286
Views
20
CrossRef citations to date
0
Altmetric
Review

Strategies for quantitation of phosphoproteomic data

&
Pages 439-456 | Published online: 09 Jan 2014

References

  • Graves JD, Krebs EG. Protein phosphorylation and signal transduction. Pharmacol. Ther.82(2–3), 111–121 (1999).
  • Hunter T. Signaling – 2000 and beyond. Cell100(1), 113–127 (2000).
  • Blagoev B, Ong SE, Kratchmarova I, Mann M. Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat. Biotechnol.22(9), 1139–1145 (2004).
  • Dengjel J, Akimov V, Olsen JV et al. Quantitative proteomic assessment of very early cellular signaling events. Nat. Biotechnol.25(5), 566–568 (2007).
  • Boersema PJ, Mohammed S, Heck AJ. Phosphopeptide fragmentation and analysis by mass spectrometry. J. Mass Spectrom.44(6), 861–878 (2009).
  • Gafken PR. An overview of the qualitative analysis of phosphoproteins by mass spectrometry. Methods Mol. Biol.527, 159–172 (2009).
  • Huang PH, White FM. Phosphoproteomics: unraveling the signaling web. Mol. Cell31(6), 777–781 (2008).
  • Piggee C. Phosphoproteomics: miles to go before it’s routine. Anal. Chem.81(7), 2418–2420 (2009).
  • Thingholm TE, Jensen ON, Larsen MR. Analytical strategies for phosphoproteomics. Proteomics9(6), 1451–1468 (2009).
  • Collins MO, Yu L, Choudhary JS. Analysis of protein phosphorylation on a proteome-scale. Proteomics7(16), 2751–2768 (2007).
  • Gronborg M, Kristiansen TZ, Stensballe A et al. A mass spectrometry-based proteomic approach for identification of serine/threonine-phosphorylated proteins by enrichment with phospho-specific antibodies: identification of a novel protein, Frigg, as a protein kinase A substrate. Mol. Cell. Proteomics1(7), 517–527 (2002).
  • Pandey A, Fernandez MM, Steen H et al. Identification of a novel immunoreceptor tyrosine-based activation motif-containing molecule, STAM2, by mass spectrometry and its involvement in growth factor and cytokine receptor signaling pathways. J. Biol. Chem.275(49), 38633–38639 (2000).
  • Rush J, Moritz A, Lee KA et al. Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat. Biotechnol.23(1), 94–101 (2005).
  • Kasyapa C, Gu TL, Nagarajan L, Polakiewicz R, Cowell JK. Phosphorylation of the SSBP2 and ABL proteins by the ZNF198–FGFR1 fusion kinase seen in atypical myeloproliferative disorders as revealed by phosphopeptide-specific MS. Proteomics9(16), 3979–3988 (2009).
  • Zhang Y, Yoshida Y, Nameta M et al. Glomerular proteins related to slit diaphragm and matrix adhesion in the foot processes are highly tyrosine phosphorylated in the normal rat kidney. Nephrol. Dial. Transplant. DOI: 10.1093/ndt/gfp697 (2010) (Epub ahead of print).
  • Shomori K, Ochiai A, Akimoto S et al. Tyrosine-phosphorylation of the 12th armadillo-repeat of β-catenin is associated with cadherin dysfunction in human cancer. Int. J. Oncol.35(3), 517–524 (2009).
  • Duran MC, Chan HL, Timms JF. Identification of oxidative stress-induced tyrosine phosphorylated proteins by immunoprecipitation and mass spectrometry. Methods Mol. Biol.t527, 33–45 (2009).
  • Bergstrom Lind S, Molin M, Savitski MM et al. Immunoaffinity enrichments followed by mass spectrometric detection for studying global protein tyrosine phosphorylation. J. Proteome Res.7(7), 2897–2910 (2008).
  • Villen J, Beausoleil SA, Gerber SA, Gygi SP. Large-scale phosphorylation analysis of mouse liver. Proc. Natl Acad. Sci. USA104(5), 1488–1493 (2007).
  • Andersson L, Porath J. Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Anal. Biochem.154(1), 250–254 (1986).
