87
Views
11
CrossRef citations to date
0
Altmetric
Review

Unraveling pancreatic islet biology by quantitative proteomics

, , , , &
Pages 495-504 | Published online: 09 Jan 2014

References

  • Elayat AA, el-Naggar MM, Tahir M. An immunocytochemical and morphometric study of the rat pancreatic islets. J. Anat.186(Pt 3), 629–637 (1995).
  • Cabrera O, Berman DM, Kenyon NS, Ricordi C, Berggren PO, Caicedo A. The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc. Natl Acad. Sci. USA103(7), 2334–2339 (2006).
  • Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. β cell deficit and increased β-cell apoptosis in humans with Type 2 diabetes. Diabetes5(1), 102–110 (2003).
  • Gillespie KM. Type 1 diabetes: pathogenesis and prevention. CMAJ175(2), 165–170 (2006).
  • Meisterfeld R, Ehehalt F, Saeger HD, Solimena M. Pancreatic disorders and diabetes mellitus. Exp. Clin. Endocrinol. Diabetes116(Suppl. 1), S7–S12 (2008).
  • Wellen KE, Hotamisligil GS. Inflammation, stress and diabetes. J Clin. Invest.115(5), 1111–1119 (2005).
  • Diakogiannaki E, Dhayal S, Childs CE, Calder PC, Welters HJ, Morgan NG. Mechanisms involved in the cytotoxic and cytoprotective actions of saturated versus monounsaturated long-chain fatty acids in pancreatic β-cells. J. Endocrinol.194(2), 283–291 (2007).
  • El-Assaad W, Buteau J, Peyot ML et al. Saturated fatty acids synergize with elevated glucose to cause pancreatic β-cell death. Endocrinology144(9), 4154–4163 (2003).
  • Federici M, Hribal M, Perego L et al. High glucose causes apoptosis in cultured human pancreatic islets of Langerhans: a potential role for regulation of specific Bcl family genes toward an apoptotic cell death program. Diabetes50(6), 1290–1301 (2001).
  • Guardado-Mendoza R, Davalli AM, Chavez AO et al. Pancreatic islet amyloidosis, β-cell apoptosis and α-cell proliferation are determinants of islet remodeling in Type-2 diabetic baboons. Proc. Natl Acad. Sci. USA106(33), 13992–13997 (2009).
  • Di Cairano ES, Davalli AM, Perego L et al. The glial glutamate transporter 1 (GLT1) is expressed by pancreatic β-cells and prevents glutamate-induced β-cell death. J Biol. Chem.286(16), 14007–14018 (2011).
  • Hribal ML, Tornei F, Pujol A et al. Transgenic mice overexpressing human G97 R IRS-1 show impaired insulin action and insulin secretion. J Cell Mol. Med.12(5B), 2096–2106 (2008).
  • Metz TO, Jacobs JM, Gritsenko MA et al. Characterization of the human pancreatic islet proteome by 2D LC/MS/MS. J Proteome Res.5(12), 3345–3354 (2006).
  • Petyuk VA, Qian WJ, Hinault C et al. Characterization of the mouse pancreatic islet proteome and comparative analysis with other mouse tissues. J. Proteome Res.7(8), 3114–3126 (2008).
  • Han D, Moon S, Kim H et al. Detection of differential proteomes associated with the development of Type 2 diabetes in the Zucker rat model using the iTRAQ technique. J Proteome Res.10(2), 564–577 (2010).
  • Waanders LF, Chwalek K, Monetti M, Kumar C, Lammert E, Mann M. Quantitative proteomic analysis of single pancreatic islets. Proc. Natl Acad. Sci. USA106(45), 18902–18907 (2009).
  • Lu H, Yang Y, Allister EM, Wijesekara N, Wheeler MB. The identification of potential factors associated with the development of Type 2 diabetes: a quantitative proteomics approach. Mol. Cell. Proteomics7(8), 1434–1451 (2008).
  • Hong OK, Suh SH, Kwon HS et al. Proteomic analysis of differential protein expression in response to epidermal growth factor in neonatal porcine pancreatic cell monolayers. J. Cell Biochem.95(4), 769–781 (2005).
  • Dowling P, O’Driscoll L, O’Sullivan F et al. Proteomic screening of glucose-responsive and glucose nonresponsive MIN-6 β cells reveals differential expression of proteins involved in protein folding, secretion and oxidative stress. Proteomics6(24), 6578–6587 (2006).
  • Maziarz M, Chung C, Drucker DJ, Emili A. Integrating global proteomic and genomic expression profiles generated from islet α cells: opportunities and challenges to deriving reliable biological inferences. Mol. Cell. Proteomics4(4), 458–474 (2005).
