackbody infrared radiative dissociation. Investigating the origin of the asymmetric dissociation behavior. Anal. Chem.73(19), 4647–4661 (2001).
  • McLuckey SA, Goeringer DE. Slow heating methods in tandem mass spectrometry. J. Mass Spectrom.32, 461–473 (1997).
  • Jockusch RA, Schnier PD, Price WD et al. Effects of charge state on fragmentation pathways, dynamics, and activation energies of ubiquitin ions measured by blackbody infrared radiative dissociation. Anal. Chem.69, 1119–1127 (1997).
  • Ahmed FE. Sample preparation and fractionation for proteome analysis and cancer biomarker discovery by mass spectrometry. J. Sep. Sci.32(5,6), 771–798 (2009).
  • Coon JJ, Zürbig P, Dakna M et al. CE-MS analysis of human urinary proteome for biomarker discovery and disease diagnosis. Proteomics Clin. Appl.2, 964–973 (2008).
  • Ahmed FE. The role of capillary electrophoresis-mass spectrometry in proteome analysis and biomarker discovery. J. Chromatogr. B (2009) (Epub ahead of print).
  • Deutsch EW, Lam H, Aebersold R. Data analysis and bioinformatics tools for tandem mass spectrometry in proteomics. Physiol. Genomics33, 18–25 (2008).
  • Urfer W, Grzegorczyk M, Jung K. Statistics for proteomics: a review of tools for analyzing experimental data. Proteomics6(Suppl. 2), 48–55 (2006).
  • Ahmed FE. Mining the oncoproteome and studying molecular interactions for biomarker developments by 2DE, ChIP and SPR technologies. Expert Rev. Proteomics5, 469–496 (2008).
  • Wang H, Clouthier SG, Galchev V et al. Intact-protein-based high-resolution three dimensional quantitative analysis system for proteome profiling of biological fluids. Mol. Cell. Proteomics4, 618–625 (2004).
  • Leitner A, Linder W. Current chemical tagging strategies for proteome analysis by mass spectrometry. J. Chromatogr. B813, 1–26 (2004).
  • Wang G, Wu WW, Zeng W et al. Label-free protein quantitation using LC-coupled ion trap or FT mass spectrometry: reproducibility, linearity and application with complex proteomes. J. Proteome Res.5, 12–14 (2006).
  • Doerr A. Absolute proteomics. Nat. Methods4, 195 (2007).
  • Lu P, Vogel C, Wang R et al. Absolute protein expression profiling estimates the relative contribution of translational and transcriptional regulation. Nat. Biotechnol.25, 117–124 (2007).
  • Mallick P, Schirle M, Chen SS et al. Computational prediction of proteotypic peptides for quantitative proteomics. Nat. Biotechnol.25, 125–131 (2007).
  • Ahmed FE. Application of MALDI/SELDI mass spectrometry to cancer biomarker discovery and validation. Current Proteomics5(4), 224–252(29) (2008).
  • Shen Y, Jacobs JM, Camp DG et al. Ultra-high-efficiency strong cation exchange LC/RPLC/MS/MS for high dynamic range characterization of the human plasma proteome. Anal. Chem.76, 1134–1144 (2004).
  • Li XJ, Pedrioli PG, Eng J et al. A tool to visualize and evaluate data obtained by liquid chromatography-electrospray ionization mass spectrometry. Anal. Chem.76, 3856–3860 (2004).
  • Decramer S, Wittke S, Mishak H et al. Predicting the clinical outcome of congenital unilateral ureteropelvic junction obstruction in new born by urinary proteome analysis. Nat. Med.12, 398–400 (2006).
  • Rossing K, Mischak H, Dakna M et al. Urinary proteomics in diabetics and CD. J. Am. Soc. Nephrol.19, 1283–1290 (2008).
