248
Views
52
CrossRef citations to date
0
Altmetric
Drug Profile

Decitabine in the treatment of myelodysplastic syndromes

, , , &
Pages 9-22 | Published online: 10 Jan 2014

References

  • Steensma DP, Bennett JM. The myelodysplastic syndromes: diagnosis and treatment. Mayo Clin. Proc.81(1), 104–130 (2006).
  • Rollison DE, Howlader N, Smith MT et al. Epidemiology of myelodysplastic syndromes and chronic myeloproliferative disorders in the United States, 2001–2004, using data from the NAACCR and SEER programs. Blood112(1), 45–52 (2008).
  • Hamblin TJ. Epidemiology of the myelodysplastic syndromes. In: Myelodysplastic Syndromes Pathobiology and Clinical Management. Steensma DP (Ed.). Informa Healthcare, New York, USA 27–48 (2009).
  • Brunning RD, Orazi A, Germing U et al. Myelodysplastic syndromes/neoplasms, overview. In: World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues. Swerdlow SH, Campo E, Harris NL et al. (Eds). IARC Press, Lyon, France 88–93 (2008).
  • Greenberg P, Cox C, LeBeau MM et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood89(6), 2079–2088 (1997).
  • Malcovati L, Germing U, Kuendgen A et al. Time-dependent prognostic scoring system for predicting survival and leukemic evolution in myelodysplastic syndromes. J. Clin. Oncol.25(23), 3503–3510 (2007).
  • Kantarjian H, O’Brien S, Ravandi F et al. Proposal for a new risk model in myelodysplastic syndrome that accounts for events not considered in the original International Prognostic Scoring System. Cancer113(6), 1351–1361 (2008).
  • Robertson KD. DNA methylation and human disease. Nat. Rev.6(8), 597–610 (2005).
  • Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. New Engl. J. Med.349(21), 2042–2054 (2003).
  • Galm O, Herman JG, Baylin SB. The fundamental role of epigenetics in hematopoietic malignancies. Blood Rev.20(1), 1–13 (2006).
  • Boumber YA, Kondo Y, Chen X et al.RIL, a LIM gene on 5q31, is silenced by methylation in cancer and sensitizes cancer cells to apoptosis. Cancer Res.67(5), 1997–2005 (2007).
  • Brakensiek K, Langer F, Schlegelberger B, Kreipe H, Lehmann U. Hypermethylation of the suppressor of cytokine signalling-1 (SOCS-1) in myelodysplastic syndrome. Br. J. Haematol.130(2), 209–217 (2005).
  • Johan MF, Bowen DT, Frew ME, Goodeve AC, Reilly JT. Aberrant methylation of the negative regulators RASSFIA, SHP-1 and SOCS-1 in myelodysplastic syndromes and acute myeloid leukaemia. Br. J. Haematol.129(1), 60–65 (2005).
  • Quesnel B, Guillerm G, Vereecque R et al. Methylation of the p15(INK4b) gene in myelodysplastic syndromes is frequent and acquired during disease progression. Blood91(8), 2985–2990 (1998).
  • Voso MT, Scardocci A, Guidi F et al. Aberrant methylation of DAP-kinase in therapy-related acute myeloid leukemia and myelodysplastic syndromes. Blood103(2), 698–700 (2004).
  • Grovdal M, Khan R, Aggerholm A et al. Negative effect of DNA hypermethylation on the outcome of intensive chemotherapy in older patients with high-risk myelodysplastic syndromes and acute myeloid leukemia following myelodysplastic syndrome. Clin. Cancer Res.13(23), 7107–7112 (2007).
  • Jones PA, Taylor SM. Cellular differentiation, cytidine analogs and DNA methylation. Cell20(1), 85–93 (1980).
  • Garcia-Manero G. Demethylating agents in myeloid malignancies. Curr. Opin. Oncol.20(6), 705–710 (2008).
  • Pliml J, Sorm F. Synthesis of 2-deoxy-d-ribofuranosyl-5-azacytosine. Collect. Czech. Chem. Commun.29, 2576–2577 (1964).