  • Chaga G, Hopp J, Nelson P. Immobilized metal ion affinity chromatography on Co2+-carboxymethylaspartate-agarose superflow, as demonstrated by one-step purification of lactate dehydrogenase from chicken breast muscle. Biotechnol. Appl. Biochem.29, 19–24 (1999).
  • Hochuli E, Dobeli H, Schacher A. New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues. J. Chromatogr.411, 177–184 (1987).
  • Neville DC, Rozanas CR, Price EM, Gruis DB, Verkman AS, Townsend RR. Evidence for phosphorylation of serine 753 in CFTR using a novel metal-ion affinity resin and matrix-assisted laser desorption mass spectrometry. Protein Sci.6(11), 2436–2445 (1997).
  • Porath J, Carlsson J, Olsson I, Belfrage G. Metal chelate affinity chromatography, a new approach to protein fractionation. Nature258(5536), 598–599 (1975).
  • Ficarro SB, McCleland ML, Stukenberg PT et al. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat. Biotechnol.20(3), 301–305 (2002).
  • Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jorgensen TJ. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol. Cell. Proteomics4(7), 873–886 (2005).
  • Thingholm TE, Jorgensen TJ, Jensen ON, Larsen MR. Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nat. Protoc.1(4), 1929–1935 (2006).
  • Pinkse MW, Uitto PM, Hilhorst MJ, Ooms B, Heck AJ. Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal. Chem.76(14), 3935–3943 (2004).
  • Jensen SS, Larsen MR. Evaluation of the impact of some experimental procedures on different phosphopeptide enrichment techniques. Rapid Commun. Mass Spectrom.21(22), 3635–3645 (2007).
  • Wolschin F, Wienkoop S, Weckwerth W. Enrichment of phosphorylated proteins and peptides from complex mixtures using metal oxide/hydroxide affinity chromatography (MOAC). Proteomics5(17), 4389–4397 (2005).
  • Cuccurullo M, Schlosser G, Cacace G, Malorni L, Pocsfalvi G. Identification of phosphoproteins and determination of phosphorylation sites by zirconium dioxide enrichment and SELDI-MS/MS. J. Mass Spectrom.42(8), 1069–1078 (2007).
  • Rivera JG, Choi YS, Vujcic S, Wood TD, Colon LA. Enrichment/isolation of phosphorylated peptides on hafnium oxide prior to mass spectrometric analysis. Analyst134(1), 31–33 (2009).
  • Zhou H, Tian R, Ye M et al. Highly specific enrichment of phosphopeptides by zirconium dioxide nanoparticles for phosphoproteome analysis. Electrophoresis28(13), 2201–2215 (2007).
  • Kweon HK, Hakansson K. Selective zirconium dioxide-based enrichment of phosphorylated peptides for mass spectrometric analysis. Anal. Chem.78(6), 1743–1749 (2006).
  • Thingholm TE, Jensen ON, Robinson PJ, Larsen MR. SIMAC – a phosphoproteomic strategy for the rapid separation of mono-phosphorylated from multiply phosphorylated peptides. Mol. Cell. Proteomics7, 661–671 (2007).
  • Carrascal M, Ovelleiro D, Casas V, Gay M, Abian J. Phosphorylation analysis of primary human T lymphocytes using sequential IMAC and titanium oxide enrichment. J. Proteome Res.7(12), 5167–5176 (2008).
  • Rewitz KF, Larsen MR, Lobner-Olesen A, Rybczynski R, O’Connor MB, Gilbert LI. A phosphoproteomics approach to elucidate neuropeptide signal transduction controlling insect metamorphosis. Insect Biochem. Mol. Biol.39(7), 475–483 (2009).
  • Reynolds EC, Riley PF, Adamson NJ. A selective precipitation purification procedure for multiple phosphoseryl-containing peptides and methods for their identification. Anal. Biochem.217(2), 277–284 (1994).
  • Zhang X, Ye J, Jensen ON, Roepstorff P. Highly efficient phosphopeptide enrichment by calcium phosphate precipitation combined with subsequent IMAC enrichment. Mol. Cell. Proteomics6(11), 2032–2042 (2007).
