64
Views
5
CrossRef citations to date
0
Altmetric
Review

Clinicopathologic and molecular disease prognostication for papillary thyroid cancer

, , &
Pages 1261-1275 | Published online: 10 Jan 2014

References

  • Hundahl SA, Fleming ID, Fremgen AM, Menck HR. A National Center database report on 53,856 cases of thyroid carcinoma treated in the US, 1985–1995. Cancer83, 2638–2648 (1998).
  • Davies L, Welch GH. Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA295, 2164–2167 (2006).
  • Colonna M, Grosclaude P, Remontet L et al. Incidence of thyroid cancer in adults recorded by French cancer registries (1978–1997). Eur. J. Cancer38(13), 1762–1768 (2002).
  • Heidenreich WF, Kenigsberg J, Jacob P et al. Time trends of thyroid cancer incidence in Belarus after the Chernobyl accident. Radiat. Res.151, 617–625 (1999).
  • Huszno B, Szybinski Z, Przybylik-Mazurek E et al. Influence of iodine deficiency and iodine prophylaxis on thyroid cancer histotypes and incidence in endemic goiter area. J. Endocrinol. Invest.26(2 Suppl.), 71–76 (2003).
  • Verkooijen HM, Fioretta G, Pache JC et al. Diagnostic changes as a reason for the increase in papillary thyroid cancer incidence in Geneva, Switzerland. Cancer Causes Control14, 13–17 (2003).
  • Leenhardt L, Bernier MO, Boin-Pineau MH et al. Advances in diagnostic practices affect thyroid cancer incidence in France. Eur. J. Endocrinol.150, 133–139 (2004).
  • Surveillance Epidemiology and End-Results (SEER) Program (www.seer.cancer.gov). SEER*Stat Database: Incidence-SEER 9 Regs. Public use, november 2003 sub (1973–2001), National Cancer Institute, DCCPS, surveillance research program, cancer statistics branch, released April 2004, based on the november 2003 submission. National Cancer Institute, Bethesda, MD, USA (2004)
  • Ries LAG, Harkins D, Krapcho D et al. SEER cancer statistics review, 1997–2003 based on november 2005 SEER data submission, posted to the SEER website, 2006: SEER Surveillance Epidemiology And End Results Cancer Statistics Fact Sheets. National Cancer Institute, Bethesda, MD, USA 6–13 (2006).
  • Pinn VW. Sex and gender factors in medical studies: implications for health and clinical practice. JAMA289, 397–400 (2003).
  • Hundahl SA, Fleming ID, Fremgen AM, Menck HR. A national cancer database report on 53,856 cases of thyroid carcinoma treated in the US, 1985–1995. Cancer83, 2638–2648 (1998).
  • Clayman GL, Shellenberger TD, Ginsberg LE et al. Approach and safety of comprehensive central compartment dissection in patients with recurrent papillary thyroid carcinoma. Head Neck31(9), 1152–1163 (2009).
  • Cooper DS, Doherty GM, Haugen BR et al. Management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid16, 109–142 (2006).
  • Sherman SI, Angelos P, Ball DW et al. Thyroid carcinoma. J. Natl Compr. Canc. Netw.3, 404–457 (2005).
  • Mazzaferri EL. An overview of the management of thyroid cancer. In: Practical Management of Thyroid Cancer: a Multidisciplinary Approach. Mazzaferri EL, Harmer C, Mallick UK, Kendall-Taylor P (Eds). Springer-Verlag, London, UK 1–28 (2006).
  • Mazzaferri EL, Jhiang SM. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am. J. Med.97, 418–428 (1994).
  • DeGroot LJ, Kaplan EL, McCormick M, Straus FH. Natural history, treatment, and course of papillary thyroid carcinoma. J. Clin. Endocrinol. Metab.71, 414–424 (1990).
  • Mazzaferri EL, Kloos RT. Current approaches to primary therapy for papillary and follicular thyroid cancer. J. Clin. Endocrinol. Metab.86, 1447–1463 (2001).
