129
Views
22
CrossRef citations to date
0
Altmetric
Review

Puzzle of protein complexes in vivo: a present and future challenge for functional proteomics

, , , , , & show all
Pages 159-169 | Published online: 09 Jan 2014

References

  • Kobayashi Y, Weigel D. Move on up, it’s time for change – mobile signals controlling photoperiod-dependent flowering. Genes Dev.21, 2371–2384 (2007).
  • Qiu Z, Ghosh A. A calcium-dependent switch in a CREST–BRG1 complex regulates activity-dependent gene expression. Neuron60, 775–787 (2008).
  • Michaud GA, Snyder M. Proteomic approaches for the global analysis of proteins. Biotechniques33, 1308–1316 (2002).
  • Souchelnytskyi S. Proteomics in studies of signal transduction in epithelial cells. J. Mammary Gland Biol. Neoplasia7, 359–371 (2002).
  • de la Fuente van Bentem S, Mentzen WI, de la Fuente A et al. Towards functional phosphoproteomics by mapping differential phosphorylation events in signalling networks. Proteomics8, 4453–4465 (2008).
  • Lecaudey V, Cakan-Akdogan G, Norton WH et al. Dynamic FGF signaling couples morphogenesis and migration in the zebrafish lateral line primordium. Development135, 2695–2705 (2008).
  • Pfeifer AC, Timmer J, Klingmüller U. Systems biology of JAK/STAT signalling. Essays Biochem.45, 109–120 (2008).
  • Zak DE, Aderem A. Systems biology of innate immunity. Immunol. Rev.227, 264–282 (2009).
  • Schlieker CD, Van der Veen AG, Damon JR et al. A functional proteomics approach links the ubiquitin-related modifier Urm1 to a tRNA modification pathway. Proc. Natl Acad. Sci. USA105, 18255–18260 (2008).
  • Souza TA, Chen X, Guo Y et al. Proteomic identification and functional validation of activins and bone morphogenetic protein 11 as candidate novel muscle mass regulators. Endocrinology22, 2689–2702 (2008).
  • Brown KA, Ham AJ, Clark CN et al. Identification of novel Smad2 and Smad3 associated proteins in response to TGF-β1. J. Cell. Biochem.105, 596–611 (2008).
  • Wright CW, Duckett CS. The aryl hydrocarbon nuclear translocator alters CD30-mediated NF-βB-dependent transcription. Science323, 251–255 (2009).
  • Markillie LM, Lin CT, Adkins JN et al. Simple protein complex purification and identification method for high-throughput mapping of protein interaction networks. J. Proteome Res.4, 268–274 (2005).
  • Wu F, Wang P, Young LC et al. Proteome-wide identification of novel binding partners to the oncogenic fusion gene protein, NPM-ALK, using tandem affinity purification and mass spectrometry. Am. J. Pathol.174, 361–370 (2009).
  • Zada AA, Pulikkan JA, Bararia D et al. Proteomic discovery of Max as a novel interacting partner of C/EBPα: a Myc/Max/Mad link. Leukemia20, 2137–2146 (2006).
  • Terpe K. Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol.60, 523–533 (2003).
  • Meier N, Krpic S, Rodriguez P et al. Novel binding partners of Ldb1 are required for haematopoietic development. Development133, 4913–4923 (2006).
  • Henkin JA, Jennings ME, Matthews DE et al. Mass processing – an improved technique for protein identification with mass spectrometry data. J. Biomol. Tech.15, 230–237 (2004).
  • Orrù S, Aspesi A, Armiraglio M et al. Analysis of the ribosomal protein S19 interactome. Mol. Cell Proteomics6, 382–393 (2007).
  • Scholten A, van Veen TA, Vos MA et al. Diversity of cAMP-dependent protein kinase isoforms and their anchoring proteins in mouse ventricular tissue. J. Proteome Res.6, 1705–1717 (2007).
  • Fraldi A, Zito E, Annunziata F et al. Multistep, sequential control of the trafficking and function of the multiple sulfatase deficiency gene product, SUMF1 by PDI, ERGIC-53 and ERp44. Hum. Mol. Genet.17, 2610–2621 (2008).
  • Pisa V, Cozzolino M, Gargiulo S et al. The molecular chaperone Hsp90 is a component of the cap-binding complex and interacts with the translational repressor Cup during Drosophila oogenesis. Gene432, 67–74 (2009).
  • Bowen C, Stuart A, Ju JH et al. NKX3.1 homeodomain protein binds to topoisomerase I and enhances its activity. Cancer Res.67, 455–464 (2007).
  • Köcher T, Superti-Furga G. Mass spectrometry–based functional proteomics: from molecular machines to protein networks. Nat. Methods4, 807–815 (2007).
  • Lee PY, Bae KH, Kho CW et al. Interactome analysis of yeast glutathione peroxidase 3. J. Microbiol. Biotechnol.18, 1364–1367 (2008).
  • Gavin AC, Aloy P, Grandi P et al. Proteome survey reveals modularity of the yeast cell machinery. Nature440, 631–636 (2006).
  • Krogan NJ, Cagney G, Yu H et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature440, 637–643 (2006).
  • Banks E, Nabieva E, Chazelle B et al. Organization of physical interactomes as uncovered by network schemas. PLoS Comput. Biol.4, e1000203 (2008).
  • Zhang B, Park BH, Karpinets T et al. From pull-down data to protein interaction networks and complexes with biological relevance. Bioinformatics24, 979–986 (2008).
  • Klein T, P Geurink P, S Overkleeft H, et al. Functional proteomics on zinc-dependent metalloproteinases using inhibitor probes. ChemMedChem.4, 164–170 (2008).
  • Rix U, Hantschel O, Dürnberger G et al. Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and nonkinase targets. Blood110, 4055–4063 (2007).
