148
Views
17
CrossRef citations to date
0
Altmetric
Review

Challenges in plasma membrane phosphoproteomics

, &
Pages 483-494 | Published online: 09 Jan 2014

References

  • Macek B, Mann M, Olsen JV. Global and site-specific quantitative phosphoproteomics: principles and applications. Annu. Rev. Pharmacol. Toxicol.49, 199–221 (2009).
  • Ding SJ, Qian WJ, Smith RD. Quantitative proteomic approaches for studying phosphotyrosine signaling. Expert Rev. Proteomics4(1), 13–23 (2007).
  • Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature411(6835), 355–365 (2001).
  • Thingholm TE, Jensen ON, Larsen MR. Analytical strategies for phosphoproteomics. Proteomics9(6), 1451–1468 (2009).
  • Beausoleil SA, Jedrychowski M, Schwartz D et al. Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc. Natl Acad. Sci. USA101(33), 12130–12135 (2004).
  • Brill LM, Salomon AR, Ficarro SB, Mukherji M, Stettler-Gill M, Peters EC. Robust phosphoproteomic profiling of tyrosine phosphorylation sites from human T cells using immobilized metal affinity chromatography and tandem mass spectrometry. Anal. Chem.76(10), 2763–2772 (2004).
  • Li X, Gerber SA, Rudner AD et al. Large-scale phosphorylation analysis of α-factor-arrested Saccharomyces cerevisiae. J. Proteome Res.6(3), 1190–1197 (2007).
  • Old WM, Shabb JB, Houel S et al. Functional proteomics identifies targets of phosphorylation by B-Raf signaling in melanoma. Mol. Cell34(1), 115–131 (2009).
  • Olsen JV, Blagoev B, Gnad F et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell127(3), 635–648 (2006).
  • Olsen JV, Vermeulen M, Santamaria A et al. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci. Signal.3(104), ra3 (2010).
  • Wu CC, Yates JR 3rd. The application of mass spectrometry to membrane proteomics. Nat. Biotechnol.21(3), 262–267 (2003).
  • Yeagle P. The Membranes of Cells. Academic Press, Buffalo, NY, USA (1987).
  • Jain M. Introduction to Biological Membranes. John Wiley and Sons, NY, USA (1988).
  • Navarre C, Degand H, Bennett KL, Crawford JS, Mortz E, Boutry M. Subproteomics: identification of plasma membrane proteins from the yeast Saccharomyces cerevisiae. Proteomics2(12), 1706–1714 (2002).
  • Pasquali C, Fialka I, Huber LA. Subcellular fractionation, electromigration analysis and mapping of organelles. J. Chromatogr. B Biomed. Sci. Appl.722(1–2), 89–102 (1999).
  • Zhang L, Xie J, Wang X et al. Proteomic analysis of mouse liver plasma membrane: use of differential extraction to enrich hydrophobic membrane proteins. Proteomics5(17), 4510–4524 (2005).
  • Wisniewski JR. Tools for phospho- and glycoproteomics of plasma membranes. Amino Acids DOI: 10.1007/s00726-010-0796-0798 (2010) (Epub ahead of print).
  • Staubach S, Hanisch FG. Lipid rafts: signaling and sorting platforms of cells and their roles in cancer. Expert Rev. Proteomics8(2), 263–277 (2011).
  • Foster LJ, De Hoog CL, Mann M. Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. Proc. Natl Acad. Sci. USA100(10), 5813–5818 (2003).
  • Olsen JV, Nielsen PA, Andersen JR, Mann M, Wisniewski JR. Quantitative proteomic profiling of membrane proteins from the mouse brain cortex, hippocampus, and cerebellum using the HysTag reagent: mapping of neurotransmitter receptors and ion channels. Brain Res.1134(1), 95–106 (2007).
  • Groen AJ, Lilley KS. Proteomics of total membranes and subcellular membranes. Expert Rev. Proteomics7(6), 867–878 (2010).
  • Hoang VM, Conrads TP, Veenstra TD et al. Quantitative proteomics employing primary amine affinity tags. J. Biomol. Tech.14(3), 216–223 (2003).
  • Peirce MJ, Cope AP, Wait R. Proteomic analysis of the lymphocyte plasma membrane using cell surface biotinylation and solution-phase isoelectric focusing. Methods Mol. Biol.528, 135–140 (2009).
  • Elschenbroich S, Kim Y, Medin JA, Kislinger T. Isolation of cell surface proteins for mass spectrometry-based proteomics. Expert Rev. Proteomics7(1), 141–154 (2010).
  • Ghosh D, Krokhin O, Antonovici M et al. Lectin affinity as an approach to the proteomic analysis of membrane glycoproteins. J. Proteome Res.3(4), 841–850 (2004).