  • Sherman SI, Brierley JD, Sperling M et al. Prospective multicenter study of thyroid carcinoma treatment: initial analysis of staging and outcome. National Thyroid Cancer Treatment Cooperative Study Registry Group. Cancer83, 1012–1021 (1998).
  • Tanaka K, Sonoo H, Hirono M et al. Retrospective analysis of predictive factors for recurrence after curatively resected papillary thyroid carcinoma. Surg. Today35, 714–719 (2005).
  • Hung W, Sarlis NJ. Current controversies in the management of pediatric patients with well-differentiated non-medullary thyroid cancer: a review. Thyroid12, 683–702 (2002).
  • Miccoli P, Minuto MN, Ugolini C et al. Papillary thyroid cancer: pathological parameters as prognostic factors in different classes of age. Otolaryngol. Head Neck Surg.138(2), 200–203 (2008).
  • Cady B. Staging in thyroid carcinoma. Cancer83, 844–847 (1998).
  • Mazzaferri EL, Kloos RT. Current approaches to primary therapy for papillary and follicular thyroid cancer. J. Clin. Endocrinol. Metab.86(4), 1447–1463 (2001).
  • Machens A, Holzhausen HJ, Dralle H. The prognostic value of primary tumor size in papillary and follicular thyroid carcinoma. Cancer103(11), 2269–2273 (2005).
  • Sywak M, Pasieka J, Ogilvie T. A review of thyroid cancer with intermediate differentiation. J. Surg. Oncol.86, 44–54 (2004).
  • Machens A, Holzhausen HJ, Lautenschläger C, Dralle H. The tall-cell variant of papillary thyroid carcinoma: a multivariate analysis of clinical risk factors. Langenbecks Arch. Surg.389(4), 278–282 (2004).
  • Ghossein RA, Leboeuf R, Patel KN et al. Tall cell variant of papillary thyroid carcinoma without extrathyroid extension: biologic behavior and clinical implications. Thyroid17(7), 655–661 (2007).
  • Nikiforov YE, Erickson LA, Nikiforova MN, Caudill CM, Lloyd RV. Solid variant of papillary thyroid carcinoma: incidence, clinical–pathologic characteristics, molecular analysis, and biologic behavior. Am. J. Surg. Pathol.25(12), 1478–1484 (2001).
  • Jayaram G. Cytology of columnar-cell variant of papillary thyroid carcinoma. Diagn. Cytopathol.22(4), 227–229 (2000).
  • Shimizu M, Hirokawa M, Manabe T. Tall cell variant of papillary thyroid carcinoma with foci of columnar cell component. Virchows Arch.434(2), 173–175 (1999).
  • Fujimoto Y, Obara T, Ito Y et al. Diffuse sclerosing variant of papillary carcinoma of the thyroid. Clinical importance, surgical treatment, and follow-up study. Cancer66, 2306–2312 (1990).
  • Machens A, Holzhausen HJ, Lautenschläger C, Thanh PN, Dralle H. Enhancement of lymph node metastasis and distant metastasis of thyroid carcinoma. Cancer98(4), 712–719 (2003).
  • Miccoli P, Minuto MN, Ugolini C et al. Clinically unpredictable prognostic factors in the outcome of medullary thyroid cancer. Endocr. Relat. Cancer14(4), 1099–1105 (2007).
  • Kakudo K, Tang W, Ito Y, Mori I, Nakamura Y, Miyauchi A. Papillary carcinoma of the thyroid in Japan: subclassification of common type and identification of low risk group. J. Clin. Pathol.57(10), 1041–1046 (2004).
  • Baloch ZW, LiVolsi VA. Our approach to follicular-patterned lesions of the thyroid. J. Clin. Pathol.60(3), 244–250 (2007).
  • Ivanova R, Soares P, Castro P, Sobrinho-Simões M. Diffuse (or multinodular) follicular variant of papillary thyroid carcinoma: a clinicopathologic and immunohistochemical analysis of ten cases of an aggressive form of differentiated thyroid carcinoma. Virchows Arch.440(4), 418–424 (2002).