  • Oda Y, Nagasu T, Chait BT. Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nat. Biotechnol.19(4), 379–382 (2001).
  • McLachlin DT, Chait BT. Improved β-elimination-based affinity purification strategy for enrichment of phosphopeptides. Anal. Chem.75(24), 6826–6836 (2003).
  • Zhou H, Watts JD, Aebersold R. A systematic approach to the analysis of protein phosphorylation. Nat. Biotechnol.19(4), 375–378 (2001).
  • Tao WA, Wollscheid B, O’Brien R et al. Quantitative phosphoproteome analysis using a dendrimer conjugation chemistry and tandem mass spectrometry. Nat. Methods2(8), 591–598 (2005).
  • Bodenmiller B, Mueller LN, Pedrioli PG et al. An integrated chemical, mass spectrometric and computational strategy for (quantitative) phosphoproteomics: application to Drosophila melanogaster Kc167 cells. Mol. Biosyst.3(4), 275–286 (2007).
  • Alpert AJ. Electrostatic repulsion hydrophilic interaction chromatography for isocratic separation of charged solutes and selective isolation of phosphopeptides. Anal. Chem.80(1), 62–76 (2008).
  • Zhang H, Guo T, Li X et al. Simultaneous characterization of glyco- and phospho-proteomes of mouse brain membrane proteome with electrostatic repulsion hydrophilic interaction chromatography (ERLIC). Mol. Cell. Proteomics DOI: 10.1074/mcp.M900314-MCP200 (2010) (Epub ahead of print).
  • Nuhse TS, Stensballe A, Jensen ON, Peck SC. Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry. Mol. Cell. Proteomics2(11), 1234–1243 (2003).
  • McNulty DE, Annan RS. Hydrophilic-interaction chromatography reduces the complexity of the phosphoproteome and improves global phosphopeptide isolation and detection. Mol. Cell. Proteomics7, 971–980 (2008).
  • Beausoleil SA, Jedrychowski M, Schwartz D et al. Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc. Natl Acad. Sci. USA101(33), 12130–12135 (2004).
  • Gruhler A, Olsen JV, Mohammed S et al. Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol. Cell. Proteomics4(3), 310–327 (2005).
  • Oda Y, Huang K, Cross FR, Cowburn D, Chait BT. Accurate quantitation of protein expression and site-specific phosphorylation. Proc. Natl Acad. Sci. USA96(12), 6591–6596 (1999).
  • Ong SE, Blagoev B, Kratchmarova I et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics1(5), 376–386 (2002).
  • Zhu H, Pan S, Gu S, Bradbury EM, Chen X. Amino acid residue specific stable isotope labeling for quantitative proteomics. Rapid Commun. Mass Spectrom.16(22), 2115–2123 (2002).
  • Ibarrola N, Kalume DE, Gronborg M, Iwahori A, Pandey A. A proteomic approach for quantitation of phosphorylation using stable isotope labeling in cell culture. Anal. Chem.75(22), 6043–6049 (2003).
  • Amanchy R, Kalume DE, Iwahori A, Zhong J, Pandey A. Phosphoproteome analysis of HeLa cells using stable isotope labeling with amino acids in cell culture (SILAC). J. Proteome Res.4(5), 1661–1671 (2005).
  • Goss VL, Lee KA, Moritz A et al. A common phosphotyrosine signature for the Bcr–Abl kinase. Blood107(12), 4888–4897 (2006).
  • Bose R, Molina H, Patterson AS et al. Phosphoproteomic analysis of Her2/neu signaling and inhibition. Proc. Natl Acad. Sci. USA103(26), 9773–9778 (2006).
  • Kratchmarova I, Blagoev B, Haack-Sorensen M, Kassem M, Mann M. Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science308(5727), 1472–1477 (2005).
  • Olsen JV, Blagoev B, Gnad F et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell127(3), 635–648 (2006).
  • Malik R, Lenobel R, Santamaria A, Ries A, Nigg EA, Korner R. Quantitative analysis of the human spindle phosphoproteome at distinct mitotic stages. J. Proteome Res.8(10), 4553–4563 (2009).
