74
Views
9
CrossRef citations to date
0
Altmetric
Review

Disulfide-related proteomic studies on food allergens

Pages 563-571 | Published online: 09 Jan 2014

References

  • Bruijnzeel-Koomen C, Ortolani C et al. Adverse reactions to food. European Academy of Allergology and Clinical Immunology Subcommittee. Allergy50, 623–635 (1995).
  • Sicherer SH. Food allergy. Lancet360, 701–710 (2002).
  • Kanny G, Moneret-Vautrin DA, Flabbee J, Beaudouin E, Morisset M, Thevenin F. Population study of food allergy in France. J. Allergy Clin. Immunol.108, 133–140 (2001).
  • Roehr CC, Edenharter G, Reimann S et al. Food allergy and non-allergic food hypersensitivity in children and adolescents. Clin. Exp. Allergy34, 1534–1541 (2004).
  • Sicherer SH, Munoz-Furlong A, Sampson HA. Prevalence of peanut and tree nut allergy in the United States determined by means of a random digit dial telephone survey: a 5-year follow-up study. J. Allergy Clin. Immunol.112, 1203–1207 (2003).
  • Zuidmeer L, Goldhahn K, Rona RJ et al. The prevalence of plant food allergies: a systematic review. J. Allergy Clin. Immunol.121, 1210–1218 (2008).
  • Jarolim E, Rumpold H, Endler AT et al. IgE and IgG antibodies of patients with allergy to birch pollen as tools to define the allergen profile of Betula verrucosa. Allergy44, 385–395 (1989).
  • Marzban G, Herndl A, Maghuly F, Katinger H, Laimer M. Mapping of fruit allergens by 2D electrophoresis and immunodetection. Expert Rev. Proteomics5, 61–75 (2008).
  • Yagami T, Haishima Y, Tsuchiya T, Tomitaka-Yagami A, Kano H, Matsunaga K. Proteomic analysis of putative latex allergens. Int. Arch. Allergy Immunol.135, 3–11 (2004).
  • Chardin H, Peltre G. Allergome: the characterization of allergens based on a 2D gel electrophoresis approach. Expert Rev. Proteomics2, 757–765 (2005).
  • Akagawa M, Handoyo T, Ishii T, Kumazawa S, Morita N, Suyama K. Proteomic analysis of wheat flour allergens. J. Agric. Food Chem.55, 6863–6870 (2007).
  • Thomas K, Herouet-Guicheney C, Ladics G et al. Current and future methods for evaluating the allergenic potential of proteins: international workshop report 23–25 October 2007. Food Chem. Toxicol.46, 3219–3225 (2008).
  • Aalberse RA. Food allergens. Environ. Toxicol. Pharmacol.4, 55–60 (1997).
  • Astwood JD, Leach JN, Fuchs RL. Stability of food allergens to digestion in vitro. Nat. Biotechnol.14, 1269–1273 (1996).
  • Sen M, Kopper R, Pons L, Abraham EC, Burks AW, Bannon GA. Protein structure plays a critical role in peanut allergen stability and may determine immunodominant IgE-binding epitopes. J. Immunol.169, 882–887 (2002).
  • Bannon GA. What makes a food protein an allergen? Curr. Allergy Asthma Rep.4, 43–46 (2004).
  • Vila L, Beyer K, Järvinen KM, Chatchatee P, Bardina L, Sampson HA. Role of conformational and linear epitopes in the achievement of tolerance in cow’s milk allergy. Clin. Exp. Allergy31, 1599–1606 (2001).
  • Robotham JM, Teuber SS, Sathe SK, Roux KH. Linear IgE epitope mapping of the English walnut (Juglans regia) major food allergen, Jug r 1. J. Allergy Clin. Immunol.109, 143–149 (2002).
  • Menéndez-Arias L, Domínguez J, Moneo I, Rodríguez R. Epitope mapping of the major allergen from yellow mustard seeds, Sin a I. Mol. Immunol.27, 143–150 (1990).