  • Liu J, Singh B, Tallini G et al. Follicular variant of papillary thyroid carcinoma: a clinicopathologic study of a problematic entity. Cancer107(6), 1255–1264 (2006).
  • Baloch ZW, LiVolsi VA. Encapsulated follicular variant of papillary thyroid carcinoma with bone metastases. Mod. Pathol.13(8), 861–865 (2000).
  • Jarzab B, Handkiewicz Junak D, Wloch J et al. Multivariate analysis of prognostic factors for differentiated thyroid carcinoma in children. Eur. J. Nucl. Med.27(7), 833–841 (2000).
  • La Quaglia MP, Black T, Holcomb GW 3rd et al. Differentiated thyroid cancer: clinical characteristics, treatment, and outcome in patients under 21 years of age who present with distant metastases: a report from the Surgical Discipline Committee of the Children’s Cancer Group. J. Pediatr. Surg.35(6), 955–959 (2000).
  • Mirallié E, Visset J, Sagan C, Hamy A, Le Bodic MF, Paineau J. Localization of cervical node metastasis of papillary thyroid carcinoma. World J. Surg.23(9), 970–973 (1999).
  • Watkinson JC, Franklyn JA, Olliff JF. Detection and surgical treatment of cervical lymph nodes in differentiated thyroid cancer. Thyroid16(2), 187–194 (2006).
  • Kloos RT, Mazzaferri EL. A single recombinant human thyrotropin-stimulated serum thyroglobulin measurement predicts differentiated thyroid carcinoma metastases three to five years later. J. Clin. Endocrinol. Metab.90(9), 5047–5057 (2005).
  • Alfalah H, Cranshaw I, Jany T et al. Risk factors for lateral cervical lymph node involvement in follicular thyroid carcinoma. World J. Surg.32(12), 2623–2626 (2008).
  • Witte J, Goretzki PE, Dieken J, Simon D, Röher HD. Importance of lymph node metastases in follicular thyroid cancer. World J. Surg.26(8), 1017–1022 (2002).
  • Podnos YD, Smith D, Wagman LD, Ellenhorn JD. The implication of lymph node metastasis on survival in patients with well-differentiated thyroid cancer. Am. Surg.71(9), 731–734 (2005).
  • Leboulleux S, Rubino C, Baudin E et al. Prognostic factors for persistent or recurrent disease of papillary thyroid carcinoma with neck lymph node metastases and/or tumor extension beyond the thyroid capsule at initial diagnosis. J. Clin. Endocrinol. Metab.90(10), 5723–5729 (2005).
  • Chow SM, Law SC, Chan JK, Au SK, Yau S, Lau WH. Papillary microcarcinoma of the thyroid – prognostic significance of lymph node metastasis and multifocality. Cancer98(1), 31–40 (2003).
  • Hughes CJ, Shaha AR, Shah JP, Loree TR. Impact of lymph node metastasis in differentiated carcinoma of the thyroid: a matched-pair analysis. Head Neck18(2), 127–132 (1996).
  • Shaha AR. TNM classification of thyroid carcinoma. World J. Surg.31(5), 879–887 (2007).
  • Miccoli P, Antonelli A, Spinelli C, Ferdeghini M, Fallahi P, Baschieri L. Completion total thyroidectomy in children with thyroid cancer secondary to the Chernobyl accident. Arch. Surg.133(1), 89–93 (1998).
  • Schlumberger M, Challeton C, De Vathaire F, Parmentier C. Treatment of distant metastases of differentiated thyroid carcinoma. J. Endocrinol. Invest.18(2), 170–172 (1995).
  • Schlumberger M, Tubiana M, De Vathaire F et al. Long-term results of treatment of 283 patients with lung and bone metastases from differentiated thyroid carcinoma. J. Clin. Endocrinol. Metab.63(4), 960–967 (1986).
  • Sisson JC, Giordano TJ, Jamadar DA et al. 131-I treatment of micronodular pulmonary metastases from papillary thyroid carcinoma. Cancer78(10), 2184–2192 (1996).