  • Villanueva J, Phillip J, Entenberg D et al. Serum peptide profiling by magnetic particle-assisted, automated sample processing and MALDI-TOF mass spectrometry. Anal. Chem.76, 1560–1570 (2004).
  • Page JS, Masselon CD, Smith RD. FTICR mass spectrometry for qualitative and quantitative bioanalyses. Curr. Opin. Biotechnol.15, 3–11 (2004).
  • Prakash A, Lallick P, Whiteaker J et al. Signal maps for mass spectrometry-based comparative proteomics. Mol. Cell. Proteomics5, 423–432 (2006).
  • Radulovic D, Jelveh S, Ryu S et al. Informatics platform for global proteomic profiling and biomarker discovery using liquid chromatography-tandem mass spectrometry. Mol. Cell. Proteomics3, 984–997 (2004).
  • Smith CA, Want EJ, O’Maille G et al. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem.78, 779–787 (2006).
  • Silva JC, Denny R, Dorschel CA et al. Quantitative proteomic analysis by accurate mass retention time pairs. Anal. Chem.77, 2187–2200 (2005).
  • Silva JC, Gorenstein MV, Li GZ et al. Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. Mol. Cell. Proteomics5, 144–156 (2006).
  • Aach J, Church GM. Aligning gene expression time series with time warping algorithms. Bioinformatics17, 495–508 (2001).
  • Jaffe JD, Mani DR, Leptos KC et al. PEPPeR, a platform for experimental proteomic pattern recognition. Mol. Cell. Proteomics5, 1927–1941 (2006).
  • Kuster B, Schirle M, Mallick P, Aebersold R. Scoring proteomes with proteotypic peptide probes. Nat. Rev. Mol. Cell Biol.6(7), 577–583 (2005).
  • Desiere F, Deutsch EW, Nesvizhskii AL et al. Integration with the human genome of peptide sequences obtained by high-throughput mass spectrometry. Genome Biol.6(1), R9 (2005).
  • Stahl-Zeng J, Lange V, Ossola R et al. High sensitivity detection of plasma proteins by multiple reaction monitoring of N-glycosites. Mol. Cell. Proteomics6, 1809–1817 (2007).
  • Picotti P, Lam H, Campbell D et al. A database of mass spectrometric assay for the yeast proteome. Nat. Methods5, 913–914 (2008).
  • Smith RD, Anderson GA, Lipton MS et al. An accurate mass tag strategy for quantitative and high throughput proteome measurements. Proteomics2, 513–523 (2002).
  • Theodorescu D, Mischak H. Mass spectrometry based proteomics in urine biomarker discovery. World J. Urol.25, 435–443 (2007).
  • Fung ET, Weinberger SR, Gavin E, Zhang F. Bioinformatics approaches in clinical proteomics. Expert Rev. Proteomics2, 847–862 (2005).
  • Haoudi A, Bensmail H. Bioinformatics and data mining in proteomics. Expert Rev. Proteomics3, 333–343 (2006).
  • Satten GA, Datta S, Moura H et al. Standardization and denoising algorithms for mass spectra to classify whole-organism bacterial specimens. Bioinformatics20, 3128–3136 (2004).
  • Qu Y, Adam BL, Thornquist M et al. Data reduction using a discrete wavelet transform in discriminant analysis of very high dimensionality data. Biometrics59, 143–151 (2003).
  • Moulay A-J, Xing-Jie, X. Proteomic technology for biomarker profiling in cancer: an update. J. Zhejiang Univ. Sci. B7, 411–420 (2006).
  • Coombes KR, Fritsche HA Jr, Clark C et al. Quality control and peak finding for proteomics data collected from nipple aspirate fluid by surface-enhanced laser desorption and ionization. Clin. Chem.49, 1615–1623 (2003).
  • Jeffries N. Algorithms for alignment of mass spectrometry proteomic data. Bioinformatics21, 3066–3073 (2005).
  • Wang P, Tan H, Zhang H et al. Normalization regarding non-random missing values in high-throughput mass spectrometry data. Pacific Symp. Biocomput.1, 315–326 (2005).