  • Hilger M, Bonaldi T, Gnad F, Mann M. Systems-wide analysis of a phosphatase knock-down by quantitative proteomics and phosphoproteomics. Mol. Cell. Proteomics8(8), 1908–1920 (2009).
  • Wu CC, MacCoss MJ, Howell KE, Matthews DE, Yates JR 3rd. Metabolic labeling of mammalian organisms with stable isotopes for quantitative proteomic analysis. Anal. Chem.76(17), 4951–4959 (2004).
  • Krijgsveld J, Ketting RF, Mahmoudi T et al. Metabolic labeling of C. elegans and D. melanogaster for quantitative proteomics. Nat. Biotechnol.21(8), 927–931 (2003).
  • Kruger M, Moser M, Ussar S et al. SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell134(2), 353–364 (2008).
  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol.17(10), 994–999 (1999).
  • Yi EC, Li XJ, Cooke K et al. Increased quantitative proteome coverage with 13C/12C-based, acid-cleavable isotope-coded affinity tag reagent and modified data acquisition scheme. Proteomics5(2), 380–387 (2005).
  • Thelemann A, Petti F, Griffin G et al. Phosphotyrosine signaling networks in epidermal growth factor receptor overexpressing squamous carcinoma cells. Mol. Cell. Proteomics4(4), 356–376 (2005).
  • Ross PL, Huang YN, Marchese JN et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics3(12), 1154–1169 (2004).
  • Sachon E, Mohammed S, Bache N, Jensen ON. Phosphopeptide quantitation using amine-reactive isobaric tagging reagents and tandem mass spectrometry: application to proteins isolated by gel electrophoresis. Rapid Commun. Mass Spectrom.20(7), 1127–1134 (2006).
  • Munton RP, Tweedie-Cullen R, Livingstone-Zatchej M et al. Qualitative and quantitative analyses of protein phosphorylation in naive and stimulated mouse synaptosomal preparations. Mol. Cell. Proteomics6(2), 283–293 (2007).
  • Schmelzle K, Kane S, Gridley S, Lienhard GE, White FM. Temporal dynamics of tyrosine phosphorylation in insulin signaling. Diabetes55(8), 2171–2179 (2006).
  • Zhang Y, Wolf-Yadlin A, Ross PL et al. Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules. Mol. Cell. Proteomics4(9), 1240–1250 (2005).
  • Wolf-Yadlin A, Hautaniemi S, Lauffenburger DA, White FM. Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks. Proc. Natl Acad. Sci. USA104(14), 5860–5865 (2007).
  • Dosemeci A, Jaffe H. Regulation of phosphorylation at the postsynaptic density during different activity states of Ca2+/calmodulin-dependent protein kinase II. Biochem. Biophys. Res. Commun.391(1), 78–84 (2009).
  • Chen YX, Li Y, Wang WM et al. Phosphoproteomic study of human tubular epithelial cell in response to transforming growth factor-β-1-induced epithelial-to-mesenchymal transition. Am. J. Nephrol.31(1), 24–35 (2009).
  • Choe L, D’Ascenzo M, Relkin NR et al. 8-plex quantitation of changes in cerebrospinal fluid protein expression in subjects undergoing intravenous immunoglobulin treatment for Alzheimer’s disease. Proteomics7(20), 3651–3660 (2007).
  • Thompson A, Schafer J, Kuhn K et al. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal. Chem.75(8), 1895–1904 (2003).
  • Viner RI, Zhang T, Second T, Zabrouskov V. Quantification of post-translationally modified peptides of bovine a-crystallin using tandem mass tags and electron transfer dissociation. J. Proteomics72(5), 874–885 (2009).
  • Schwartz JC, Syka JEP, Quarmby ST. Proceedings of the 53rd ASMS Conference on Mass Spectrometry and Allied Topics. San Antonio, TX, USA, 5–9 June 2005.
  • Bantscheff M, Boesche M, Eberhard D, Matthieson T, Sweetman G, Kuster B. Robust and sensitive iTRAQ quantification on an LTQ Orbitrap mass spectrometer. Mol. Cell. Proteomics7(9), 1702–1713 (2008).