  • Vercoutter-Edouart AS, Slomianny MC, Dekeyzer-Beseme O, Haeuw JF, Michalski JC. Glycoproteomics and glycomics investigation of membrane N-glycosylproteins from human colon carcinoma cells. Proteomics8(16), 3236–3256 (2008).
  • McDonald CA, Yang JY, Marathe V, Yen TY, Macher BA. Combining results from lectin affinity chromatography and glycocapture approaches substantially improves the coverage of the glycoproteome. Mol. Cell Proteomics8(2), 287–301 (2009).
  • Everberg H, Leiding T, Schioth A, Tjerneld F, Gustavsson N. Efficient and non-denaturing membrane solubilization combined with enrichment of membrane protein complexes by detergent/polymer aqueous two-phase partitioning for proteome analysis. J. Chromatogr.1122(1–2), 35–46 (2006).
  • Jones MN. Surfactants in membrane solubilisation. Int. J. Pharmaceut.177(2), 137–159 (1999).
  • Wisniewski JR, Zougman A, Mann M. Combination of FASP and StageTip-based fractionation allows in-depth analysis of the hippocampal membrane proteome. J. Proteome Res.8(12), 5674–5678 (2009).
  • Wisniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat. Methods6(5), 359–362 (2009).
  • Yu YQ, Gilar M, Gebler JC. A complete peptide mapping of membrane proteins: a novel surfactant aiding the enzymatic digestion of bacteriorhodopsin. Rapid Commun. Mass Spectrom.18(6), 711–715 (2004).
  • Li M, Powell MJ, Razunguzwa TT, O’Doherty GA. A general approach to anionic acid-labile surfactants with tunable properties. J. Org. Chem.75(18), 6149–6153 (2010).
  • Blonder J, Conrads TP, Yu LR et al. A detergent- and cyanogen bromide-free method for integral membrane proteomics: application to Halobacterium purple membranes and the human epidermal membrane proteome. Proteomics4(1), 31–45 (2004).
  • Macher BA, Yen TY. Proteins at membrane surfaces-a review of approaches. Mol. Biosyst.3(10), 705–713 (2007).
  • D’Amici GM, Huber CG, Zolla L. Separation of thylakoid membrane proteins by sucrose gradient ultracentrifugation or blue native-SDS-PAGE two-dimensional electrophoresis. Methods Mol. Biol.528, 61–70 (2009).
  • Nguyen DN, Becker GW, Riggin RM. Protein mass spectrometry: applications to analytical biotechnology. J. Chromatogr.705(1), 21–45 (1995).
  • Gauci S, Helbig AO, Slijper M, Krijgsveld J, Heck AJ, Mohammed S. Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal. Chem.81(11), 4493–4501 (2009).
  • van Montfort BA, Doeven MK, Canas B, Veenhoff LM, Poolman B, Robillard GT. Combined in-gel tryptic digestion and CNBr cleavage for the generation of peptide maps of an integral membrane protein with MALDI-TOF mass spectrometry. Biochim. Biophys. Acta1555(1–3), 111–115 (2002).
  • Washburn MP, Wolters D, Yates JR 3rd. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol.19(3), 242–247 (2001).
  • Pramanik BN, Mirza UA, Ing YH et al. Microwave-enhanced enzyme reaction for protein mapping by mass spectrometry: a new approach to protein digestion in minutes. Protein Sci.11(11), 2676–2687 (2002).
  • Zhong H, Marcus SL, Li L. Microwave-assisted acid hydrolysis of proteins combined with liquid chromatography MALDI MS/MS for protein identification. J. Am. Soc. Mass Spec.16(4), 471–481 (2005).
  • Chen WY, Chen YC. Functional Fe3O4@ZnO magnetic nanoparticle-assisted enrichment and enzymatic digestion of phosphoproteins from saliva. Anal. Bioanal. Chem.398(5), 2049–2057 (2010).
  • Hasan N, Wu HF, Li YH, Nawaz M. Two-step on-particle ionization/enrichment via a washing- and separation-free approach: multifunctional TiO2 nanoparticles as desalting, accelerating, and affinity probes for microwave-assisted tryptic digestion of phosphoproteins in ESI-MS and MALDI-MS: comparison with microscale TiO2. Anal. Bioanal. Chem.396(8), 2909–2919 (2010).
  • Rogers LD, Foster LJ. Phosphoproteomics – finally fulfilling the promise? Mol. Biosyst.5(10), 1122–1129 (2009).
  • Demus H. Subcellular fractionation of human lymphocytes. Isolation of two plasma membrane fractions and comparison of the protein components of the various lymphocytic organelles. Biochim. Biophys. Acta291(1), 93–106 (1973).
  • Villen J, Gygi SP. The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat. Protocols3(10), 1630–1638 (2008).
  • Puente LG, Megeney LA. Isolation of phosphoproteins. Methods Mol. Biol.424, 365–372 (2008).
