280
Views
44
CrossRef citations to date
0
Altmetric
Review

Proteomic approaches to identify biomarkers predictive of radiotherapy outcomes

, , &
Pages 33-42 | Published online: 09 Jan 2014

References

  • Haimovitz-Friedman A, Kan CC, Ehleiter D et al. Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J. Exp. Med. 180(2), 525–535 (1994).
  • Corre I, Niaudet C, Paris F. Plasma membrane signaling induced by ionizing radiation. Mutat. Res. 704(1–3), 61–67 (2010).
  • Mothersill C, Seymour CB. Radiation-induced bystander effects – implications for cancer. Nat. Rev. Cancer 4(2), 158–164 (2004).
  • Parsons WB Jr, Watkins CH, Pease GL, Childs DS Jr. Changes in sternal marrow following roentgen-ray therapy to the spleen in chronic granulocytic leukemia. Cancer 7(1), 179–189 (1954).
  • Nagasawa H, Little JB. Induction of sister chromatid exchanges by extremely low doses of α-particles. Cancer Res. 52(22), 6394–6396 (1992).
  • Deshpande A, Goodwin EH, Bailey SM, Marrone BL, Lehnert BE. α-particle-induced sister chromatid exchange in normal human lung fibroblasts: evidence for an extranuclear target. Radiat. Res. 145(3), 260–267 (1996).
  • Bentzen SM. Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nat. Rev. Cancer 6(9), 702–713 (2006).
  • Tucker SL, Thames HD Jr. The effect of patient-to-patient variability on the accuracy of predictive assays of tumor response to radiotherapy: a theoretical evaluation. Int. J. Radiat. Oncol. Biol. Phys. 17(1), 145–157 (1989).
  • Tubiana M. Repopulation in human tumors. A biological background for fractionation in radiotherapy. Acta Oncol. 27(2), 83–88 (1988).
  • Gray LH, Conger AD, Ebert M, Hornsey S, Scott OC. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br. J. Radiol. 26(312), 638–648 (1953).
  • Thomlinson RH, Gray LH. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br. J. Cancer 9(4), 539–549 (1955).
  • Gerweck LE, Vijayappa S, Kurimasa A, Ogawa K, Chen DJ. Tumor cell radiosensitivity is a major determinant of tumor response to radiation. Cancer Res. 66(17), 8352–8355 (2006).
  • Bourhis J, Dendale R, Hill C et al. Potential doubling time and clinical outcome in head and neck squamous cell carcinoma treated with 70 Gy in 7 weeks. Int. J. Radiat. Oncol. Biol. Phys. 35(3), 471–476 (1996).
  • Geara F, Girinski TA, Chavaudra N et al. Estimation of clonogenic cell fraction in primary cultures derived from human squamous cell carcinomas. Int. J. Radiat. Oncol. Biol. Phys. 21(3), 661–665 (1991).
  • Eschwege F, Bourhis J, Girinski T et al. Predictive assays of radiation response in patients with head and neck squamous cell carcinoma: a review of the Institute Gustave Roussy experience. Int. J. Radiat. Oncol. Biol. Phys. 39(4), 849–853 (1997).
  • Höckel M, Vorndran B, Schlenger K, Baussmann E, Knapstein PG. Tumor oxygenation: a new predictive parameter in locally advanced cancer of the uterine cervix. Gynecol. Oncol. 51(2), 141–149 (1993).
  • Lartigau E, Le Ridant AM, Lambin P et al. Oxygenation of head and neck tumors. Cancer 71(7), 2319–2325 (1993).
  • Brahme A. Biologically optimized 3-dimensional in vivo predictive assay-based radiation therapy using positron emission tomography–computerized tomography imaging. Acta Oncol. 42(2), 123–136 (2003).
  • Dancik GM, Ru Y, Owens CR, Theodorescu D. A framework to select clinically relevant cancer cell lines for investigation by establishing their molecular similarity with primary human cancers. Cancer Res. 71(24), 7398–7409 (2011).
  • Masters JR. Human cancer cell lines: fact and fantasy. Nat. Rev. Mol. Cell Biol. 1(3), 233–236 (2000).
  • Ramsamooj P, Kasid U, Dritschilo A. Differential expression of proteins in radioresistant and radiosensitive human squamous carcinoma cells. J. Natl Cancer Inst. 84(8), 622–628 (1992).