  • Hubeek I, Stam RW, Peters GJ et al. The human equilibrative nucleoside transporter 1 mediates in vitro cytarabine sensitivity in childhood acute myeloid leukaemia. Br. J. Cancer93(12), 1388–1394 (2005).
  • Wiley JS, Jones SP, Sawyer WH, Paterson AR. Cytosine arabinoside influx and nucleoside transport sites in acute leukemia. J. Clin. Invest.69(2), 479–489 (1982).
  • Momparler RL, Derse D. Kinetics of phosphorylation of 5-aza-2´-deoxyycytidine by deoxycytidine kinase. Biochem.Pharmacol.28(8), 1443–1444 (1979).
  • Chabot GG, Bouchard J, Momparler RL. Kinetics of deamination of 5-aza-2´-deoxycytidine and cytosine arabinoside by human liver cytidine deaminase and its inhibition by 3-deazauridine, thymidine or uracil arabinoside. Biochem. Pharmacol.32(7), 1327–1328 (1983).
  • Momparler RL. Pharmacology of 5-aza-2´-deoxycytidine (decitabine). Semin. Hematol.42(3 Suppl. 2), S9–S16 (2005).
  • Bouchard J, Momparler RL. Incorporation of 5-aza-2´-deoxycytidine-5´-triphosphate into DNA. Interactions with mammalian DNA polymerase a and DNA methylase. Mol. Pharmacol.24(1), 109–114 (1983).
  • Santi DV, Norment A, Garrett CE. Covalent bond formation between a DNA-cytosine methyltransferase and DNA containing 5-azacytosine. Proc. Natl Acad. Sci. USA81(22), 6993–6997 (1984).
  • Ghoshal K, Datta J, Majumder S et al. 5-aza-deoxycytidine induces selective degradation of DNA methyltransferase 1 by a proteasomal pathway that requires the KEN box, bromo-adjacent homology domain, and nuclear localization signal. Mol. Cell. Biol.25(11), 4727–4741 (2005).
  • Nan X, Ng HH, Johnson CA et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature393(6683), 386–389 (1998).
  • Creusot F, Acs G, Christman JK. Inhibition of DNA methyltransferase and induction of Friend erythroleukemia cell differentiation by 5-azacytidine and 5-aza-2´-deoxycytidine. J. Biol. Chem.257(4), 2041–2048 (1982).
  • Wilson VL, Jones PA, Momparler RL. Inhibition of DNA methylation in L1210 leukemic cells by 5-aza-2´-deoxycytidine as a possible mechanism of chemotherapeutic action. Cancer Res.43(8), 3493–3496 (1983).
  • Momparler RL, Bouchard J, Onetto N, Rivard GE. 5-aza-2´-deoxycytidine therapy in patients with acute leukemia inhibits DNA methylation. Leukemia Res.8(2), 181–185 (1984).
  • Mund C, Hackanson B, Stresemann C, Lubbert M, Lyko F. Characterization of DNA demethylation effects induced by 5-aza-2´-deoxycytidine in patients with myelodysplastic syndrome. Cancer Res.65(16), 7086–7090 (2005).
  • Daskalakis M, Nguyen TT, Nguyen C et al. Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-aza-2´-deoxycytidine (decitabine) treatment. Blood100(8), 2957–2964 (2002).
  • Jilani I, Kantarjian H, Gorre M et al. Hypomethylation therapy of decitabine in patients with myelodysplastic syndromes (MDS) induces apoptosis and reduces proliferation. Blood106(11), (2005) (Abstract 371).
  • Yang AS, Doshi KD, Choi SW et al. DNA methylation changes after 5-aza-2´-deoxycytidine therapy in patients with leukemia. Cancer Res.66(10), 5495–5503 (2006).
  • Kim CH, Marquez VE, Mao DT, Haines DR, McCormack JJ. Synthesis of pyrimidin-2-one nucleosides as acid-stable inhibitors of cytidine deaminase. J. Med. Chem.29(8), 1374–1380 (1986).
  • Cheng JC, Matsen CB, Gonzales FA et al. Inhibition of DNA methylation and reactivation of silenced genes by zebularine. J. Natl Cancer Inst.95(5), 399–409 (2003).
