3,697
Views
316
CrossRef citations to date
0
Altmetric
Review

Role of spectral counting in quantitative proteomics

, , &
Pages 39-53 | Published online: 09 Jan 2014

References

  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol.17(10), 994–999 (1999).
  • Han DK, Eng J, Zhou H, Aebersold R. Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat. Biotechnol.19(10), 946–951 (2001).
  • Ross PL, Huang YN, Marchese JN et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics3(12), 1154–1169 (2004).
  • Ong SE, Blagoev B, Kratchmarova I et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics1(5), 376–386 (2002).
  • Nesvizhskii AI, Vitek O, Aebersold R. Analysis and validation of proteomic data generated by tandem mass spectrometry. Nat. Methods4(10), 787–797 (2007).
  • Hendrickson EL, Xia Q, Wang T, Leigh JA, Hackett M. Comparison of spectral counting and metabolic stable isotope labeling for use with quantitative microbial proteomics. Analyst131(12), 1335–1341 (2006).
  • Usaite R, Wohlschlegel J, Venable JD et al. Characterization of global yeast quantitative proteome data generated from the wild-type and glucose repression saccharomyces cerevisiae strains: the comparison of two quantitative methods. J. Proteome Res.7(1), 266–275 (2008).
  • Cox B, Kislinger T, Emili A. Integrating gene and protein expression data: pattern analysis and profile mining. Methods35(3), 303–314 (2005).
  • Cutillas PR, Vanhaesebroeck B. Quantitative profile of five murine core proteomes using label-free functional proteomics. Mol. Cell. Proteomics6(9), 1560–1573 (2007).
  • Wu L, Hwang SI, Rezaul K et al. Global survey of human T leukemic cells by integrating proteomics and transcriptomics profiling. Mol. Cell. Proteomics6(8), 1343–1353 (2007).
  • Huang SK, Darfler MM, Nicholl MB et al. LC/MS-based quantitative proteomic analysis of paraffin-embedded archival melanomas reveals potential proteomic biomarkers associated with metastasis. PLoS ONE4(2), e4430 (2009).
  • Niittylä T, Fuglsang AT, Palmgren MG, Frommer WB, Schulze WX. Temporal analysis of sucrose-induced phosphorylation changes in plasma membrane proteins of Arabidopsis. Mol. Cell. Proteomics6(10), 1711–1726 (2007).
  • Chen H, Gonzales-Vigil E, Wilkerson CG, Howe GA. Stability of plant defense proteins in the gut of insect herbivores. Plant Physiol.143(4), 1954–1967 (2007).
  • Wepf A, Glatter T, Schmidt A, Aebersold R, Gstaiger M. Quantitative interaction proteomics using mass spectrometry. Nat. Methods6(3), 203–205 (2009).
  • Han MH, Hwang S-I, Roy DB et al. Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets. Nature451, 1076–1081 (2008).
  • Burande CF, Heuzé ML, Lamsoul I et al. A label-free quantitative proteomic strategy to identify E3 ubiquitin ligase substrates targeted to proteasome degradation. Mol. Cell. Proteomics8(7), 1719–1727 (2009).
  • Mayya V, Lundgren DH, Hwang S-I, Rezaul K, Wu L, Han DK. Large-scale quantitative phosphoproteomic analysis of T-cell receptor signaling: system-wide modulation of protein-protein interaction mediated by site-specific phosphorylation. Sci. Signal.2(84), ra46 (2009).
  • Rebecchi KR, Wenke JL, Go EP, Desaire H. Label-free quantitation: a new glycoproteomics approach. J. Am. Soc. Mass Spectrom.20(6), 1048–1059 (2009).
  • Levin Y, Schwarz E, Wang L, Leweke FM, Bahn S. Label-free LC-MS/MS quantitative proteomics for large-scale biomarker discovery in complex samples. J. Sep. Sci.30(14), 2198–2203 (2007).
  • Bondarenko PV, Chelius D, Shaler TA. Identification and relative quantitation of protein mixtures by enzymatic digestion followed by capillary reversed-phase liquid chromatography-tandem mass spectrometry. Anal. Chem.74(18), 4741–4749 (2002).
  • Liu H, Sadygov RG, Yates JR 3rd. A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal. Chem.76(14), 4193–4201 (2004).
  • Colinge J, Chiappe D, Lagache S, Moniatte M, Bougueleret L. Differential proteomics via probabilistic peptide identification scores. Anal. Chem.77(2), 596–606 (2005).