  • Lin TY, Chang JT, Wang HM et al. Proteomics of the radioresistant phenotype in head-and-neck cancer: Gp96 as a novel prediction marker and sensitizing target for radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 78(1), 246–256 (2010).
  • Feng XP, Yi H, Li MY et al. Identification of biomarkers for predicting nasopharyngeal carcinoma response to radiotherapy by proteomics. Cancer Res. 70(9), 3450–3462 (2010).
  • Wu P, Zhang H, Qi L et al. Identification of ERp29 as a biomarker for predicting nasopharyngeal carcinoma response to radiotherapy. Oncol. Rep. 27(4), 987–994 (2012).
  • Skvortsova I, Skvortsov S, Stasyk T et al. Intracellular signaling pathways regulating radioresistance of human prostate carcinoma cells. Proteomics 8(21), 4521–4533 (2008).
  • Wang T, Tamae D, LeBon T, Shively JE, Yen Y, Li JJ. The role of peroxiredoxin II in radiation-resistant MCF-7 breast cancer cells. Cancer Res. 65(22), 10338–10346 (2005).
  • Smith L, Qutob O, Watson MB et al. Proteomic identification of putative biomarkers of radiotherapy resistance: a possible role for the 26S proteasome? Neoplasia 11(11), 1194–1207 (2009).
  • Allal AS, Kähne T, Reverdin AK, Lippert H, Schlegel W, Reymond MA. Radioresistance-related proteins in rectal cancer. Proteomics 4(8), 2261–2269 (2004).
  • Little JB. Genomic instability and bystander effects: a historical perspective. Oncogene 22(45), 6978–6987 (2003).
  • Dörr W, Hendry JH. Consequential late effects in normal tissues. Radiother. Oncol. 61(3), 223–231 (2001).
  • Bentzen SM, Thames HD, Overgaard M. Latent-time estimation for late cutaneous and subcutaneous radiation reactions in a single-follow-up clinical study. Radiother. Oncol. 15(3), 267–274 (1989).
  • Eifel PJ, Donaldson SS, Thomas PR. Response of growing bone to irradiation: a proposed late effects scoring system. Int. J. Radiat. Oncol. Biol. Phys. 31(5), 1301–1307 (1995).
  • Johansson S, Svensson H, Denekamp J. Timescale of evolution of late radiation injury after postoperative radiotherapy of breast cancer patients. Int. J. Radiat. Oncol. Biol. Phys. 48(3), 745–750 (2000).
  • Stone HB, Coleman CN, Anscher MS, McBride WH. Effects of radiation on normal tissue: consequences and mechanisms. Lancet Oncol. 4(9), 529–536 (2003).
  • Burnet NG, Nyman J, Turesson I, Wurm R, Yarnold JR, Peacock JH. Prediction of normal-tissue tolerance to radiotherapy from in-vitro cellular radiation sensitivity. Lancet 339(8809), 1570–1571 (1992).
  • Geara FB, Peters LJ, Ang KK, Wike JL, Brock WA. Prospective comparison of in vitro normal cell radiosensitivity and normal tissue reactions in radiotherapy patients. Int. J. Radiat. Oncol. Biol. Phys. 27(5), 1173–1179 (1993).
  • Johansen J, Bentzen SM, Overgaard J, Overgaard M. Evidence for a positive correlation between in vitro radiosensitivity of normal human skin fibroblasts and the occurrence of subcutaneous fibrosis after radiotherapy. Int. J. Radiat. Biol. 66(4), 407–412 (1994).
  • West CM, Elyan SA, Berry P, Cowan R, Scott D. A comparison of the radiosensitivity of lymphocytes from normal donors, cancer patients, individuals with ataxia-telangiectasia (A-T) and A-T heterozygotes. Int. J. Radiat. Biol. 68(2), 197–203 (1995).
  • Jones LA, Scott D, Cowan R, Roberts SA. Abnormal radiosensitivity of lymphocytes from breast cancer patients with excessive normal tissue damage after radiotherapy: chromosome aberrations after low dose-rate irradiation. Int. J. Radiat. Biol. 67(5), 519–528 (1995).
  • Floyd DN, Cassoni AM. Intrinsic radiosensitivity of adult and cord blood lymphocytes as determined by the micronucleus assay. Eur. J. Cancer 30A(5), 615–620 (1994).
  • Ozsahin M, Ozsahin H, Shi Y, Larsson B, Würgler FE, Crompton NE. Rapid assay of intrinsic radiosensitivity based on apoptosis in human CD4 and CD8 T-lymphocytes. Int. J. Radiat. Oncol. Biol. Phys. 38(2), 429–440 (1997).