  • Schumacher JA, Crockett DK, Elenitoba-Johnson KS, Lim MS. Evaluation of enrichment techniques for mass spectrometry: identification of tyrosine phosphoproteins in cancer cells. J. Mol. Diagn.9(2), 169–177 (2007).
  • Rush J, Moritz A, Lee KA et al. Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat. Biotechnol.23(1), 94–101 (2005).
  • Nagano K, Shinkawa T, Yabuki N et al. Integration of proteomic analyses to monitor the activity status of phosphorylation signaling. J. Proteomics74(3), 319–326 (2011).
  • Zheng H, Hu P, Quinn DF, Wang YK. Phosphotyrosine proteomic study of interferon alpha signaling pathway using a combination of immunoprecipitation and immobilized metal affinity chromatography. Mol. Cell Proteomics4(6), 721–730 (2005).
  • Cooper JA, Sefton BM, Hunter T. Detection and quantification of phosphotyrosine in proteins. Methods Enzymol.99, 387–402 (1983).
  • Gronborg M, Kristiansen TZ, Stensballe A et al. A mass spectrometry-based proteomic approach for identification of serine/threonine-phosphorylated proteins by enrichment with phospho-specific antibodies: identification of a novel protein, Frigg, as a protein kinase A substrate. Mol. Cell Proteomics1(7), 517–527 (2002).
  • Wisniewski JR, Nagaraj N, Zougman A, Gnad F, Mann M. Brain phosphoproteome obtained by a FASP-based method reveals plasma membrane protein topology. J. Proteome Res.9(6), 3280–3289 (2010).
  • Ballif BA, Villen J, Beausoleil SA, Schwartz D, Gygi SP. Phosphoproteomic analysis of the developing mouse brain. Mol. Cell Proteomics3(11), 1093–1101 (2004).
  • Dephoure N, Zhou C, Villen J et al. A quantitative atlas of mitotic phosphorylation. Proc. Natl Acad. Sci. USA105(31), 10762–10767 (2008).
  • Villen J, Beausoleil SA, Gerber SA, Gygi SP. Large-scale phosphorylation analysis of mouse liver. Proc. Natl Acad. Sci. USA104(5), 1488–1493 (2007).
  • Morandell S, Stasyk T, Grosstessner-Hain K et al. Phosphoproteomics strategies for the functional analysis of signal transduction. Proteomics6(14), 4047–4056 (2006).
  • Nuhse TS, Peck SC. Peptide-based phosphoproteomics with immobilized metal ion chromatography. Methods Mol. Biol.323, 431–436 (2006).
  • Nuhse TS, Bottrill AR, Jones AM, Peck SC. Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses. Plant J.51(5), 931–940 (2007).
  • Nuhse TS, Stensballe A, Jensen ON, Peck SC. Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylation site database. Plant Cell16(9), 2394–2405 (2004).
  • Chenau J, Michelland S, Sidibe J, Seve M. Peptides OFFGEL electrophoresis: a suitable pre-analytical step for complex eukaryotic samples fractionation compatible with quantitative iTRAQ labeling. Proteome Sci.6, 9 (2008).
  • Horth P, Miller CA, Preckel T, Wenz C. Efficient fractionation and improved protein identification by peptide OFFGEL electrophoresis. Mol. Cell Proteomics5(10), 1968–1974 (2006).
  • Gauci S, van Breukelen B, Lemeer SM, Krijgsveld J, Heck AJ. A versatile peptide pI calculator for phosphorylated and N-terminal acetylated peptides experimentally tested using peptide isoelectric focusing. Proteomics8(23–24), 4898–4906 (2008).
  • Maccarrone G, Kolb N, Teplytska L et al. Phosphopeptide enrichment by IEF. Electrophoresis27(22), 4585–4595 (2006).
  • Xu CF, Wang H, Li D, Kong XP, Neubert TA. Selective enrichment and fractionation of phosphopeptides from peptide mixtures by isoelectric focusing after methyl esterification. Anal. Chem.79(5), 2007–2014 (2007).
  • Hung CW, Kubler D, Lehmann WD. pI-based phosphopeptide enrichment combined with nanoESI-MS. Electrophoresis28(12), 2044–2052 (2007).
  • Xu Y, Sprung R, Kwon SW, Kim SC, Zhao Y. Isolation of phosphopeptides by pI-difference-based electrophoresis. J. Proteome Res.6(3), 1153–1157 (2007).
  • Zuo X, Lee K-B, Speicher DW. Fractionation of Complex Proteomes by Microscale Solution Isoelectrofocusing Using ZOOM− IEF Fractionators to Improve Protein Profiling. In: The Proteomics Protocols Handbook. Walker JM (Ed.). Humana Press, NJ, USA, 97–117 (2005).