  • Remsing Rix LL, Rix U, Colinge J et al. Global target profile of the kinase inhibitor bosutinib in primary chronic myeloid leukemia cells. Leukemia DOI: 10.1038 (2008) (Epub ahead of print).
  • Aye TT, Mohammed S, Toorn HW et al. Selectivity in enrichment of PKA RI and RII isoforms and their interactors using modified cAMP affinity resins. Mol. Cell Proteomics. (2008) (Epub ahead of print).
  • Jackson RJ. Alternative mechanisms of initiating translation of mammalian mRNAs. Biochem. Soc. Trans.33, 1231–1241 (2005).
  • Lasko P. The Drosophila melanogaster genome: translation factors and RNA binding proteins. J. Cell Biol.150, 51–56 (2000).
  • Kozak M. Initiation of translation in prokaryotes and eukaryotes. Gene234, 187–208 (1999).
  • Russo A, Cirulli C, Amoresano A et al.Cis-acting sequences and trans-acting factors in the localization of mRNA for mitochondrial ribosomal proteins. Biochim. Biophys. Acta.1779, 820–829 (2008).
  • Lin JY, Li ML, Huang PN et al. Heterogeneous nuclear ribonuclear protein K interacts with the enterovirus 71 5´ untranslated region and participates in virus replication. J. Gen. Virol.89, 2540–2549 (2008).
  • Medugno L, Costanzo P, Lupo A et al. A novel zinc finger transcriptional repressor, ZNF224, interacts with the negative regulatory element (AldA-NRE) and inhibits gene expression. FEBS Lett.534, 93–100 (2003).
  • Hall-Pogar T, Liang S, Hague LK et al. Specific trans-acting proteins interact with auxiliary RNA polyadenylation elements in the COX-2 3´-UTR. RNA13, 1103–1115 (2007).
  • Lambert JP, Mitchell L, Rudner A et al. A novel proteomic approach for the discovery of chromatin associated protein networks. Mol. Cell Proteomics (2008) (Epub ahead of print).
  • Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature422, 198–207 (2003).
  • Monti M, Orrù S, Pagnozzi D et al. Functional proteomics. Clin. Chim. Acta357, 140–150 (2005).
  • Monti M, Orrù S, Pagnozzi D et al. Interaction proteomics. Biosci Rep.25, 45–56 (2005).
  • Gavin AC, Bösche M, Krause R et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature415, 141–147 (2002).
  • Ho Y, Gruhler A, Heilbut A et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature415, 180–183 (2002).
  • Goll J, Uetz P. The elusive yeast interactome. Genome Biol.7, 223 (2006).
  • Parcellier A, Schmitt E, Gurbuxani S et al. hsp27 is a ubiquitin-binding protein involved in I-κBα proteasomal degradation. Mol. Cell Biol.23, 5790–5802 (2003).
  • Loyer P, Trembley JH, Grenet JA et al. Characterization of cyclin L1 and L2 interactions with CDK11 and splicing factors. J. Biol. Chem.283, 7721–7732 (2008).
  • Liu X, Yang WC, Gao Q et al. Toward chromatographic analysis of interacting protein networks. J. Chromatogr. A1178, 24–32 (2008).
  • Tanese N. Small-scale density gradient sedimentation to separate and analyze multiprotein complexes. Methods12, 224–234 (1997).
  • Vogelmann R, Nelson WJ. Fractionation of the epithelial apical junctional complex: reassessment of protein distributions in different substructures. Mol. Biol. Cell16, 701–716 (2005).
  • Dörr J, Kartarius S, Götz C et al. Contribution of the individual subunits of protein kinase CK2 and of hPrp3p to the splicing process. Mol. Cell Biochem.316, 187–193 (2008).
  • Schägger H, von Jagow G. Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal. Biochem.199, 223–231 (1991).
  • Camacho-Carvajal MM, Wollscheid B, Aebersold R et al. Two-dimensional blue native/SDS gel electrophoresis of multi-protein complexes from whole cellular lysates: a proteomics approach. Mol. Cell Proteomics3, 176–182 (2004).
  • Krause F. Detection and analysis of protein-protein interactions in organellar and prokaryotic proteomes by native gel electrophoresis: (membrane) protein complexes and supercomplexes. Electrophoresis27, 2759–2781 (2006).
  • Selbach M, Mann M. Protein interaction screening by quantitative immunoprecipitation combined with knockdown (QUICK). Nat. Methods3, 981–983 (2006).
  • Castle JD. Purification of organelles from mammalian cells. Curr. Protoc. Immunol.8, 8.1B (2003).
  • Chang J, Ruiz V, Vancura A. Purification of yeast membranes and organelles by sucrose density gradient centrifugation. Methods Mol. Biol.457, 141–149 (2008).
  • Wilhelm JE, Hilton M, Amos Q et al. Cup is an eIF4E binding protein required for both the translational repression of oskar and the recruitment of Barentsz. J. Cell Biol.163, 1197–1204 (2003).
  • Nakamura A, Sato K, Hanyu-Nakamura K. Drosophila cup is an eIF4E binding protein that associates with Bruno and regulates oskar mRNA translation in oogenesis. Dev. Cell6, 69–78 (2004).
  • Clouse KN, Ferguson SB, Schupbach T. Squid, Cup, and PABP55B function together to regulate gurken translation in Drosophila. Dev. Biol.313, 713–724 (2008).
  • Richter JD, Sonenberg N. Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature433, 477–480 (2005).
  • Holaska JM, Wilson KL. An emerin “proteome”: purification of distinct emerin-containing complexes from HeLa cells suggests molecular basis for diverse roles including gene regulation, mRNA splicing, signaling, mechanosensing, and nuclear architecture. Biochemistry46, 8897–8908 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.