  • Schlumberger MJ. Diagnostic follow-up of well-differentiated thyroid carcinoma: historical perspective and current status. J. Endocrinol. Invest.22(11 Suppl.), 3–7 (1999).
  • Sakorafas GH, Giotakis J, Stafyla V. Papillary thyroid microcarcinoma: a surgical perspective. Cancer Treat. Rev.31(6), 423–438 (2005).
  • MacCorkle RA, Tan TH. Mitogen-activated protein kinases in cell-cycle control. Cell Biochem. Biophys.43, 451–461 (2005).
  • Robinson MJ, Cobb MH Mitogen-activated protein kinase pathways. Curr. Opin. Cell Biol.9, 180–186 (1997).
  • Torii S, Nakayama K, Yamamoto T, Nishida E. Regulatory mechanisms and function of ERK MAP kinases. J. Biochem. (Tokyo)136, 557–561 (2004).
  • Kohno M, Pouyssegur J. Targeting the ERK signaling pathway in cancer therapy. Ann. Med.38, 200–211 (2006).
  • Mercer KE, Pritchard CA. Raf proteins and cancer: B-Raf is identified as a mutational target. Biochim. Biophys. Acta1653, 25–40 (2003).
  • Rodriguez-Viciana P, Tetsu O, Oda K et al. Cancer targets in the Ras pathway. Cold Spring Harb. Symp. Quant. Biol.70, 461–467 (2005).
  • Sebolt-Viciana JS, Herrera R. Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat. Rev. Cancer4, 937–947 (2004).
  • Hoshino R, Chatani Y, Yamori T et al. Constitutive activation of the 41-/43-kDa mitogen-activated protein kinase signaling pathway in human tumors. Oncogene18, 813–822 (1999).
  • Knauf JA, Kuroda H, Basu S, Fagin JA RET/PTC-induced dedifferentiation of thyroid cells is mediated through Y1062 signaling through SHC–RAS–MAP kinase. Oncogene22, 4406–4412 (2003).
  • Melillo RM, Castellone MD, Guarino V et al. The RET/PTC-RAS-BRAF linear signaling cascade mediates the motile and mitogenic phenotype of thyroid cancer cells. J. Clin. Invest.115, 1068–1081 (2005).
  • Mitsutake N, Miyagishi M, Mitsutake S et al. BRAF mediates RET/PTC-induced mitogen-activated protein kinase activation in thyroid cells: functional support for requirement of the RET/PTC–RAS–BRAF pathway in papillary thyroid carcinogenesis. Endocrinology147, 1014–1019 (2006).
  • Davies H, Bignell GR, Cox C et al. Mutations of the BRAF gene in human cancer. Nature417, 949–954 (2002).
  • Dhomen N, Marais R New insight into BRAF mutations in cancer. Curr. Opin. Genet. Dev.17, 31–39 (2007).
  • Garnett MJ, Marais R Guilty as charged: BRAF is a human oncogene. Cancer Cell6, 313–319 (2004).
  • Xing M. BRAF mutation in thyroid cancer. Endocr. Relat. Cancer12, 245–262 (2005).
  • Xing M. BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr. Rev.28(7), 742–762 (2007).
  • Lupi C, Giannini R, Ugolini C et al. Association of BRAF V600E mutation with poor clinicopathological outcomes in 500 consecutive cases of papillary thyroid carcinoma. J. Clin. Endocrinol. Metab.92(11), 4085–4090 (2007).
  • Porra V, Ferraro-Peyret C, Durand C et al. Silencing of the tumor suppressor gene SLC5A8 is associated with BRAF mutations in classical papillary thyroid carcinomas. J. Clin. Endocrinol. Metab.90, 3028–3035 (2005).
  • Mitsutake N, Knauf JA, Mitsutake S, Mesa C Jr, Zhang L, Fagin JA. Conditional BRAFV600E expression induces DNA synthesis, apoptosis, dedifferentiation, and chromosomal instability in thyroid PCCL3 cells. Cancer Res.65, 2465–2473 (2005).
  • Knauf JA, Ma X, Smith EP et al. Targeted expression of BRAFV600E in thyroid cells of transgenic mice results in papillary thyroid cancers that undergo dedifferentiation. Cancer Res.65, 4238–4245 (2005).