  • D’Hertog W, Overbergh L, Lage K et al. Proteomics analysis of cytokine-induced dysfunction and death in insulin-producing INS-1E cells: new insights into the pathways involved. Mol. Cell. Proteomics6(12), 2180–2199 (2007).
  • Brunner Y, Coute Y, Iezzi M et al. Proteomics analysis of insulin secretory granules. Mol. Cell. Proteomics6(6), 1007–1017 (2007).
  • Nyblom HK, Thorn K, Ahmed M, Bergsten P. Mitochondrial protein patterns correlating with impaired insulin secretion from INS-1E cells exposed to elevated glucose concentrations. Proteomics6(19), 5193–5198 (2006).
  • Hickey AJ, Bradley JW, Skea GL et al. Proteins associated with immunopurified granules from a model pancreatic islet β-cell system: proteomic snapshot of an endocrine secretory granule. J. Proteome Res.8(1), 178–186 (2009).
  • Ortsater H, Bergsten P. Protein profiling of pancreatic islets. Expert Rev. Proteomics3(6), 665–675 (2006).
  • Lopez JL. 2D electrophoresis in proteome expression analysis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.849(1–2), 190–202 (2007).
  • Unlu M, Morgan ME, Minden JS. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis18(11), 2071–2077 (1997).
  • Ahmed M. Proteomics and islet research. Adv. Exp. Med. Biol.654, 363–390 (2010).
  • Sundsten T, Ortsater H. Proteomics in diabetes research. Mol. Cell Endocrinol.297(1–2), 93–103 (2009).
  • Maris M, Overbergh L, Mathieu C. Type 2 diabetes: gaining insight into the disease process using proteomics. Proteomics Clin. Appl.2(3), 312–326 (2008).
  • Sparre T, Larsen MR, Heding PE, Karlsen AE, Jensen ON, Pociot F. Unraveling the pathogenesis of Type 1 diabetes with proteomics: present and future directions. Mol. Cell. Proteomics4(4), 441–457 (2005).
  • Minden JS, Dowd SR, Meyer HE, Stuhler K. Difference gel electrophoresis. Electrophoresis30(Suppl. 1), S156–S161 (2009).
  • Kim SW, Hwang HJ, Baek YM, Lee SH, Hwang HS, Yun JW. Proteomic and transcriptomic analysis for streptozotocin-induced diabetic rat pancreas in response to fungal polysaccharide treatments. Proteomics8(11), 2344–2361 (2008).
  • Jagerbrink T, Lexander H, Palmberg C et al. Differential protein expression in pancreatic islets after treatment with an imidazoline compound. Cell. Mol. Life Sci.64(10), 1310–1316 (2007).
  • Xie X, Li S, Liu S, Lu Y, Shen P, Ji J. Proteomic analysis of mouse islets after multiple low-dose streptozotocin injection. Biochim. Biophys. Acta.1784(2), 276–284 (2008).
  • Johnson JD, Bernal-Mizrachi E, Alejandro EU et al. Insulin protects islets from apoptosis via Pdx1 and specific changes in the human islet proteome. Proc. Natl Acad. Sci. USA103(51), 19575–19580 (2006).
  • Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature422(6928), 198–207 (2003).
  • Qian WJ, Jacobs JM, Liu T, Camp DG 2nd, Smith RD. Advances and challenges in liquid chromatography-mass spectrometry-based proteomics profiling for clinical applications. Mol. Cell. Proteomics5(10), 1727–1744 (2006).
  • Martens GA, Jiang L, Verhaeghen K et al. Protein markers for insulin-producing β cells with higher glucose sensitivity. PLoS One5(12), e14214 (2010).
  • Liu H, Sadygov RG, Yates JR 3rd. A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal. Chem.76(14), 4193–4201 (2004).
  • Zhou JY, Schepmoes AA, Zhang X et al. Improved LC–MS/MS spectral counting statistics by recovering low-scoring spectra matched to confidently identified peptide sequences. J. Proteome Res.9(11), 5698–5704 (2010).
  • Qian WJ, Jacobs JM, Camp DG 2nd et al. Comparative proteome analyses of human plasma following in vivo lipopolysaccharide administration using multidimensional separations coupled with tandem mass spectrometry. Proteomics5(2), 572–584 (2005).
  • Wang W, Shaler TA, Norton SM, Hill LR, Becker CH. Direct quantitative profiling of proteins in complex biological systems by nano electrospray mass spectrometry without tagging or isotopic standards. Presented at: 50th ASMS Conference on Mass Spectrometry and Allied Topics. Orlando, FL, USA, 2–6 June 2002.