  • Yang F, Wu S, Stenoien DL et al. Combined pulsed-Q dissociation and electron transfer dissociation for identification and quantification of iTRAQ-labeled phosphopeptides. Anal. Chem.81(10), 4137–4143 (2009).
  • Thingholm TE, Palmisano G, Kjeldsen F, Larsen MR. Undesirable charge-enhancement of isobaric tagged phosphopeptides leads to reduced identification efficiency. J. Proteome Res. DOI: 10.1021/pr100230q (2010) (Epub ahead of print).
  • Mirgorodskaya OA, Kozmin YP, Titov MI, Korner R, Sonksen CP, Roepstorff P. Quantitation of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry using 18O-labeled internal standards. Rapid Commun. Mass Spectrom.14(14), 1226–1232 (2000).
  • Stewart II, Thomson T, Figeys D. 18O labeling: a tool for proteomics. Rapid Commun. Mass Spectrom.15(24), 2456–2465 (2001).
  • Yao X, Freas A, Ramirez J, Demirev PA, Fenselau C. Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus. Anal. Chem.73(13), 2836–2842 (2001).
  • Goodlett DR, Keller A, Watts JD et al. Differential stable isotope labeling of peptides for quantitation and de novo sequence derivation. Rapid Commun. Mass Spectrom.15(14), 1214–1221 (2001).
  • Smith JC, Duchesne MA, Tozzi P, Ethier M, Figeys D. A differential phosphoproteomic analysis of retinoic acid-treated P19 cells. J. Proteome Res.6(8), 3174–3186 (2007).
  • Hsu JL, Huang SY, Chow NH, Chen SH. Stable-isotope dimethyl labeling for quantitative proteomics. Anal. Chem.75(24), 6843–6852 (2003).
  • Huang SY, Tsai ML, Wu CJ, Hsu JL, Ho SH, Chen SH. Quantitation of protein phosphorylation in pregnant rat uteri using stable isotope dimethyl labeling coupled with IMAC. Proteomics6(6), 1722–1734 (2006).
  • Boersema PJ, Aye TT, van Veen TA, Heck AJ, Mohammed S. Triplex protein quantification based on stable isotope labeling by peptide dimethylation applied to cell and tissue lysates. Proteomics8(22), 4624–4632 (2008).
  • Boersema PJ, Foong LY, Ding VM et al. In depth qualitative and quantitative profiling of tyrosine phosphorylation using a combination of phosphopeptide immuno-affinity purification and stable isotope dimethyl labeling. Mol. Cell. Proteomics9, 84–99 (2009).
  • Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B. Quantitative mass spectrometry in proteomics: a critical review. Anal. Bioanal. Chem.389(4), 1017–1031 (2007).
  • Matthiesen R. Methods, algorithms and tools in computational proteomics: a practical point of view. Proteomics7(16), 2815–2832 (2007).
  • Liu H, Sadygov RG, Yates JR 3rd. A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal. Chem.76(14), 4193–4201 (2004).
  • Lundgren DH, Hwang SI, Wu L, Han DK. Role of spectral counting in quantitative proteomics. Expert Rev. Proteomics7(1), 39–53 (2010).
  • Wu CJ, Cai T, Rikova K, Merberg D, Kasif S, Steffen M. A predictive phosphorylation signature of lung cancer. PLoS ONE4(11), e7994 (2009).
  • Heibeck TH, Ding SJ, Opresko LK et al. An extensive survey of tyrosine phosphorylation revealing new sites in human mammary epithelial cells. J. Proteome Res.8(8), 3852–3861 (2009).
  • Steen H, Jebanathirajah JA, Springer M, Kirschner MW. Stable isotope-free relative and absolute quantitation of protein phosphorylation stoichiometry by MS. Proc. Natl Acad. Sci. USA102(11), 3948–3953 (2005).
  • Stulemeijer IJ, Joosten MH, Jensen ON. Quantitative phosphoproteomics of tomato mounting a hypersensitive response reveals a swift suppression of photosynthetic activity and a differential role for hsp90 isoforms. J. Proteome Res.8(3), 1168–1182 (2009).