  • Flotho C, Claus R, Batz C et al. The DNA methyltransferase inhibitors azacitidine, decitabine and zebularine exert differential effects on cancer gene expression in acute myeloid leukemia cells. Leukemia23(6), 1019–1028 (2009).
  • Karpf AR. Epigenomic reactivation screening to identify genes silenced by DNA hypermethylation in human cancer. Curr. Opin. Mol. Ther.9(3), 231–241 (2007).
  • Palii SS, Van Emburgh BO, Sankpal UT, Brown KD, Robertson KD. DNA methylation inhibitor 5-aza-2´-deoxycytidine induces reversible genome-wide DNA damage that is distinctly influenced by DNA methyltransferases 1 and 3B. Mol. Cell. Biol.28(2), 752–771 (2008).
  • Wang H, Zhao Y, Li L et al. An ATM- and Rad3-related (ATR) signaling pathway and a phosphorylation-acetylation cascade are involved in activation of p53/p21Waf1/Cip1 in response to 5-aza-2´-deoxycytidine treatment. J. Biol. Chem.283(5), 2564–2574 (2008).
  • Zhu WG, Hileman T, Ke Y et al. 5-aza-2´-deoxycytidine activates the p53/p21Waf1/Cip1 pathway to inhibit cell proliferation. J. Biol. Chem.279(15), 15161–15166 (2004).
  • Karpf AR, Moore BC, Ririe TO, Jones DA. Activation of the p53 DNA damage response pathway after inhibition of DNA methyltransferase by 5-aza-2´-deoxycytidine. Mol. Pharmacol.59(4), 751–757 (2001).
  • Jackson-Grusby L, Beard C, Possemato R et al. Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation. Nat. Genet.27(1), 31–39 (2001).
  • Juttermann R, Li E, Jaenisch R. Toxicity of 5-aza-2´-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc. Natl Acad. Sci. USA91(25), 11797–11801 (1994).
  • Link PA, Baer MR, James SR, Jones DA, Karpf AR. p53-inducible ribonucleotide reductase (p53R2/RRM2B) is a DNA hypomethylation-independent decitabine gene target that correlates with clinical response in myelodysplastic syndrome/acute myelogenous leukemia. Cancer Res.68(22), 9358–9366 (2008).
  • van Groeningen CJ, Leyva A, O’Brien AM, Gall HE, Pinedo HM. Phase I and pharmacokinetic study of 5-aza-2´-deoxycytidine (NSC 127716) in cancer patients. Cancer Res.46(9), 4831–4836 (1986).
  • Cashen AF, Shah AK, Todt L, Fisher N, DiPersio J. Pharmacokinetics of decitabine administered as a 3-h infusion to patients with acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS). Cancer Chemother. Pharmacol.61(5), 759–766 (2008).
  • Chabot GG, Rivard GE, Momparler RL. Plasma and cerebrospinal fluid pharmacokinetics of 5-aza-2´-deoxycytidine in rabbits and dogs. Cancer Res.43(2), 592–597 (1983).
  • Momparler RL, Rivard GE, Gyger M. Clinical trial on 5-aza-2´-deoxycytidine in patients with acute leukemia. Pharmacol. Ther.30(3), 277–286 (1985).
  • Rivard GE, Momparler RL, Demers J et al. Phase I study on 5-aza-2´-deoxycytidine in children with acute leukemia. Leukemia Res.5(6), 453–462 (1981).
  • de Lima M, Ravandi F, Shahjahan M et al. Long-term follow-up of a Phase I study of high-dose decitabine, busulfan, and cyclophosphamide plus allogeneic transplantation for the treatment of patients with leukemias. Cancer97(5), 1242–1247 (2003).
  • Ravandi F, Kantarjian H, Cohen A et al. Decitabine with allogeneic peripheral blood stem cell transplantation in the therapy of leukemia relapse following a prior transplant: results of a Phase I study. Bone Marow Transplant.27(12), 1221–1225 (2001).
  • Pinto A, Attadia V, Fusco A, Ferrara F, Spada OA, Di Fiore PP. 5-aza-2´-deoxycytidine induces terminal differentiation of leukemic blasts from patients with acute myeloid leukemias. Blood64(4), 922–929 (1984).
