110
Views
16
CrossRef citations to date
0
Altmetric
Review

Proteomic analysis in the identification of allergenic molecules

, , , &
Pages 723-734 | Published online: 09 Jan 2014

References

  • Larsen JN, Dreborg S. Standardization of allergen extracts. Methods Mol. Med.138, 133–145 (2008).
  • Matthes A, Schmitz-Eiberger M. Apple (Malus domestica L. Borkh.) allergen Mal d 1: effect of cultivar, cultivation system, and storage conditions. J. Agric. Food Chem.57, 10548–10553 (2009).
  • van Kampen V, Merget R, Rabstein S et al. Comparison of wheat and rye flour solutions for skin prick testing: a multi-centre study (Stad 1). Clin. Exp. Allergy39, 1896–1902 (2009).
  • Sun JL, Zhang HY, Guo ZY, Ying WT, Qian XH, Wang JL. Comparison of three methods of protein extraction from Dermatophagoides pteronyssinus for two-dimensional electrophoresis. Chin. Med. Sci. J.24, 64–68 (2009).
  • Zheng Q, Song J, Doncaster K, Rowland E, Byers DM. Qualitative and quantitative evaluation of protein extraction protocols for apple and strawberry fruit suitable for two-dimensional electrophoresis and mass spectrometry analysis. J. Agric. Food Chem.55, 1663–1673 (2007).
  • Saravanan RS, Rose JK. A critical evaluation of sample extraction techniques for enhanced proteomic analysis of recalcitrant plant tissues. Proteomics4, 2522–2532 (2004).
  • Brunetto B, Tinghino R, Braschi MC, Antonicelli L, Pini C, Iacovacci P. Characterization and comparison of commercially available mite extracts for in vivo diagnosis. Allergy65, 184–190 (2010).
  • Vassilopoulou EV, Zuidmeer L, Akkerdaas J et al. Optimized techniques for the extraction of grape allergens appropriate for in vivo and in vitro testing and diagnosis. Mol. Nutr. Food Res.51, 360–366 (2007).
  • Alche JD, Castro AJ, Jimenez-Lopez JC et al. Differential characteristics of olive pollen from different cultivars: biological and clinical implications. J. Investig. Allergol. Clin. Immunol.17, 17–23 (2007).
  • Ciardiello MA, Giangrieco I, Tuppo L et al. Influence of the natural ripening stage, cold storage, and ethylene treatment on the protein and IgE-binding profiles of green and gold kiwi fruit extracts. J. Agric. Food Chem.57, 1565–1571 (2009).
  • Krause S, Reese G, Randow S et al. Lipid transfer protein (Ara h 9) as a new peanut allergen relevant for a Mediterranean allergic population. J. Allergy Clin. Immunol.124, 771–778 (2009).
  • Ciardiello MA, Palazzo P, Bernardi ML et al. Biochemical, immunological and clinical characterization of a cross-reactive nonspecific lipid transfer protein 1 from mulberry. Allergy65, 597–605 (2010).
  • Hildebrandt S, Steinhart H, Paschke A. Comparison of different extraction solutions for the analysis of allergens in hen’s egg. Food Chem.108, 1088–1093 (2008).
  • Dooper MM, Plassen C, Holden L, Moen LH, Namork E, Egaas E. Antibody binding to hazelnut (Corylus avellana) proteins: the effects of extraction procedure and hazelnut source. Food Agric. Immunol.19, 229–240 (2008).
  • Focke M, Marth K, Valenta R. Molecular composition and biological activity of commercial birch pollen allergen extracts. Eur. J. Clin. Invest.39, 429–436 (2009).
  • Kottapalli KR, Payton P, Rakwal R et al. Proteomic analysis of mature seed of four peanut cultivars using two-dimensional gel electrophoresis reveals distinct differential expression of storage, anti-nutritional, and allergenic proteins. Plant Sci.175, 321–329 (2008).