  • Haas W, Faherty BK, Gerber SA et al. Optimization and use of peptide mass measurement accuracy in shotgun proteomics. Mol. Cell. Proteomics5(7), 1326–1337 (2006).
  • Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B. Quantitative mass spectrometry in proteomics: a critical review. Anal. Bioanal. Chem.389(4), 1017–1031 (2007).
  • Bateman RH, Carruthers R, Hoyes JB et al. A novel precursor ion discovery method on a hybrid quadrupole orthogonal acceleration time-of-flight (Q-TOF) mass spectrometer for studying protein phosphorylation. J. Am. Soc. Mass Spectrom.13(7), 792–803 (2002).
  • Silva JC, Denny R, Dorschel CA et al. Quantitative proteomic analysis by accurate mass retention time pairs. Anal. Chem.77(7), 2187–2200 (2005).
  • Geromanos SJ, Vissers JPC, Silva JC et al. The detection, correlation, and comparison of peptide precursor and product ions from data independent LC-MS with data dependant LC-MS/MS. Proteomics9(6), 1683–1695 (2009).
  • Patel VJ, Thalassinos K, Slade SE et al. A comparison of labeling and label-free mass spectrometry-based proteomics approaches. J. Proteome Res.8(7), 3752–3759 (2009).
  • Venable JD, Wohlschlegel J, McClatchy DB, Park SK, Yates JR 3rd. Relative quantitation of stable isotope labeled peptides using a linear ion trap–Orbitrap hybrid mass spectrometer. Anal. Chem.79(8), 3056–3064 (2007).
  • Mueller LN, Brusniak MY, Mani DR, Aebersold R. An assessment of software solutions for the analysis of mass spectrometry based quantitative proteomics data. J. Proteome Res.7(1), 51–61 (2008).
  • Zybailov B, Coleman MK, Florens L, Washburn MP. Correlation of relative abundance ratios derived from peptide ion chromatograms and spectrum counting for quantitative proteomic analysis using stable isotope labeling. Anal. Chem.77(19), 6218–6224 (2005).
  • Park SK, Venable JD, Xu T, Yates JR 3rd. A quantitative analysis software tool for mass spectrometry-based proteomics. Nat. Methods5(4), 319–322 (2008).
  • Kumar C, Mann M. Bioinformatics analysis of mass spectrometry-based proteomics datasets. FEBS Lett.583(11), 1703–1712 (2009).
  • America AH, Cordewener JH. Comparative LC-MS: a landscape of peaks and valleys. Proteomics8(4), 731–749 (2008).
  • Old WM, Meyer-Arendt K, Aveline-Wolf L et al. Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol. Cell. Proteomics4(10), 1487–1502 (2005).
  • Ghaemmaghami S, Huh WK, Bower K et al. Global analysis of protein expression in yeast. Nature425(6959), 737–741 (2003).
  • Hwang SI, Lundgren DH, Mayya V et al. Systematic characterization of nuclear proteome during apoptosis. Mol. Cell. Proteomics5(6), 1131–1145 (2006).
  • Chen EI, Cociorva D, Norris JL, Yates JR 3rd. Optimization of mass spectrometry-compatible surfactants for shotgun proteomics. J. Proteome Res.6(7), 2529–2538 (2007).
  • Liu K, Zhang J, Wang J. Relationship between sample loading amount and peptide identification and its effects on quantitative proteomics. Anal. Chem.81(4), 1307–1314 (2009).
  • Lu P, Vogel C, Wang R, Yao X, Marcotte EM. Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat. Biotechnol.25(1), 117–124 (2007).
  • Mallick P, Schirle M, Chen SS et al. Computational prediction of proteotypic peptides for quantitative proteomics. Nat. Biotechnol.25(1), 125–131 (2007).
  • Schwarz E, Levin Y, Wang L, Leweke FM, Bahn S. Peptide correlation: a means to identify high quality quantitative information in large-scale proteomic studies. J. Sep. Sci.30(14), 2190–2197 (2007).
  • Zhang Y, Wen Z, Washburn MP, Florens L. Effect of dynamic exclusion duration on spectral count based quantitative proteomics. Anal. Chem.81(15), 6317–6326 (2009).
  • Jin S, Daly DS, Springer DL, Miller JH. The effects of shared peptides on protein quantitation in label-free proteomics by LC/MS/MS. J. Proteome Res.7(1), 164–169 (2008).