  • Moreno FJ, Mellon FA, Wickham MS, Bottrill AR, Mills EN. Stability of the major allergen Brazil nut 2S albumin (Ber e 1) to physiologically relevant in vitro gastrointestinal digestion. FEBS J.272, 341–352 (2005).
  • Shewry PR, Napier JA, Tatham AS. Seed storage proteins: structures and biosynthesis. Plant Cell7, 945–956 (1995).
  • Diaz-Perales A, Blanco C, Sanchez-Monge R, Varela J, Carrillo T, Salcedo G. Analysis of avocado allergen (Prs a 1) IgE-binding peptides generated by simulated gastric fluid digestion. J. Allergy Clin. Immunol.112, 1002–1007 (2003).
  • Buchanan BB, Frick OL. The dog as a model for food allergy. Ann. NY Acad. Sci.964, 173–183 (2002).
  • Buchanan BB, Adamidi C, Lozano RM et al. Thioredoxin-linked mitigation of allergic responses to wheat. Proc. Natl. Acad. Sci. USA94, 5372–5377 (1997).
  • del Val G, Yee BC, Lozano RM et al. Thioredoxin treatment increases digestibility and lowers allergenicity of milk. J. Allergy Clin. Immunol.103, 690–697 (1999).
  • Kovacs-Nolan J, Zhang JW, Hayakawa S, Mine Y. Immunochemical and structural analysis of pepsin-digested egg white ovomucoid. J. Agric. Food Chem.48, 6261–6266 (2000).
  • Cheek S, Krishna SS, Grishin NV. Structural classification of small, disulfide-rich protein domains. J. Mol. Biol.359, 215–237 (2006).
  • Furmonaviciene R, Sutton BJ, Glaser F et al. An attempt to define allergen-specific molecular surface features: a bioinformatic approach. Bioinformatics21, 4201–4204 (2005).
  • Bassler OY, Weiss J, Wienkoop S et al. Evidence for novel tomato seed allergens: IgE-reactive legumin and vicilin proteins identified by multidimensional protein fractionation-mass spectrometry and in silico epitope modeling. J. Proteome Res.8, 1111–1122 (2009).
  • Yano H. Fluorescent labeling of disulfide proteins on 2D gel for screening allergens: a preliminary study. Anal. Chem.75, 4682–4685 (2003).
  • Yano H, Wong JH, Lee YM, Cho MJ, Buchanan BB. A strategy for the identification of proteins targeted by thioredoxin. Proc. Natl. Acad. Sci. USA98, 4794–4799 (2001).
  • Yano H and Kuroda S. Identification of disulfide proteins in the salt soluble fraction of rice (Oryza sativa) seed. Cereal Chem.80, 172–174 (2003).
  • Yano H, Kusada O, Kuroda S, Kato-Emori S. Disulfide proteome analysis of buckwheat seeds to screen putative allergens. Cereal Chem.83, 132–135 (2006).
  • Shibasaki M, Suzuki S, Nemoto H, Kuroume T. Allergenicity and lymphocyte-stimulating property of rice protein. J. Allergy Clin. Immunol.64, 259–265 (1979).
  • Yoshimasu MA, Zhang JW, Hayakawa S, et al. Electrophoretic and immunochemical characterization of allergenic proteins in buckwheat. Int. Arch. Allergy Immunol.123, 130–136 (2000).
  • Yano H, Wong JH, Cho MJ, Buchanan BB. Redox changes accompanying the degradation of seed storage proteins in germinating rice. Plant Cell Physiol.42, 879–883 (2001).
  • Schürmann P, Buchanan BB. The ferredoxin/thioredoxin system of oxygenic photosynthesis. Antioxid. Redox Signal1235–1274 (2008).