  • Hsu JL, Wang LY, Wang SY et al. Functional phosphoproteomic profiling of phosphorylation sites in membrane fractions of salt-stressed Arabidopsis thaliana. Proteome Sci.7, 42 (2009).
  • Nguyen V, Cao L, Lin JT et al. A new approach for quantitative phosphoproteomic dissection of signaling pathways applied to T cell receptor activation. Mol. Cell. Proteomics8(11), 2418–2431 (2009).
  • Hoffert JD, Pisitkun T, Wang G, Shen RF, Knepper MA. Quantitative phosphoproteomics of vasopressin-sensitive renal cells: regulation of aquaporin-2 phosphorylation at two sites. Proc. Natl Acad. Sci. USA103(18), 7159–7164 (2006).
  • Listgarten J, Emili A. Statistical and computational methods for comparative proteomic profiling using liquid chromatography-tandem mass spectrometry. Mol. Cell. Proteomics4(4), 419–434 (2005).
  • America AH, Cordewener JH, van Geffen MH et al. Alignment and statistical difference analysis of complex peptide data sets generated by multidimensional LC-MS. Proteomics6(2), 641–653 (2006).
  • Callister SJ, Barry RC, Adkins JN et al. Normalization approaches for removing systematic biases associated with mass spectrometry and label-free proteomics. J. Proteome Res.5(2), 277–286 (2006).
  • Griffin NM, Yu J, Long F et al. Label-free, normalized quantification of complex mass spectrometry data for proteomic analysis. Nat. Biotechnol.28(1), 83–89 (2010).
  • Mueller LN, Rinner O, Schmidt A et al. SuperHirn – a novel tool for high resolution LC-MS-based peptide/protein profiling. Proteomics7(19), 3470–3480 (2007).
  • Bodenmiller B, Mueller LN, Mueller M, Domon B, Aebersold R. Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nat. Methods4(3), 231–237 (2007).
  • Reiland S, Messerli G, Baerenfaller K et al. Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks. Plant Physiol.150(2), 889–903 (2009).
  • Brusniak MY, Bodenmiller B, Campbell D et al. Corra: computational framework and tools for LC-MS discovery and targeted mass spectrometry-based proteomics. BMC Bioinformatics9, 542 (2008).
  • McCormick DJ, Holmes MW, Muddiman DC, Madden BJ. Mapping sites of protein phosphorylation by mass spectrometry utilizing a chemical-enzymatic approach: characterization of products from a-S1 casein phosphopeptides. J. Proteome Res.4(2), 424–434 (2005).
  • Simpson KL, Whetton AD, Dive C. Quantitative mass spectrometry-based techniques for clinical use: biomarker identification and quantification. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.877(13), 1240–1249 (2009).
  • Miller ML, Ponten TS, Petersen TN, Blom N. NetPhosK – prediction of kinase-specific phosphorylation from sequence and sequence-derived features. FEBS J. – FEBS 2005 Congress272(s1), A3–030P (2005).
  • Du X, Yang F, Manes NP et al. Linear discriminant analysis-based estimation of the false discovery rate for phosphopeptide identifications. J. Proteome Res.7(6), 2195–2203 (2008).
  • Huang HD, Lee TY, Tzeng SW, Horng JT. KinasePhos: a web tool for identifying protein kinase-specific phosphorylation sites. Nucleic Acids Res.33(Web Server issue), W226–W229 (2005).
  • Wong YH, Lee TY, Liang HK et al. KinasePhos 2.0: a web server for identifying protein kinase-specific phosphorylation sites based on sequences and coupling patterns. Nucleic Acids Res.35(Web Server issue), W588–W594 (2007).
  • Obenauer JC, Cantley LC, Yaffe MB. Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res.31(13), 3635–3641 (2003).
  • Ruttenberg BE, Pisitkun T, Knepper MA, Hoffert JD. PhosphoScore: an open-source phosphorylation site assignment tool for MSn data. J. Proteome Res.7(7), 3054–3059 (2008).
  • Wan Y, Cripps D, Thomas S et al. PhosphoScan: a probability-based method for phosphorylation site prediction using MS2/MS3 pair information. J. Proteome Res.7(7), 2803–2811 (2008).