  • Primavesi L, Brenna OV, Pompei C, Pravettoni V, Farioli L, Pastorello EA. Influence of cultivar and processing on cherry (Prunus avium) allergenicity. J. Agric. Food Chem.54, 9930–9935 (2006).
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227, 680–685 (1970).
  • Maghuly F, Marzban G, Laimer M. Functional genomics of allergen gene families in fruits. Nutrients1, 119–132 (2009).
  • O’Farrell PH. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem.250, 4007–4021 (1975).
  • Chen L, Hefle SL, Taylor SL, Swoboda I, Goodman RE. Detecting fish parvalbumin with commercial mouse monoclonal anti-frog parvalbumin IgG. J. Agric. Food Chem.54, 5577–5582 (2006).
  • Breitenbach M, Ferreira F, Jilek A et al. Biological and immunological importance of Bet v 1 isoforms. Adv. Exp. Med. Biol.409, 117–126 (1996).
  • Guo B, Liang X, Chung SY, Holbrook CC, Maleki SJ. Proteomic analysis of peanut seed storage proteins and genetic variation in a potential peanut allergen. Protein Pept. Lett.15, 567–577 (2008).
  • Porterfield HS, Murray KS, Schlichting DG et al. Effector activity of peanut allergens: a critical role for Ara h 2, Ara h 6, and their variants. Clin. Exp. Allergy39, 1099–1108 (2009).
  • Wallner M, Erler A, Hauser M et al. Immunologic characterization of isoforms of Car b 1 and Que a 1, the major hornbeam and oak pollen allergens. Allergy64, 452–460 (2009).
  • Alm R, Ekefjard A, Krogh M, Hakkinen J, Emanuelsson C. Proteomic variation is as large within as between strawberry varieties. J. Proteome Res.6, 3011–3020 (2007).
  • Sancho AI, Gillabert M, Tapp H, Shewry PR, Skeggs PK, Mills EN. Effect of environmental stress during grain filling on the soluble proteome of wheat (Triticum aestivum) dough liquor. J. Agric. Food Chem.56, 5386–5393 (2008).
  • Biron DG, Brun C, Lefevre T et al. The pitfalls of proteomics experiments without the correct use of bioinformatics tools. Proteomics6, 5577–5596 (2006).
  • Carpentier SC, Witters E, Laukens K, Deckers P, Swennen R, Panis B. Preparation of protein extracts from recalcitrant plant tissues: an evaluation of different methods for two-dimensional gel electrophoresis analysis. Proteomics5, 2497–2507 (2005).
  • Jorrin JV, Maldonado AM, Castillejo MA. Plant proteome analysis: a 2006 update. Proteomics7, 2947–2962 (2007).
  • Marzban G, Herndl A, Maghuly F, Katinger H, Laimer M. Mapping of fruit allergens by 2D electrophoresis and immunodetection. Expert Rev. Proteomics5, 61–75 (2008).
  • Kitta K, Ohnishi-Kameyama M, Moriyama T, Ogawa T, Kawamoto S. Detection of low-molecular weight allergens resolved on two-dimensional electrophoresis with acid-urea polyacrylamide gel. Anal. Biochem.351, 290–297 (2006).
  • Friedman DB, Hoving S, Westermeier R. Isoelectric focusing and two-dimensional gel electrophoresis. Methods Enzymol.463, 515–540 (2009).
  • Pastorello EA, Conti A, Pravettoni V et al. Identification of actinidin as the major allergen of kiwi fruit. J. Allergy Clin. Immunol.101, 531–537 (1998).
  • Gavrovic-Jankulovic M, Cirkovic T, Vuckovic O et al. Isolation and biochemical characterization of a thaumatin-like kiwi allergen. J. Allergy Clin. Immunol.110, 805–810 (2002).
  • Tamburrini M, Cerasuolo I, Carratore V et al. Kiwellin, a novel protein from kiwi fruit. Purification, biochemical characterization and identification as an allergen*. Protein J.24, 423–429 (2005).