  • Westfall PH, Young SS. Resampling-Based Multiple Testing: Examples and Methods for p-Value Alignment. Wiley, NY, USA (1993).
  • Reiner A, Yekutieli D, Benjamini Y. Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics19, 368–375 (2003).
  • Abdi H. Bonferroni and Sidak corrections for Multiple Comparisons. Sage, CA, USA (2007).
  • Ham BM, Yang F, Jayachandran H et al. The influence of sample preparation and replicate analysis on Hela cell phosphoproteome coverage. J. Proteome Res.7, 2215–2227 (2008).
  • Karp N, Spencer M, Undsa H et al. Impact of replicate types on proteomic expression analysis. J. Proteome Res.4, 1867–1871 (2005).
  • Ahmed FE. Microarrays and RNA transcriptional profiling. Part II. Analytical considerations and annotations. Expert Rev. Mol. Diagn.6, 736–750 (2006).
  • Maxwell SE, Delaney HD. Designing Experiments and Analyzing Data: a Model Comparison Perspective (2nd Edition). Lawrence Erlbaum Associates, NJ, USA (2004).
  • Prakash A, Piening B, Whiteker J et al. Assaying bias in experimental design for large scale mass spectrometry-based quantitative proteomics. Mol. Cell. Proteomics6, 1741–1748 (2007).
  • Palagi PM, Walther D, Quadroni M et al. MSight: an image analysis software for liquid chromatography-mass spectrometry. Proteomics5, 2381–2384 (2005).
  • Wittke S, Fliser D, Haubitz M et al. Determination of peptides and proteins in human urine with capillary electrophoresis-mass spectrometry, a suitable tool for the establishment of new diagnostic markers. J. Chromatogr. A1013, 173–181 (2003).
  • Kolch W, Neusüss C, Pelzing M, Mischak M. Capillary electrophoresis-mass spectrometry as a powerful tool in clinical urinalysis and biomarker discovery. Mass Spectrom. Rev.24, 959–977 (2005).
  • Wittke S, Mischak H, Walden M et al. Discovery of biomarkers in human urine and cerebrospinal fluid by capillary electrophoresis coupled to spectrometry: towards new diagnostic and therapeutic approach. Electrophoresis26, 1476–1487 (2005).
  • Ransohoff DF. Rules of evidence for cancer molecular-marker discovery and validation. Nature Rev. Cancer4, 309–314 (2004).
  • Berg M, Parbel A, Pettersen H et al. Reproducibility of LC-MS-based protein identification. J. Exp. Botany57, 1509–1514 (2006).
  • Berg M, Parbel A, Pettersen H et al. Detection of artifacts and peptide modifications in LC-MS data using two-dimensional signal intensity map visualization. Rapid Commun. Mass Spectrom.20, 1558–1562 (2006).
  • Prakash A, Mallick P, Whitaker J et al. Signal maps for mass spectrometry-based comparative proteomics. Mol. Cell. Proteomics5, 423–432 (2006).
  • Theodorescu D, Fliser D, Wittke S et al. A pilot study of capillary electrophoresis coupled to mass spectrometry is a tool to define potential prostate cancer biomarkers in urine. Electrophoresis26, 2792–2808 (2005).
  • Brown MP, Grundy WN, Lin D et al. Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc. Natl Acad. Sci. USA97, 262–267 (2000).
  • Schiffer E, Mischak H, Novak J. High resolution proteome/peptide analysis of body fluids by capillary electrophoresis coupled with MS. Proteomics6, 5615–5627 (2006).
  • Vitzthum F, Behrens F, Arden, NC, Shaw JH. Proteomics: from basic research to diagnostic application. A review of requirements and needs. J. Proteome Res.4, 1086–1097 (2005).
  • van der Helm HJ, Hische EA. Application of the Baye’s theorem to results of quantitative clinical chemical determinations. Clin. Chem.25, 985–988 (1979).