  • Payne SH, Yau M, Smolka MB, Tanner S, Zhou H, Bafna V. Phosphorylation-specific MS/MS scoring for rapid and accurate phosphoproteome analysis. J. Proteome Res.7(8), 3373–3381 (2008).
  • Gnad F, Ren S, Cox J et al. PHOSIDA (phosphorylation site database): management, structural and evolutionary investigation, and prediction of phosphosites. Genome Biol.8(11), R250 (2007).
  • Ulintz PJ, Bodenmiller B, Andrews PC, Aebersold R, Nesvizhskii AI. Investigating MS2/MS3 matching statistics: a model for coupling consecutive stage mass spectrometry data for increased peptide identification confidence. Mol. Cell. Proteomics7(1), 71–87 (2008).
  • Lu B, Ruse CI, Yates JR 3rd. Colander: a probability-based support vector machine algorithm for automatic screening for CID spectra of phosphopeptides prior to database search. J. Proteome Res.7(8), 3628–3634 (2008).
  • Bodenmiller B, Malmstrom J, Gerrits B et al. PhosphoPep – a phosphoproteome resource for systems biology research in Drosophila Kc167 cells. Mol. Syst. Biol.3, 139 (2007).
  • Beausoleil SA, Villen J, Gerber SA, Rush J, Gygi SP. A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat. Biotechnol.24(10), 1285–1292 (2006).
  • Blom N, Gammeltoft S, Brunak S. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J. Mol. Biol.294(5), 1351–1362 (1999).
  • Elias JE, Gygi SP. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat. Methods4(3), 207–214 (2007).
  • Nesvizhskii AI, Vitek O, Aebersold R. Analysis and validation of proteomic data generated by tandem mass spectrometry. Nat. Methods4(10), 787–797 (2007).
  • Pevzner PA, Dancik V, Tang CL. Mutation-tolerant protein identification by mass spectrometry. J. Comput. Biol.7(6), 777–787 (2000).
  • Pevzner PA, Mulyukov Z, Dancik V, Tang CL. Efficiency of database search for identification of mutated and modified proteins via mass spectrometry. Genome Res.11(2), 290–299 (2001).
  • Han Y, Ma B, Zhang K. SPIDER: software for protein identification from sequence tags with de novo sequencing error. J. Bioinform. Comput. Biol.3(3), 697–716 (2005).
  • Tsur D, Tanner S, Zandi E, Bafna V, Pevzner PA. Identification of post-translational modifications by blind search of mass spectra. Nat. Biotechnol.23(12), 1562–1567 (2005).
  • Reiter L, Claassen M, Schrimpf SP et al. Protein identification false discovery rates for very large proteomics data sets generated by tandem mass spectrometry. Mol. Cell. Proteomics8(11), 2405–2417 (2009).
  • Kall L, Storey JD, MacCoss MJ, Noble WS. Assigning significance to peptides identified by tandem mass spectrometry using decoy databases. J. Proteome Res.7(1), 29–34 (2008).
  • Keller A, Nesvizhskii AI, Kolker E, Aebersold R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem.74(20), 5383–5392 (2002).
  • Olsen JV, Mann M. Improved peptide identification in proteomics by two consecutive stages of mass spectrometric fragmentation. Proc. Natl Acad. Sci. USA101(37), 13417–13422 (2004).
  • Mortensen P, Gouw JW, Olsen JV et al. MSQuant, an open source platform for mass spectrometry-based quantitative proteomics. J. Proteome Res.9(1), 393–403 (2010).
  • Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol.26(12), 1367–1372 (2008).
  • Macek B, Mijakovic I, Olsen JV et al. The serine/threonine/tyrosine phosphoproteome of the model bacterium Bacillus subtilis. Mol. Cell. Proteomics6(4), 697–707 (2007).
  • Vadysirisack DD, Chen ES, Zhang Z, Tsai MD, Chang GD, Jhiang SM. Identification of in vivo phosphorylation sites and their functional significance in the sodium iodide symporter. J. Biol. Chem.282(51), 36820–36828 (2007).