  • Pastor C, Cuesta-Herranz J, Cases B et al. Identification of major allergens in watermelon. Int. Arch. Allergy Immunol.149, 291–298 (2009).
  • Engvall E, Perlmann P. Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry8, 871–874 (1971).
  • MacBeath G. Protein microarrays and proteomics. Nat. Genet.32(Suppl.), 526–532 (2002).
  • Harwanegg C, Hiller R. Protein microarrays for the diagnosis of allergic diseases: state-of-the-art and future development. Clin. Chem. Lab. Med.43, 1321–1326 (2005).
  • Gonzalez-Buitrago JM, Ferreira L, Isidoro-Garcia M, Sanz C, Lorente F, Davila I. Proteomic approaches for identifying new allergens and diagnosing allergic diseases. Clin. Chim. Acta385, 21–27 (2007).
  • Han X, Aslanian A, Yates JR 3rd. Mass spectrometry for proteomics. Curr. Opin. Chem. Biol.12, 483–490 (2008).
  • Monaci L, Visconti A. Mass spectrometry-based proteomics methods for analysis of food allergens. Trends Anal. Chem.28, 581–591 (2009).
  • Chmelik J, Zidkova J, Rehulka P, Petry-Podgorska I, Bobalova J. Influence of different proteomic protocols on degree of high-coverage identification of nonspecific lipid transfer protein 1 modified during malting. Electrophoresis30, 560–567 (2009).
  • Kirsch S, Fourdrilis S, Dobson R, Scippo ML, Maghuin-Rogister G, De Pauw PE. Quantitative methods for food allergens: a review. Anal. Bioanal. Chem.395, 57–67 (2009).
  • Pevtsov S, Fedulova I, Mirzaei H, Buck C, Zhang X. Performance evaluation of existing de novo sequencing algorithms. J. Proteome Res.5, 3018–3028 (2006).
  • DiMaggio PA Jr, Floudas CA. De novo peptide identification via tandem mass spectrometry and integer linear optimization. Anal. Chem.79, 1433–1446 (2007).
  • Cook SL, Collin OL, Jackson GP. Metastable atom-activated dissociation mass spectrometry: leucine/isoleucine differentiation and ring cleavage of proline residues. J. Mass Spectrom.44, 1211–1223 (2009).
  • Niall HD. Automated Edman degradation: the protein sequenator. Methods Enzymol.27, 942–1010 (1973).
  • Ciardiello MA, D’Avino R, Amoresano A et al. The peculiar structural features of kiwi fruit pectin methylesterase: amino acid sequence, oligosaccharides structure, and modeling of the interaction with its natural proteinaceous inhibitor. Proteins71, 195–206 (2008).
  • Lopez-Torrejon G, Ibanez MD, Ahrazem O et al. Isolation, cloning and allergenic reactivity of natural profilin Cit s 2, a major orange allergen. Allergy60, 1424–1429 (2005).
  • Palacin A, Cumplido J, Figueroa J et al. Cabbage lipid transfer protein Bra o 3 is a major allergen responsible for cross-reactivity between plant foods and pollens. J. Allergy Clin. Immunol.117, 1423–1429 (2006).
  • Palacin A, Quirce S, Armentia A et al. Wheat lipid transfer protein is a major allergen associated with baker’s asthma. J. Allergy Clin. Immunol.120, 1132–1138 (2007).
  • Lauer I, Miguel-Moncin MS, Abel T et al. Identification of a plane pollen lipid transfer protein (Pla a 3) and its immunological relation to the peach lipid-transfer protein, Pru p 3. Clin. Exp. Allergy37, 261–269 (2007).
  • Hiller R, Laffer S, Harwanegg C et al. Microarrayed allergen molecules: diagnostic gatekeepers for allergy treatment. FASEB J.16, 414–416 (2002).
  • Harwanegg C, Hutter S, Hiller R. Allergen microarrays for the diagnosis of specific IgE against components of cow’s milk and hen’s egg in a multiplex biochip-based immunoassay. Methods Mol. Biol.385, 145–157 (2007).