  • Zybailov B, Mosley AL, Sardiu ME, Coleman MK, Florens L, Washburn MP. Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae. J. Proteome Res.5(9), 2339–2347 (2006).
  • Daly DS, Anderson KK, Panisko EA et al. Mixed-effects statistical model for comparative LC-MS proteomics studies. J. Proteome Res.7(3), 1209–1217 (2008).
  • Braisted JC, Kuntumalla S, Vogel C et al. The APEX quantitative proteomics tool: generating protein quantitation estimates from LC-MS/MS proteomics results. BMC Bioinformatics9, 529–539 (2008).
  • Nesvizhskii AI, Keller A, Kolker E, Aebersold R. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem.75(17), 4646–4658 (2003).
  • Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis20(18), 3551–3567 (1999).
  • Qian M, Sleat DE, Zheng H, Moore D, Lobel P. Proteomics analysis of serum from mutant mice reveals lysosomal proteins selectively transported by each of the two mannose 6-phosphate receptors. Mol. Cell. Proteomics7(1), 58–70 (2008).
  • Wong JW, Sullivan MJ, Cagney G. Computational methods for the comparative quantitation of proteins in label-free LCn-MS experiments. Brief Bioinform.9(2), 156–165 (2008).
  • Pavelka N, Fournier ML, Swanson SK et al. Statistical similarities between transcriptomics and quantitative shotgun proteomics data. Mol. Cell. Proteomics7(4), 631–644 (2008).
  • Choi H, Fermin D, Nesvizhskii AI. Significance analysis of spectral count data in label-free shotgun proteomics. Mol. Cell. Proteomics7(12), 2373–2385 (2008).
  • Rappsilber J, Ryder U, Lamond AI, Mann M. Large-scale proteomic analysis of the human spliceosome. Genome Res.12(8), 1231–1245 (2002).
  • Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T, Rappsilber J, Mann M. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol. Cell. Proteomics4(9), 1265–1272 (2005).
  • Powell DW, Weaver CM, Jennings JL et al. Cluster analysis of mass spectrometry data reveals a novel component of SAGA. Mol. Cell. Biol.24(16), 7249–7259 (2004).
  • Peng J, Kim MJ, Cheng D, Duong DM, Gygi SP, Sheng M. Semiquantitative proteomic analysis of rat forebrain postsynaptic density fractions by mass spectrometry. J. Biol. Chem.279(20), 21003–21011 (2004).
  • Asara JM, Christofk HR, Freimark LM, Cantley LC. A label-free quantitation method by MS/MS TIC compared to SILAC and spectral counting in a proteomics screen. Proteomics8(5), 994–999 (2008).
  • Sanders SL, Jennings J, Canutescu A, Link AJ, Weil PA. Proteomics of the eukaryotic transcription machinery: identification of proteins associated with components of yeast TFIID by multidimensional mass spectrometry. Mol. Cell. Biol.22(13), 4723–4738 (2002).
  • Stevenson SE, Chu Y, Ozias-Akins P, Thelen JJ. Validation of gel-free, label-free quantitative proteomics approaches: applications for seed allergen profiling. J. Proteomics72(3), 555–566 (2009).
  • Gramolini AO, Kislinger T, Alikhani-Koopaei R et al. Comparative proteomics profiling of a phospholamban mutant mouse model of dilated cardiomyopathy reveals progressive intracellular stress responses. Mol. Cell. Proteomics7(3), 519–533 (2008).
  • Allet N, Barrillat N, Baussant T et al.In vitro and in silico processes to identify differentially expressed proteins. Proteomics4(8), 2333–2351 (2004).
  • Fu X, Gharib SA, Green PS et al. Spectral index for assessment of differential protein expression in shotgun proteomics. J. Proteome Res.7(3), 845–854 (2008).
  • Florens L, Washburn MP, Raine JD et al. A proteomic view of the Plasmodium falciparum life cycle. Nature419(6906), 520–526 (2002).
  • Gao B-B, Stuart L, Feener EP. Label-free quantitative analysis of one-dimensional PAGE LC/MS/MS proteome. Mol. Cell. Proteomics7(12), 2399–2409 (2008).
  • Zhang B, VerBerkmoes NC, Langston MA, Uberbacher E, Hettich RL, Samatova NF. Detecting differential and correlated protein expression in label-free shotgun proteomics. J. Proteome Res.5(11), 2909–2918 (2006).