  • Pinto A, Zagonel V, Attadia V et al. 5-aza-2´-deoxycytidine as a differentiation inducer in acute myeloid leukaemias and myelodysplastic syndromes of the elderly. Bone Marow Transplant.4(Suppl. 3), 28–32 (1989).
  • Koshy M, Dorn L, Bressler L et al. 2-deoxy 5-azacytidine and fetal hemoglobin induction in sickle cell anemia. Blood96(7), 2379–2384 (2000).
  • Zagonel V, Lo Re G, Marotta G et al. 5-aza-2´-deoxycytidine (decitabine) induces trilineage response in unfavourable myelodysplastic syndromes. Leukemia7(Suppl. 1), 30–35 (1993).
  • Wijermans PW, Krulder JW, Huijgens PC, Neve P. Continuous infusion of low-dose 5-aza-2´-deoxycytidine in elderly patients with high-risk myelodysplastic syndrome. Leukemia11(Suppl. 1), S19–S23 (1997).
  • Wijermans P, Lubbert M, Verhoef G et al. Low-dose 5-aza-2´-deoxycytidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome: a multicenter Phase II study in elderly patients. J. Clin. Oncol.18(5), 956–962 (2000).
  • Wijermans PW, Lubbert M, Verhoef G, Klimek V, Bosly A. An epigenetic approach to the treatment of advanced MDS; the experience with the DNA demethylating agent 5-aza-2´-deoxycytidine (decitabine) in 177 patients. Ann. Hematol.84(Suppl. 1), 9–17 (2005).
  • Cheson BD, Bennett JM, Kantarjian H et al. Report of an international working group to standardize response criteria for myelodysplastic syndromes. Blood96(12), 3671–3674 (2000).
  • van den Bosch J, Lubbert M, Verhoef G, Wijermans PW. The effects of 5-aza-2´-deoxycytidine (decitabine) on the platelet count in patients with intermediate and high-risk myelodysplastic syndromes. Leukemia Res.28(8), 785–790 (2004).
  • Lubbert M, Wijermans P, Kunzmann R et al. Cytogenetic responses in high-risk myelodysplastic syndrome following low-dose treatment with the DNA methylation inhibitor 5-aza-2´-deoxycytidine. Br. J. Haematol.114(2), 349–357 (2001).
  • Ruter B, Wijermans P, Claus R, Kunzmann R, Lubbert M. Preferential cytogenetic response to continuous intravenous low-dose decitabine (DAC) administration in myelodysplastic syndrome with monosomy 7. Blood110(3), 1080–1082; author reply 1083 (2007).
  • Ravandi F, Issa J-P, Garcia-Manero G et al. Hypomethylating therapy in patients with AML and high-risk MDS and chromosome 5 and 7 abnormalities is associated with an improved outcome compared to conventional chemotherapy. Blood112(11), (2008) (Abstract 2955).
  • Kantarjian H, Issa JP, Rosenfeld CS et al. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a Phase III randomized study. Cancer106(8), 1794–1803 (2006).
  • Wijermans P, Suciu S, Baila L et al. Low dose decitabine versus best supportive care in elderly patients with intermediate or high risk MDS not eligible for intensive chemotherapy: final results of the randomized Phase III study (06011) of the EORTC Leukemia and German MDS Study Groups. Blood112(11), (2008) (Abstract 226).
  • Issa JP, Garcia-Manero G, Giles FJ et al. Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2´-deoxycytidine (decitabine) in hematopoietic malignancies. Blood103(5), 1635–1640 (2004).
  • Kantarjian H, Oki Y, Garcia-Manero G et al. Results of a randomized study of 3 schedules of low-dose decitabine in higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia. Blood109(1), 52–57 (2007).
  • Kantarjian HM, O’Brien S, Huang X et al. Survival advantage with decitabine versus intensive chemotherapy in patients with higher risk myelodysplastic syndrome: comparison with historical experience. Cancer109(6), 1133–1137 (2007).
  • Steensma DP, Baer MR, Slack JL et al. Multicenter study of decitabine administered daily for 5 days every 4 weeks to adults with myelodysplastic syndromes: the alternative dosing for outpatient treatment (ADOPT) trial. J. Clin. Oncol.27(23), 3842–3848 (2009).