  • McNulty DE, Annan RS. Hydrophilic interaction chromatography for fractionation and enrichment of the phosphoproteome. Methods Mol. Biol.527, 93–105 (2009).
  • McNulty DE, Annan RS. Hydrophilic interaction chromatography reduces the complexity of the phosphoproteome and improves global phosphopeptide isolation and detection. Mol. Cell Proteomics7(5), 971–980 (2008).
  • Albuquerque CP, Smolka MB, Payne SH, Bafna V, Eng J, Zhou H. A multidimensional chromatography technology for in-depth phosphoproteome analysis. Mol. Cell Proteomics7(7), 1389–1396 (2008).
  • Ficarro SB, McCleland ML, Stukenberg PT et al. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat. Biotechnol.20(3), 301–305 (2002).
  • Ficarro SB, Salomon AR, Brill LM et al. Automated immobilized metal affinity chromatography/nano-liquid chromatography/electrospray ionization mass spectrometry platform for profiling protein phosphorylation sites. Rapid Commun. Mass Spectrom.19(1), 57–71 (2005).
  • Collins MO, Yu L, Coba MP et al. Proteomic analysis of in vivo phosphorylated synaptic proteins. J. Biol. Chem.280(7), 5972–5982 (2005).
  • Porath J. Immobilized metal ion affinity chromatography. Protein Exp. Purification3(4), 263–281 (1992).
  • Kokubu M, Ishihama Y, Sato T, Nagasu T, Oda Y. Specificity of immobilized metal affinity-based IMAC/C18 tip enrichment of phosphopeptides for protein phosphorylation analysis. Anal. Chem.77(16), 5144–5154 (2005).
  • Pinkse MW, Uitto PM, Hilhorst MJ, Ooms B, Heck AJ. Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC–ESI-MS/MS and titanium oxide precolumns. Anal. Chem.76(14), 3935–3943 (2004).
  • Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jorgensen TJ. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol. Cell Proteomics4(7), 873–886 (2005).
  • Sano A, Nakamura H. Evaluation of titanium and titanium oxides as chemo-affinity sorbents for the selective enrichment of organic phosphates. Anal. Sci.23(11), 1285–1289 (2007).
  • Jensen SS, Larsen MR. Evaluation of the impact of some experimental procedures on different phosphopeptide enrichment techniques. Rapid Commun. Mass Spectrom.21(22), 3635–3645 (2007).
  • Bodenmiller B, Mueller LN, Mueller M, Domon B, Aebersold R. Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nat. Methods4(3), 231–237 (2007).
  • Thingholm TE, Jensen ON, Robinson PJ, Larsen MR. SIMAC (sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides. Mol. Cell Proteomics7(4), 661–671 (2008).
  • Gafken PR, Lampe PD. Methodologies for characterizing phosphoproteins by mass spectrometry. Cell Comm. Adhesion13(5–6), 249–262 (2006).
  • Molina H, Horn DM, Tang N, Mathivanan S, Pandey A. Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry. Proc. Natl Acad. Sci. USA104(7), 2199–2204 (2007).
  • Schroeder MJ, Shabanowitz J, Schwartz JC, Hunt DF, Coon JJ. A neutral loss activation method for improved phosphopeptide sequence analysis by quadrupole ion trap mass spectrometry. Anal. Chem.76(13), 3590–3598 (2004).
  • Andreas F. Hühmer ZH, Sadygov R, Biringer RG, Schwartz JC. Analysis of phosphopeptides by linear ion trap mass spectrometry using multistage activation. Thermo Electron Corporation Application Note 30093.
  • Zubarev RA, Horn DM, Fridriksson EK et al. Electron capture dissociation for structural characterization of multiply charged protein cations. Anal. Chem.72(3), 563–573 (2000).
  • Wu J, Warren P, Shakey Q et al. Integrating titania enrichment, iTRAQ labeling, and Orbitrap CID-HCD for global identification and quantitative analysis of phosphopeptides. Proteomics10(11), 2224–2234 (2010).
  • Zhang Y, Ficarro SB, Li S, Marto JA. Optimized Orbitrap HCD for quantitative analysis of phosphopeptides. J. Am. Soc. Mass Spec.20(8), 1425–1434 (2009).
  • Nagaraj N, D’Souza RC, Cox J, Olsen JV, Mann M. Feasibility of large scale phosphoproteomics with HCD fragmentation. J. Proteome Res.9(12), 6786–6794 (2010).
  • Olsen JV, Schwartz JC, Griep-Raming J et al. A dual pressure linear ion trap Orbitrap instrument with very high sequencing speed. Mol. Cell Proteomics8(12), 2759–2769 (2009).
  • Swaney DL, McAlister GC, Coon JJ. Decision tree-driven tandem mass spectrometry for shotgun proteomics. Nat. Methods5(11), 959–964 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.