  • Gygi SP, Rochon Y, Franza BR, Aebersold R. Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol.19, 1720–1730 (1999).
  • Futcher B, Latter GI, Monardo P, McLaughlin CS, Garrels JI. A sampling of the yeast proteome. Mol. Cell. Biol.19, 7357–7368 (1999).
  • Grimplet J, Wheatley MD, Jouira HB, Deluc LG, Cramer GR, Cushman JC. Proteomic and selected metabolite analysis of grape berry tissues under well-watered and water-deficit stress conditions. Proteomics9, 2503–2528 (2009).
  • Oberhuber C, Bulley SM, Ballmer-Weber BK et al. Characterization of Bet v 1-related allergens from kiwifruit relevant for patients with combined kiwifruit and birch pollen allergy. Mol. Nutr. Food Res.52, 230–240 (2008).
  • Wopfner N, Gadermaier G, Egger M et al. The spectrum of allergens in ragweed and mugwort pollen. Int. Arch. Allergy Immunol.138, 337–346 (2005).
  • Tuppo L, Giangrieco I, Palazzo P et al. Kiwellin, a modular protein from green and gold kiwi fruits: evidence of in vivo and in vitro processing and IgE binding. J. Agric. Food Chem.56, 3812–3817 (2008).
  • Soldatova LN, Tsai C, Dobrovolskaia E, Markovic-Housley Z, Slater JE. Characterization of the N-glycans of recombinant bee venom hyaluronidase (Api m 2) expressed in insect cells. Allergy Asthma Proc.28, 210–215 (2007).
  • Chevigne A, Barumandzadeh R, Groslambert S et al. Relationship between propeptide pH unfolding and inhibitory ability during ProDer p 1 activation mechanism. J. Mol. Biol.374, 170–185 (2007).
  • Gruber P, Gadermaier G, Bauer R et al. Role of the polypeptide backbone and post-translational modifications in cross-reactivity of Art v 1, the major mugwort pollen allergen. Biol. Chem.390, 445–451 (2009).
  • Fenaille F, Nony E, Chabre H et al. Mass spectrometric investigation of molecular variability of grass pollen group 1 allergens. J. Proteome Res.8, 4014–4027 (2009).
  • Kurup VP, Sussman GL, Yeang HY et al. Specific IgE response to purified and recombinant allergens in latex allergy. Clin. Mol. Allergy3, 11–19 (2005).
  • Fuchs HC, Bohle B, Dall’Antonia Y et al. Natural and recombinant molecules of the cherry allergen Pru av 2 show diverse structural and B cell characteristics but similar T cell reactivity. Clin. Exp. Allergy36, 359–368 (2006).
  • Wallner M, Himly M, Neubauer A et al. The influence of recombinant production on the immunologic behavior of birch pollen isoallergens. PLoS ONE4, e8457 (2009).
  • Asero R. Plant food allergies: a suggested approach to allergen-resolved diagnosis in the clinical practice by identifying easily available sensitization markers. Int. Arch. Allergy Immunol.138, 1–11 (2005).
  • Barrett T, Suzek TO, Troup DB et al. NCBI GEO: mining millions of expression profiles – database and tools. Nucleic Acids Res.33, D562–D566 (2005).
  • Brazma A, Parkinson H, Sarkans U et al. ArrayExpress – a public repository for microarray gene expression data at the EBI. Nucleic Acids Res.31, 68–71 (2003).
  • Mari A, Rasi C, Palazzo P, Scala E. Allergen databases: current status and perspectives. Curr. Allergy Asthma Rep.9, 376–383 (2009).
  • Mari A, Scala E, Palazzo P, Ridolfi S, Zennaro D, Carabella G. Bioinformatics applied to allergy: allergen databases, from collecting sequence information to data integration. The Allergome platform as a model. Cell. Immunol.244, 97–100 (2006).