  • Henzel WJ, Watanabe C. Protein identification: the origins of peptide mass fingerprinting. J. Am. Soc. Mass Spectrom.14, 931–942 (2003).
  • Shenar N, Martinez J, Enjalbal C. Laser desorption/ionization mass spectrometry on porous silica and alumina for peptide mass fingerprinting. J. Am. Soc. Mass Spectrom.19, 632–644 (2008).
  • Samuelsson J, Dalevi D, Levender F et al. Modular, scriptable and automated analysis tools for high-throughput peptide mass fingerprinting. Bioinformatics20, 3628–3635 (2004).
  • Sackett DL, Haynes RB. The architecture of diagnostic research. Br. Med. J.324, 539–541 (2002).
  • Rifai N, Gillette MA, Carr SA. Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat. Biotechnol.24, 971–983 (2006).
  • Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis20, 3551–3567 (1999).
  • Eng JK, McCormick DL, Yates JR 3rd. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom.5, 976–989 (1994).
  • Ma B, Zhang K, Hendrie C et al. PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun. Mass Spectrom.17, 2337–2342 (2003).
  • Frank A, Pevzner P. PepNovo: de novo peptide sequencing via probabilistic network modeling. Anal. Chem.77, 964–973 (2005).
  • Taylor JA, Johnson RS. Sequence database searches via de novo peptide sequencing by tandem mass spectrometry. Rapid Commun. Mass Spectrom.11, 1067–1075 (1997).
  • Xu C, Ma B. Software for computational peptide identification for MS-MS data. Drug Discov. Today11, 595–600 (2006).
  • Keller A, Eng J, Zhang N et al. A uniform proteomics MS/MS analysis platform utilizing open XML formats. Mol. Syst. Biol.1, No. 20050017 (2005).
  • Steen H, Mann M. The ABC’s (and XYZ’s) of peptide sequencing. Nat. Rev. Mol. Cell Biol.5, 699–711 (2004).
  • Nesvizhskii AI, Vitek O, Aebersold R. Analysis and validation of proteomic data generated by tandem mass spectrometry. Nat. Methods4, 787–797 (2007).
  • Lam H, Deutsch EW, Eddes JS et al. Development and validation of a spectral library searching method for peptide identification from MS/MS. Proteomics7, 655–667 (2007).
  • Elias JE, Gygi SP. Target-decoy search strategy for increased confidence in large-scale protein identification by mass spectrometry. Nat. Methods4, 207–214 (2007).
  • Pappin DJ, Hojrup P, Bleasby AJ. Rapid identification of proteins by peptide-mass fingerprinting. Curr. Biol.3, 327–332 (1993).
  • Keller A, Nesvizhskii AI, Kolker E, Aebersold R. Emperical statistical model to estimate the accuracy of peptide identification by MS/MS and database search. Anal. Chem.74, 5383–5392 (2002).
  • Nesvizhskii AI, Keller A, Koller E, Aebersold R. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem.75, 4646–4658 (2003).
  • Li XJ, Zhang H, Ranish A, Aebersold R. Automated statistical analysis of protein abundance ratio from data generated by stable-isotope dilution and tandem mass spectrometry. Anal. Chem.74, 6648–6657 (2003).
  • Mueller LN, Brusniak MY, Mani DR, Aebersold R. An assessment of software solutions for the analysis of mass spectrometry based quantitative proteomics data. J. Proteome Res.7, 51–61 (2008).
  • Prince JT, Carison MW, Wang R et al. The need for a public proteomics repository. Nat. Biotechnol.22, 471–472 (2004).
  • Jones P, Cote RG, Cho SY et al. PRIDE: new developments and new datasets. Nucleic Acids Res.36, D878–D883 (2008).
  • Desiere F, Deutsch EW, King NL et al. The PeptideAtlas project. Nucleic Acids Res.34, D655-D58 (2006).