  • Serrato AJ, Crespo JL, Florencio FJ, Cejudo FJ. Characterization of two thioredoxins h with predominant localization in the nucleus of aleurone and scutellum cells of germinating wheat seeds. Plant Mol. Biol.46, 361–371 (2001).
  • Lozano RM, Wong JH, Yee BC, Peters A, Kobrehel K, Buchanan BB. New evidence for a role for thioredoxin h in germination and seedling development. Planta200, 100–106 (1996).
  • Besse I, Wong JH, Kobrehel K, Buchanan BB. Thiocalsin: a thioredoxin-linked, substrate-specific protease dependent on calcium. Proc. Natl Acad. Sci. USA93, 3169–3175 (1996).
  • Cho MJ, Wong JH, Marx C, Jiang W, Lemaux PG, Buchanan BB. Overexpression of thioredoxin h leads to enhanced activity of starch debranching enzyme (pullulanase) in barley grain. Proc. Natl Acad. Sci. USA96, 14641–14646 (1999).
  • Wong JH, Kim YB, Ren PH et al. Transgenic barley grain overexpressing thioredoxin shows evidence that the starchy endosperm communicates with the embryo and the aleurone. Proc. Natl. Acad. Sci. USA99, 16325–16330 (2002).
  • Yano H, Kuroda S. Introduction of the disulfide proteome: application of a technique for the analysis of plant storage proteins as well as allergens. J. Proteome Res.7, 3071–3079 (2008).
  • Urisu A, Yamada K, Masuda S et al. 16-kilodalton rice protein is one of the major allergens in rice grain extract and responsible for cross-allergenicity between cereal grains in the Poaceae family. Int. Arch. Allergy Appl. Immunol.96, 244–252 (1991).
  • Waga J, Zientarski J, Obtuowicz K, Bilo B, Stachowicz M. Gliadin immunoreactivity and dough rheological properties of winter wheat genotypes modified by thioredoxin. Cereal Chem.85, 488–494 (2008).
  • Li YC, Ren JP, Cho MJ et al. The level of expression of thioredoxin is linked to fundamental properties and applications of wheat seeds. Mol. Plant2, 430–441 (2009).
  • Weichel M, Glaser AG, Ballmer-Weber BK, Schmid-Grendelmeier P, Crameri R. Wheat and maize thioredoxins: a novel cross-reactive cereal allergen family related to baker’s asthma. J. Allergy Clin. Immunol.117, 676–681 (2006).
  • Limacher A, Glaser AG, Meier C et al. Cross-reactivity and 1.4-A crystal structure of Malassezia sympodialis thioredoxin (Mala s 13), a member of a new pan-allergen family. J. Immunol.178, 389–396 (2007).
  • Buchanan BB, Frick OL. Thioredoxin and food allergy. J. Allergy Clin. Immunol.119, 513–514 (2007).
  • Graft DF. Managing insect sting allergy. The ins and outs of venom immunotherapy. Postgrad. Med.118, 38–42 (2005).
  • Senti G, Johansen P, Martinez Gomez J, Prinz Varicka BM, Kündig TM. Efficacy and safety of allergen-specific immunotherapy in rhinitis, rhinoconjunctivitis, and bee/wasp venom allergies. Int. Rev. Immunol.24, 519–531 (2005).
  • Kussebi F, Karamloo F, Rhyner C et al. A major allergen gene-fusion protein for potential usage in allergen-specific immunotherapy. J. Allergy Clin. Immunol.115, 323–329 (2005).
  • Akdis CA, Blaser K. Bypassing IgE and targeting T cells for specific immunotherapy of allergy. Trends Immunol.22, 175–178 (2001).
  • Akdis M, Akdis CA. Mechanisms of allergen-specific immunotherapy. J. Allergy Clin. Immunol.119, 780–791 (2007).
  • Bublin M, Radauer C, Wilson IB et al. Cross-reactive N-glycans of Api g 5, a high molecular weight glycoprotein allergen from celery, are required for immunoglobulin E binding and activation of effector cells from allergic patients. FASEB J.17, 1697–1699 (2003).