  • Kislinger T, Cox B, Kannan A et al. Global survey of organ and organelle protein expression in mouse: combined proteomic and transcriptomic profiling. Cell125(1), 173–186 (2006).
  • Gilchrist A, Au CE, Hiding J et al. Quantitative proteomics analysis of the secretory pathway. Cell127(6), 1265–1281 (2006).
  • Turck CW, Falick AM, Kowalak JA et al. ABRF-PRG2006 study: relative protein quantitation. Mol. Cell. Proteomics6(8), 1291–1298 (2007).
  • Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP. Absolute quantitation of proteins and phosphoproteins from cell lysates by tandem MS. Proc. Natl Acad. Sci. USA100(12), 6940–6945 (2003).
  • Wepf A, Glatter T, Schmidt A, Aebersold R, Gstaiger M. Quantitative interaction proteomics using mass spectrometry. Nat. Methods6(3), 203–205 (2009).
  • Beynon RJ, Doherty MK, Pratt JM, Gaskell SJ. Multiplexed absolute quantitation in proteomics using artificial QCAT proteins of concatenated signature peptides. Nat. Methods2(8), 587–589 (2005).
  • Brun V, Dupuis A, Adrait A et al. Isotope-labeled protein standards: toward absolute quantitative proteomics. Mol. Cell. Proteomics6(12), 2139–2149 (2007).
  • Jain N, Thatte J, Braciale T, Ley K, O’Connell M, Lee JK. Local-pooled-error test for identifying differentially expressed genes with a small number of replicated microarrays. Bioinformatics19(15), 1945–1951 (2003).
  • Fisher RA. Statistical Methods for Research Workers. Oliver & Boyd, Edinburgh, UK (1925).
  • Sokal RR, Rohlf FJ. Biometry (3rd Edition). WH Freeman and Company, NY, USA (1995).
  • Audic S, Claverie JM. The significance of digital gene expression profiles. Genome Res.7(10), 986–995 (1997).
  • Carvalho PC, Fischer JS, Chen EI, Yates JR 3rd, Barbosa VC. PatternLab for proteomics: a tool for differential shotgun proteomics. BMC Bioinformatics9, 316–329 (2008).
  • Pavelka N, Pelizzola M, Vizzardelli C et al. A power law global error model for the identification of differentially expressed genes in microarray data. BMC Bioinformatics5, 203–214 (2004).
  • Parmigiani G, Garrett ES, Irizarry RA, Zeger SL. The Analysis of Gene Expression Data. Springer-Verlag, NY, USA (2003).
  • Efron B. Large-scale simultaneous hypothesis testing: the choice of a null hypothesis. J. Amer. Stat. Assoc.99(465), 96–104 (2004).
  • Benjamini Y, Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Statist. Soc. B57(1), 289–300 (1995).
  • Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl Acad. Sci. USA98(9), 5116–5121 (2001).
  • Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc. Natl Acad. Sci. USA100(16), 9440–9445 (2003).
  • Grant GR, Liu J, Stoeckert CJ Jr. A practical false discovery rate approach to identifying patterns of differential expression in microarray data. Bioinformatics21(11), 2684–2690 (2005).
  • Xie Y, Pan W, Khodursky AB. A note on using permutation-based false discovery rate estimates to compare different analysis methods for microarray data. Bioinformatics21(23), 4280–4288 (2005).
  • Tabb DL. What’s driving false discovery rates?. J. Proteome Res.7(1), 45–46 (2008).
  • Käll L, Storey JD, MacCoss MJ, Noble WS. Assigning significance to peptides identified by tandem mass spectrometry using decoy databases. J. Proteome Res.7(1), 29–34 (2008).
  • Käll L, Storey JD, MacCoss MJ, Noble WS. Posterior error probabilities and false discovery rates: two sides of the same coin. J. Proteome Res.7(1), 40–44 (2008).
  • Shen C, Wang Z, Shankar G, Zhang X, Li L. A hierarchical statistical model to assess the confidence of peptides and proteins inferred from tandem mass spectrometry. Bioinformatics24(2), 202–208 (2008).
  • Zhang J, Ma J, Dou L et al. Bayesian nonparametric model for the validation of peptide identification in shotgun proteomics. Mol. Cell. Proteomics8(3), 547–557 (2009).
  • Oberg AL, Vitek O. Statistical design of quantitative mass spectrometry-based proteomic experiments. J. Proteome Res.8(5), 2144–2156 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.