  • Metcalfe DD, Astwood JD, Townsend R, Sampson HA, Taylor SL, Fuchs RL. Assessment of the allergenic potential of foods derived from genetically engineered crop plants. Crit. Rev. Food Sci. Nutr.36(Suppl.), S165–S186 (1996).
  • FAO/WHO. Evaluation of allergenicity of genetically modified foods. Report of a Joint FAO/WHO Expert Consultation of Allergenicity of Foods Derived from Biotechnology. Rome, Italy, 22–25 January 2001.
  • Codex Alimentarius Commission. Guideline for the Conduct of Food Safety Assessment of Foods Derived from Recombinant-DNA Plants and Appendix IV, Annex on the Assessment of Possible Allergenicity (Appendix III). 25th Session, Rome, Italy, 30 June–5 July 2003.
  • Aalberse RC. Structural biology of allergens. J. Allergy Clin. Immunol.106, 228–238 (2000).
  • Pearson WR, Lipman DJ. Improved tools for biological sequence comparison. Proc. Natl Acad. Sci. USA85, 2444–2448 (1988).
  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J. Mol. Biol.215, 403–410 (1990).
  • Hileman RE, Silvanovich A, Goodman RE et al. Bioinformatic methods for allergenicity assessment using a comprehensive allergen database. Int. Arch. Allergy Immunol.128, 280–291 (2002).
  • Li KB, Issac P, Krishnan A. Predicting allergenic proteins using wavelet transform. Bioinformatics20, 2572–2578 (2004).
  • Stadler MB, Stadler BM. Allergenicity prediction by protein sequence. FASEB J.17, 1141–1143 (2003).
  • Ivanciuc O, Schein CH, Braun W. SDAP: database and computational tools for allergenic proteins. Nucleic Acids Res.31, 359–362 (2003).
  • Jenkins JA, Griffiths-Jones S, Shewry PR, Breiteneder H, Mills EN. Structural relatedness of plant food allergens with specific reference to cross-reactive allergens: an in silico analysis. J. Allergy Clin. Immunol.115, 163–170 (2005).
  • Furmonaviciene R, Sutton BJ, Glaser F et al. An attempt to define allergen-specific molecular surface features: a bioinformatic approach. Bioinformatics21, 4201–4204 (2005).
  • Thalhamer T, Dobias H, Stepanoska T et al. Designing hypoallergenic derivatives for allergy treatment by means of in silico mutation and screening. J. Allergy Clin. Immunol.125, 926–934 (2010).
  • Scala E, Alessandri C, Bernardi ML et al. Cross-sectional survey on immunoglobulin E reactivity in 23 077 subjects using an allergenic molecule-based microarray detection system. Clin. Exp. Allergy40, 911–921 (2010).
  • Boutet E, Lieberherr D, Tognolli M, Schneider M, Bairoch A. UniProtKB/Swiss-Prot. Methods Mol. Biol.406, 89–112 (2007).
  • Ayuso R, Lehrer SB, Reese G. Identification of continuous, allergenic regions of the major shrimp allergen Pen a 1 (tropomyosin). Int. Arch. Allergy Immunol.127, 27–37 (2002).
  • Radauer C, Bublin M, Wagner S, Mari A, Breiteneder H. Allergens are distributed into few protein families and possess a restricted number of biochemical functions. J. Allergy Clin. Immunol.121, 847–852 (2008).
  • O’Brien RM, Thomas WR, Tait BD. An immunogenetic analysis of T-cell reactive regions on the major allergen from the house dust mite, Der p I, with recombinant truncated fragments. J. Allergy Clin. Immunol.93, 628–634 (1994).
  • Weghofer M, Thomas WR, Kronqvist M et al. Variability of IgE reactivity profiles among European mite allergic patients. Eur. J. Clin. Invest.38, 959–965 (2008).
  • Stoevesandt O, Taussig MJ, He M. Protein microarrays: high-throughput tools for proteomics. Expert Rev. Proteomics6, 145–157 (2009).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.