  • Falkner JA, Andrews PC. Tranche: secure decentralized data storage for the proteomics community. J Biomol. Techniques18, 3 (2007).
  • Craig R, Cortens JP, Beavis RC. Open source system for analyzing, validating, and storing protein identification data. J. Proteome Res.3, 1234–1242 (2004).
  • Elias JE, Haas W, Faherty BK, Gygi SP. Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigation. Nat. Methods2, 667–675 (2005).
  • Chen Y, Kwon SW, Kim SC et al. Integrated approach for manual evaluation of peptides identified by searching protein sequence databases with tandem mass spectra. J. Proteome Res.4, 998–1005 (2005).
  • Elias JE, Gygi SP. Target decoy search strategy for increased confidence in large scale protein identification by mass spectrometry. Nat. Methods4, 207–214 (2007).
  • Reidegeld KA, Eisenacher M, Kohl M et al. An easy-to-use decoy database builder software tool, implementing different decoy strategies for false discovery rate calculations in automated MS/MS protein identifications. Proteomics8, 1129–1137 (2008).
  • Reidegeld KA, Hamacher M, Meyer HE et al. The HUPO Brain Proteome Project. Eur. Pharm. Rev.11, 33–38 (2006).
  • Hamacher M, Apweiler R, Arnold G et al. HUPO Brain Proteome Project: summary of the pilot phase and introduction of a comprehensive data reprocessing strategy. Proteomics6, 4890–4898 (2006).
  • Reidegeld KA, Müller M, Stephan C et al. The power of cooperative investigation: summary and comparison of the HUPO Brain Proteome Project pilot study results. Proteomics6, 4997–5014 (2006).
  • Stephan C, Reidegeld KA, Hamacher M et al. Automated reprocessing pipeline for searching heterogeneous mass spectrometric data of the HUPO Brain Proteome Project pilot phase. Proteomics6, 5015–5029 (2006).
  • Lisacek F, Hoogland C, Lescuyer P et al. Using bioinformatics process in the proteomic analysis of biological fluids. Proteomics Clin. Appl.1, 900–915 (2007).
  • Wheeler DL, Barrett T, Benson DA et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res.35, D5–D12 (2007).
  • Ashburner M, Ball CA, Blake JA et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature Genet.25, 25–29 (2000).
  • Taylor CF, Paton NW, Lilley KS et al. The minimum information about a proteomics experiment (MIAPE). Nat. Biotechnol.25, 887–893 (2007).
  • Lei Z, Das Y. Assessing protein similarity with Gene Ontology and its use in subnuclear localization prediction. BMC Bioinformatics7, 491 (2006).
  • Gasteiger E, Gattiker A, Hoogland C et al. ExPASy: the proteomic server for in-depth protein knowledge and analysis. Nucleic Acids Res.31, 3784–3788 (2003).
  • Boeckmann B, Bairoch A, Apewiler R et al. The SWISS-PORT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res.31, 365–370 (2003).
  • Zeeberg BR, Feng W, Wang G et al. GoMine: a resource for biological interpretation of genomic and proteomic data. Genome Biol.4, R28 (2003).
  • Al-Shahrour F, Diaz-Uriarte R, Dopazo J. FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes. Bioinformatics20, 578–580 (2004).
  • Kislinger T, Rahman, K., Radulovic D et al. PRISM, a generic large scale proteomic investigation strategy for mammals. Mol. Cell. Proteomics2, 96–106 (2003).
  • Melanson JE, Chisholm KA, Pinto DM. Targeted comparative proteomics by liquid chromatography/matrix-assisted laser desorption/ionization trip-quadrupole mass spectrometry. Rapid Commun. Mass Spectrom.20, 904–910 (2006).
  • Mueller M, Martens L, Apweiler R. Annotating the human proteome: beyond establishing a parts list. Biochim. Biophys. Acta1774, 175–191 (2007).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.