  • Foetisch K, Westphal S, Lauer I et al. Biological activity of IgE specific for cross-reactive carbohydrate determinants. J. Allergy Clin. Immunol.111, 889–896 (2003).
  • Breiteneder H, Mills EN. Molecular properties of food allergens. J. Allergy Clin. Immunol.115, 14–23 (2005).
  • van der Veen MJ, van Ree R, Aalberse RC et al. Poor biologic activity of cross-reactive IgE directed to carbohydrate determinants of glycoproteins. J. Allergy Clin. Immunol.100, 327–334 (1997).
  • Jankovicova B, Rosnerova S, Slovakova M et al. Epitope mapping of allergen ovalbumin using biofunctionalized magnetic beads packed in microfluidic channels: The first step towards epitope-based vaccines. J. Chromatogr. A1206, 64–71 (2008).
  • de Groot J, Kosters HA, de Jongh HH. Deglycosylation of ovalbumin prohibits formation of a heat-stable conformer. Biotechnol. Bioeng.97, 735–741 (2007).
  • Vieths S, Schöning B, Jankiewicz A. Occurrence of IgE binding allergens during ripening of apple fruits. Food Agric. Immunol.5, 93–105 (1993).
  • Wigotzki M, Schubert S, Steinhart H, Paschke A., Effects of in vitro digestion on the IgE binding activity of proteins from hazelnut (Corylus avellana). Internet symposium on food. Allergens2, 1–8 (2000).
  • Watanabe M, Miyakawa, J, Ikezawa Z et al.Production of hypoallergenic rice by enzymatic decompostion of constituent proteins. J. Food Sci.55, 781–783 (1990).
  • Watanabe M, Tanabe S, Suzuki T et al.Primary structure of an allergenic peptide occurring in the chymotryptic hydrolysate of gluten. Biosci. Biotechnol. Biochem.59, 1596–1597 (1995).
  • Van Beresteijn ECH, Peeters RA, Kaper J et al.Molecular mass distribution, immunological properties and nutritive value of whey protein hydrolysates. J. Food. Sci.57, 619–625 (1994).
  • Kato T, Katayama E, Matsubara S et al. Release of allergenic proteins from rice grains induced by high hydrostatic pressure. J. Agric. Food Chem.48, 3124–3129 (2000).
  • Maleki SJ, Chung SY, Champagne ET, Raufman JP. The effects of roasting on the allergenic properties of peanut proteins. J. Allergy Clin. Immunol.106, 763–768 (2000).
  • Bleumink E, Berrens L Synthetic approaches to the biological activity of β-lactoglobulin in human allergy to cow’s milk. Nature212, 514–543 (1996).
  • Mondoulet L, Paty E, Drumare MF et al.Influence of thermal processing on the allergenicity of peanut proteins. J. Agric. Food Chem.53, 4547–4553 (2005).
  • Tada Y, Nakase M, Adachi T et al. Reduction of 14–16 kDa allergenic proteins in transgenic rice plants by antisense gene. FEBS Lett.391, 341–345 (1996).
  • Herman EM, Helm RM, Jung R, Kinney AJ. Genetic modification removes an immunodominant allergen from soybean. Plant Physiol.132, 36–43 (2003).
  • Gilissen LJ, Bolhaar ST, Matos CI et al. Silencing the major apple allergen Mal d 1 by using the RNA interference approach. J. Allergy Clin. Immunol.115, 364–369 (2005).
  • Dodo H, Konan K, Viquez O. A genetic engineering strategy to eliminate peanut allergy. Curr. Allergy Asthma Rep.5, 67–73 (2005).
  • Lorenz Y, Enrique E, LeQuynh L et al. Skin prick tests reveal stable and heritable reduction of allergenic potency of gene-silenced tomato fruits. J. Allergy Clin. Immunol.118, 711–718 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.