  • Zamai L, Falcieri E, Zauli G, Cataldi A, Vitale M. Optimal detection of apoptosis by flow cytometry depends on cell morphology. Cytometry 14(8), 891–897 (1993).
  • Ozsahin M, Crompton NE, Gourgou S et al. CD4 and CD8 T-lymphocyte apoptosis can predict radiation-induced late toxicity: a prospective study in 399 patients. Clin. Cancer Res. 11(20), 7426–7433 (2005).
  • Bordón E, Henríquez Hernández LA, Lara PC et al. Prediction of clinical toxicity in localized cervical carcinoma by radio-induced apoptosis study in peripheral blood lymphocytes (PBLs). Radiat. Oncol. 4, 58 (2009).
  • Schnarr K, Boreham D, Sathya J, Julian J, Dayes IS. Radiation-induced lymphocyte apoptosis to predict radiation therapy late toxicity in prostate cancer patients. Int. J. Radiat. Oncol. Biol. Phys. 74(5), 1424–1430 (2009).
  • Azria D, Belkacemi Y, Romieu G et al. Concurrent or sequential adjuvant letrozole and radiotherapy after conservative surgery for early-stage breast cancer (CO-HO-RT): a Phase 2 randomised trial. Lancet Oncol. 11(3), 258–265 (2010).
  • Azria D, Ozsahin M, Kramar A et al. Single nucleotide polymorphisms, apoptosis, and the development of severe late adverse effects after radiotherapy. Clin. Cancer Res. 14(19), 6284–6288 (2008).
  • Lü X, de la Peña L, Barker C, Camphausen K, Tofilon PJ. Radiation-induced changes in gene expression involve recruitment of existing messenger RNAs to and away from polysomes. Cancer Res. 66(2), 1052–1061 (2006).
  • Zhao L, Sheldon K, Chen M et al. The predictive role of plasma TGF-β1 during radiation therapy for radiation-induced lung toxicity deserves further study in patients with non-small cell lung cancer. Lung Cancer 59(2), 232–239 (2008).
  • Zhao L, Wang L, Ji W et al. Elevation of plasma TGF-β1 during radiation therapy predicts radiation-induced lung toxicity in patients with non-small-cell lung cancer: a combined analysis from Beijing and Michigan. Int. J. Radiat. Oncol. Biol. Phys. 74(5), 1385–1390 (2009).
  • Hartsell WF, Scott CB, Dundas GS et al. Can serum markers be used to predict acute and late toxicity in patients with lung cancer? Analysis of RTOG 91–03. Am. J. Clin. Oncol. 30(4), 368–376 (2007).
  • Marchetti F, Coleman MA, Jones IM, Wyrobek AJ. Candidate protein biodosimeters of human exposure to ionizing radiation. Int. J. Radiat. Biol. 82(9), 605–639 (2006).
  • Ménard C, Johann D, Lowenthal M et al. Discovering clinical biomarkers of ionizing radiation exposure with serum proteomic analysis. Cancer Res. 66(3), 1844–1850 (2006).
  • Guipaud O, Holler V, Buard V et al. Time-course analysis of mouse serum proteome changes following exposure of the skin to ionizing radiation. Proteomics 7(21), 3992–4002 (2007).
  • Ao X, Lubman DM, Davis MA et al. Comparative proteomic analysis of radiation-induced changes in mouse lung: fibrosis-sensitive and -resistant strains. Radiat. Res. 169(4), 417–425 (2008).
  • Cai XW, Shedden K, Ao X et al. Plasma proteomic analysis may identify new markers for radiation-induced lung toxicity in patients with non-small-cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 77(3), 867–876 (2010).
  • Cai XW, Shedden KA, Yuan SH et al. Baseline plasma proteomic analysis to identify biomarkers that predict radiation-induced lung toxicity in patients receiving radiation for non-small cell lung cancer. J. Thorac. Oncol. 6(6), 1073–1078 (2011).
  • Oh JH, Craft JM, Townsend R, Deasy JO, Bradley JD, El Naqa I. A bioinformatics approach for biomarker identification in radiation-induced lung inflammation from limited proteomics data. J. Proteome Res. 10(3), 1406–1415 (2011).
  • Andreassen CN, Alsner J. Genetic variants and normal tissue toxicity after radiotherapy: a systematic review. Radiother. Oncol. 92(3), 299–309 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.