  • Metz TO, Qian WJ, Jacobs JM et al. Application of proteomics in the discovery of candidate protein biomarkers in a Diabetes Autoantibody Standardization Program (DASP) sample subset. J. Proteome Res.7(2), 698–707 (2008).
  • Smith RD anderson GA, Lipton MS et al. An accurate mass tag strategy for quantitative and high-throughput proteome measurements. Proteomics (5), 513–523 (2002).
  • Monroe ME, Tolic N, Jaitly N, Shaw JL, Adkins JN, Smith RD. VIPER: an advanced software package to support high-throughput LC–MS peptide identification. Bioinformatics3(15), 2021–2023 (2007).
  • Li XJ, Yi EC, Kemp CJ, Zhang H, Aebersold R. A software suite for the generation and comparison of peptide arrays from sets of data collected by liquid chromatography-mass spectrometry. Mol. Cell. Proteomics4(9), 1328–1340 (2005).
  • Jaffe JD, Mani DR, Leptos KC, Church GM, Gillette MA, Carr SA. PEPPeR, a platform for experimental proteomic pattern recognition. Mol. Cell. Proteomics5(10), 1927–1941 (2006).
  • Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol.6(12), 1367–1137 (2008).
  • Ong SE, Mann M. Mass spectrometry-based proteomics turns quantitative. Nat. Chem. Biol.1(5), 252–262 (2005).
  • Ong SE, Blagoev B, Kratchmarova I et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics1(5), 376–386 (2002).
  • Qian WJ, Monroe ME, Liu T et al. Quantitative proteome analysis of human plasma following in vivo lipopolysaccharide administration using 16O/18O labeling and the accurate mass and time tag approach. Mol. Cell. Proteomics4(5), 700–709 (2005).
  • Petritis BO, Qian WJ, Camp DG 2nd, Smith RD. A simple procedure for effective quenching of trypsin activity and prevention of 18O-labeling back-exchange. J. Proteome Res.8(5), 2157–2163 (2009).
  • Qian WJ, Liu T, Petyuk VA et al. Large-scale multiplexed quantitative discovery proteomics enabled by the use of an (18)O-labeled ‘universal’ reference sample. J. Proteome Res.8(1), 2290–2299 (2009).
  • Ross PL, Huang YN, Marchese JN et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics3(12), 1154–1169 (2004).
  • Thompson A, Schafer J, Kuhn K et al. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal. Chem.75(8), 1895–1904 (2003).
  • Jin J, Park J, Kim K et al. Detection of differential proteomes of human β-cells during islet-like differentiation using iTRAQ labeling. J. Proteome Res.8(3), 1393–1403 (2009).
  • Pichler P, Kocher T, Holzmann J et al. Peptide labeling with isobaric tags yields higher identification rates using iTRAQ 4-plex compared with TMT 6-plex and iTRAQ 8-plex on LTQ Orbitrap. Anal. Chem.8(15), 6549–6558 (2010).
  • Ahmed M, Bergsten P. Glucose-induced changes of multiple mouse islet proteins analysed by 2D gel electrophoresis and mass spectrometry. Diabetologia48(3), 477–485 (2005).
  • Ahmed M, Forsberg J, Bergsten P. Protein profiling of human pancreatic islets by 2D gel electrophoresis and mass spectrometry. J. Proteome Res.4(3), 931–940 (2005).
  • Sanchez JC, Chiappe D, Converset V et al. The mouse SWISS- D PAGE database: a tool for proteomics study of diabetes and obesity. Proteomics1(1), 136–163 (2001).
  • Kutlu B, Burdick D, Baxter D et al. Detailed transcriptome atlas of the pancreatic β cell. BMC Med. Genomics3 (2009).
  • Collins H, Najafi H, Buettger C, Rombeau J, Settle RG, Matschinsky FM. Identification of glucose response proteins in two biological models of β-cell adaptation to chronic high glucose exposure. J. Biol. Chem.67(2), 1357–1366 (1992).
  • Collins HW, Buettger C, Matschinsky F. High-resolution 2D polyacrylamide gel electrophoresis reveals a glucose-response protein of 65 kDa in pancreatic islet cells. Proc. Natl Acad. Sci. USA87(14), 5494–5498 (1990).
  • Hu X, Friedman D, Hill S et al. Proteomic exploration of pancreatic islets in mice null for the α2A adrenergic receptor. J. Mol. Endocrinol.35(1), 73–88 (2005).
  • Yamada M, Ohata H, Momose K, Richelson E. Pharmacological characterization of SR 48692 sensitive neurotensin receptor in human pancreatic cancer cells, MIA PaCa-2. Res. Commun. Mol. Pathol. Pharmacol.90(1), 37–47 (1995).