  • Daub H, Olsen JV, Bairlein M et al. Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol. Cell31(3), 438–448 (2008).
  • de Godoy LM, Olsen JV, Cox J et al. Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature455(7217), 1251–1254 (2008).
  • Hou J, Cui Z, Xie Z et al. Phosphoproteome analysis of rat L6 myotubes using reversed-phase C18 prefractionation and titanium dioxide enrichment. J. Proteome Res.9(2), 777–788 (2010).
  • Dephoure N, Zhou C, Villen J et al. A quantitative atlas of mitotic phosphorylation. Proc. Natl Acad. Sci. USA105(31), 10762–10767 (2008).
  • Li X, Gerber SA, Rudner AD et al. Large-scale phosphorylation analysis of a-factor-arrested Saccharomyces cerevisiae. J. Proteome Res.6(3), 1190–1197 (2007).
  • Hoffert JD, Wang G, Pisitkun T, Shen RF, Knepper MA. An automated platform for analysis of phosphoproteomic data sets: application to kidney collecting duct phosphoproteins. J. Proteome Res.6(9), 3501–3508 (2007).
  • Lu B, Ruse C, Xu T, Park SK, Yates J 3rd. Automatic validation of phosphopeptide identifications from tandem mass spectra. Anal. Chem.79(4), 1301–1310 (2007).
  • Bailey CM, Sweet SM, Cunningham DL, Zeller M, Heath JK, Cooper HJ. SLoMo: automated site localization of modifications from ETD/ECD mass spectra. J. Proteome Res.8(4), 1965–1971 (2009).
  • Lau KW, Jones AR, Swainston N, Siepen JA, Hubbard SJ. Capture and analysis of quantitative proteomic data. Proteomics7(16), 2787–2799 (2007).
  • Mueller LN, Brusniak MY, Mani DR, Aebersold R. An assessment of software solutions for the analysis of mass spectrometry based quantitative proteomics data. J. Proteome Res.7(1), 51–61 (2008).
  • Dulla K, Daub H, Hornberger R, Nigg EA, Korner R. Quantitative site-specific phosphorylation dynamics of human protein kinases during mitotic progression. Mol. Cell. Proteomics DOI: 10.1074/mcp.M900335-MCP200 (2010) (Epub ahead of print).
  • Olsen JV, Vermeulen M, Santamaria A et al. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci. Signal3(104), ra3 (2010).
  • Park SK, Venable JD, Xu T, Yates JR 3rd. A quantitative analysis software tool for mass spectrometry-based proteomics. Nat. Methods5(4), 319–322 (2008).
  • Liao L, McClatchy DB, Park SK, Xu T, Lu B, Yates JR 3rd. Quantitative analysis of brain nuclear phosphoproteins identifies developmentally regulated phosphorylation events. J. Proteome Res.7(11), 4743–4755 (2008).
  • van Breukelen B, van den Toorn HW, Drugan MM, Heck AJ. StatQuant: a post-quantification analysis toolbox for improving quantitative mass spectrometry. Bioinformatics25(11), 1472–1473 (2009).
  • Boja ES, Phillips D, French SA, Harris RA, Balaban RS. Quantitative mitochondrial phosphoproteomics using iTRAQ on an LTQ-Orbitrap with high energy collision dissociation. J. Proteome Res.8(10), 4665–4675 (2009).
  • Yu CY, Tsui YH, Yian YH, Sung TY, Hsu WL. The Multi-Q web server for multiplexed protein quantitation. Nucleic Acids Res.35(Web Server issue), W707–W712 (2007).
  • Wang Z, Gucek M, Hart GW. Cross-talk between GlcNAcylation and phosphorylation: site-specific phosphorylation dynamics in response to globally elevated O-GlcNAc. Proc. Natl Acad. Sci. USA105(37), 13793–13798 (2008).
  • Zhou F, Galan J, Geahlen RL, Tao WA. A novel quantitative proteomics strategy to study phosphorylation-dependent peptide–protein interactions. J. Proteome Res.6(1), 133–140 (2007).
  • Nuhse TS, Bottrill AR, Jones AME, Peck SC. Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses. Plant J.51, 931–940 (2007)

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.