  • Yang XJ, Seto E. HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene26(37), 5310–5318 (2007).
  • Xu WS, Parmigiani RB, Marks PA. Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene26(37), 5541–5552 (2007).
  • Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat. Genet.21(1), 103–107 (1999).
  • Glaser KB. HDAC inhibitors: clinical update and mechanism-based potential. Biochem. Pharmacol.74(5), 659–671 (2007).
  • Yang H, Hoshino K, Sanchez-Gonzalez B, Kantarjian H, Garcia-Manero G. Antileukemia activity of the combination of 5-aza-2´-deoxycytidine with valproic acid. Leukemia Res.29(7), 739–748 (2005).
  • Garcia-Manero G, Kantarjian HM, Sanchez-Gonzalez B et al. Phase 1/2 study of the combination of 5-aza-2´-deoxycytidine with valproic acid in patients with leukemia. Blood108(10), 3271–3279 (2006).
  • Issa J-P, Castoro R, Ravandi-Kashani F et al. Randomized Phase II study of combined epigenetic therapy: decitabine vs. decitabine and valproic acid in MDS and AML. Blood112(11), (2008) (Abstract 228).
  • Ravandi F, Faderl S, Thomas D et al. Phase I Study of suberoylanilide hydroxamic acid (SAHA) and decitabine in patients with relapsed, refractory or poor prognosis leukemia. Blood110(11), (2007) (Abstract 897).
  • Kirschbaum M, Gojo I, Goldberg SL et al. Phase I study of vorinostat in combination with decitabine in patients with relapsed or newly diagnosed acute myelogenous leukemia or myelodysplastic syndrome. Blood112(11), (2008) (Abstract 3651).
  • Jabbour E, Giralt S, Kantarjian H et al. Low-dose azacitidine after allogeneic stem cell transplantation for acute leukemia. Cancer115(9), 1899–1905 (2009).
  • De Padua Silva L, de Lima M, Kantarjian H et al. Feasibility of allo-SCT after hypomethylating therapy with decitabine for myelodysplastic syndrome. Bone Marow Transplant.43(11), 839–843 (2009).
  • Lubbert M, Bertz H, Ruter B et al. Non-intensive treatment with low-dose 5-aza-2´-deoxycytidine (DAC) prior to allogeneic blood SCT of older MDS/AML patients. Bone Marow Transplant.44(9), 585–588. (2009).
  • Qin T, Jelinek J, Si J, Shu J, Issa JP. Mechanisms of resistance to 5-aza-2´-deoxycytidine in human cancer cell lines. Blood113(3), 659–667 (2009).
  • Jabbour E, Garcia-Manero G, Shan J et al. Outcome of patients (pts) with myelodysplastic syndrome (MDS) and chronic myelomonocytic leukemia (CMML) post decitabine failure. Blood112(11), (2008) (Abstract 1659).
  • Borthakur G, Ahdab SE, Ravandi F et al. Activity of decitabine in patients with myelodysplastic syndrome previously treated with azacitidine. Leuk. Lymphoma49(4), 690–695 (2008).
  • Fenaux P, Mufti GJ, Hellstrom-Lindberg E et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, Phase III study. Lancet Oncol.10(3), 223–232 (2009).
  • Kumar A, List AF, Mhaskar R, Djulbegovic B. Efficacy of hypo-methylating agents in the treatment of myelodysplastic syndromes: a systematic review and meta-analysis of randomized Controlled Trials. Blood112(11), (2008) (Abstract 3632).
  • Steensma D, Kantarjian H, Wijermans P. Clinical experience with different dosing schedules of decitabine in patients with myelodysplastic syndromes (MDS). J. Clin. Oncol.27(15S), (2009) (Abstract 7011).
  • Blum W, Klisovic R, Liu S et al. Preliminary results of a Phase II study of low dose decitabine as a single agent in older patients (age ≥60) with previously untreated acute myeloid leukemia (AML). Blood112(11), (2008) (Abstract 2957).
  • Cashen AF, Schiller GJ, O’Donnell MR et al. Preliminary results of a multicenter Phase II trial of 5-day decitabine as front-line therapy for elderly patients with acute myeloid leukemia (AML). Blood112(11), (2008) (Abstract 560).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.