  • Eizirik DL, Mandrup-Poulsen T. A choice of death – the signal-transduction of immune-mediated β-cell apoptosis. Diabetologia44(12), 2115–2133 (2001).
  • Van Belle TL, Taylor P, von Herrath MG. Mouse models for Type 1 diabetes. Drug Discov. Today Dis. Models6(2), 41–45 (2009).
  • Hohmeier HE, Newgard CB. Cell lines derived from pancreatic islets. Mol. Cell Endocrinol.228(1–2), 121–128 (2004).
  • Andersen HU, Larsen PM, Fey SJ, Karlsen AE, Mandrup-Poulsen T, Nerup J. 2D gel electrophoresis of rat islet proteins. Interleukin 1 β-induced changes in protein expression are reduced by L-arginine depletion and nicotinamide. Diabetes44(4), 400–407 (1995).
  • Andersen HU, Fey SJ, Larsen PM et al. Interleukin-1β induced changes in the protein expression of rat islets: a computerized database. Electrophoresis18(11), 2091–2103 (1997).
  • Karlsen AE, Storling ZM, Sparre T et al. Immune-mediated β-cell destruction in vitro and in vivo-A pivotal role for galectin-3. Biochem. Biophys. Res. Commun.344(1), 406–415 (2006).
  • Zhou JY, Afjehi-Sadat L, Asress S et al. Galectin-3 is a candidate biomarker for amyotrophic lateral sclerosis: discovery by a proteomics approach. J. Proteome Res.9(10), 5133–5141 (2010).
  • Karabatas LM, Pastorale C, de Bruno LF et al. Early manifestations in multiple-low-dose streptozotocin-induced diabetes in mice. Pancreas30(4), 318–324 (2005).
  • Qiu L, List EO, Kopchick JJ. Differentially expressed proteins in the pancreas of diet-induced diabetic mice. Mol. Cell. Proteomics4(9), 1311–1318 (2005).
  • Lu H, Koshkin V, Allister EM, Gyulkhandanyan AV, Wheeler MB. Molecular and metabolic evidence for mitochondrial defects associated with β-cell dysfunction in a mouse model of Type 2 diabetes. Diabetes59(2), 448–459 (2010).
  • Sanchez JC, Converset V, Nolan A et al. Effect of rosiglitazone on the differential expression of diabetes-associated proteins in pancreatic islets of C57Bl/6 lep/lep mice. Mol. Cell. Proteomics1(7), 509–516 (2002).
  • Nyblom HK, Bugliani M, Fung E et al. Apoptotic, regenerative and immune-related signaling in human islets from Type 2 diabetes individuals. J. Proteome Res.8(12), 5650–5656 (2009).
  • Noguchi H. Pancreatic islet transplantation. World J Gastrointest. Surg.1(1), 16–20 (2009).
  • Levetan CS, Upham LV, Deng S et al. Discovery of a human peptide sequence signaling islet neogenesis. Endocr. Pract.14(9), 1075–1083 (2008).
  • Verges B. Effects of glitazones in the treatment of diabetes and/or hyperlipidaemia: glycaemic control and plasma lipid levels. Fundam. Clin. Pharmacol.21(Suppl. 2), 15–18 (2007).
  • Yang F, Wu S, Stenoien DL et al. Combined pulsed-Q dissociation and electron transfer dissociation for identification and quantification of iTRAQ-labeled phosphopeptides. Anal. Chem.81(10), 4137–4143 (2009).
  • Butterfield DA, Sultana R. Redox proteomics: understanding oxidative stress in the progression of age-related neurodegenerative disorders. Expert Rev. Proteomics5(2), 157–160 (2008).
  • Zhou J, Livak MF, Bernier M et al. Ubiquitination is involved in glucose-mediated downregulation of GIP receptors in islets. Am. J Physiol. Endocrinol. Metab.293(2), E538–E547 (2007).
  • Jeram SM, Srikumar T, Pedrioli PG, Raught B. Using mass spectrometry to identify ubiquitin and ubiquitin-like protein conjugation sites. Proteomics9(4), 922–934 (2009).
  • Ehninger A, Mziaut H, Solimena M. Emerging role of SUMO in pancreatic β-cells. Horm. Metab. Res.39(9), 658–664 (2007).
  • Hossain M, Kaleta DT, Robinson EW et al. Enhanced sensitivity for selected reaction monitoring-mass spectrometry-based targeted proteomics using a dual-stage electrodynamic ion funnel interface. Mol. Cell. Proteomics10(2), M000062–MCP201 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.