  • Xing M, Westra WH, Tufano RP et al. BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J. Clin. Endocrinol. Metab.90, 6373–6379 (2005).
  • Giordano TJ, Kuick R, Thomas DG et al. Molecular classification of papillary thyroid carcinoma: distinct BRAF, RAS, and RET/PTC mutation-specific gene expression profiles discovered by DNA microarray analysis. Oncogene24, 6646–6656 (2005).
  • Oler G, Cerutti JM. High prevalence of BRAF mutation in a Brazilian cohort of patients with sporadic papillary thyroid carcinomas: correlation with more aggressive phenotype and decreased expression of iodide-metabolizing genes. Cancer115(5), 972–980 (2009).
  • Espadinha C, Santos JR, Sobrinho LG, Bugalho MJ. Expression of iodine metabolism genes in human thyroid tissues: evidence for age and BRAFV600E mutation dependency. Clin. Endocrinol. (Oxf.)70(4), 629–635 (2009).
  • Durante C, Puxeddu E, Ferretti E et al. BRAF mutations in papillary thyroid carcinomas inhibit genes involved in iodine metabolism. J. Clin. Endocrinol. Metab.92(7), 2840–2843 (2007).
  • Liu D, Hu S, Hou P, Jiang D, Condouris S, Xing M. Suppression of BRAF/MEK/MAP kinase pathway restores expression of iodide-metabolizing genes in thyroid cells expressing the V600E BRAF mutant. Clin. Cancer Res.13(4), 1341–1349 (2007).
  • De Lellis RA. Pathology and genetics of thyroid carcinoma. J. Surg. Oncol.15, 94(8), 662–669 (2006).
  • Patel KN, Singh B. Molecular advances in thyroid cancer. In: Thyroid and Parathyroid Diseases, Medical and Surgical Management. Terris D, Gourin CG (Eds), Thieme, NY, USA (2009).
  • Roccato E, Bressan P, Sabatella G et al. Proximity of TPR and NTRK1 rearranging loci in human thyrocytes. Cancer Res.65(7), 2572–2576 (2005).
  • Santoro M, Sabino N, Ishizaka Y et al. Involvement of RET oncogene in human tumours: specificity of RET activation to thyroid tumours. Br. J. Cancer68(3), 460–464 (1993).
  • Bongarzone I, Fugazzola L, Vigneri P et al. Age-related activation of the tyrosine kinase receptor protooncogenes RET and NTRK1 in papillary thyroid carcinoma. J. Clin. Endocrinol. Metab.81(5), 2006–2009 (1996).
  • Fugazzola L, Pilotti S, Pinchera A et al. Oncogenic rearrangements of the RET proto-oncogene in papillary thyroid carcinomas from children exposed to the Chernobyl nuclear accident. Cancer Res.55(23), 5617–5620 (1995).
  • Bounacer A, Wicker R, Caillou B et al. High prevalence of activating RET proto-oncogene rearrangements, in thyroid tumors from patients who had received external radiation. Oncogene15(11), 1263–1273 (1997).
  • Tallini G, Asa SL. RET oncogene activation in papillary thyroid carcinoma. Adv. Anath. Pathol.8, 345–354 (2001).
  • Tallini G, Santoro M, Helie M et al.RET/PTC oncogene activation defines a subset of papillary thyroid carcinomas lacking evidence of progression to poorly differentiated or undifferentiated tumor phenotypes. Clin. Cancer Res.4(2), 287–294 (1998).
  • Lanzi C, Cassinelli G, Pensa T et al. Inhibition of transforming activity of the RET/PTC1 oncoprotein by a 2-indolinone derivative. Int. J. Cancer85(3), 384–390 (2000).
  • Barbacid M. RAS genes. Annu. Rev. Biochem.56, 779–827 (1987).
  • Finney RE, Bishop JM. Predisposition to neoplastic transformation caused by gene replacement of H-ras1. Science260(5113), 1524–1527 (1993).
  • Vasko V, Ferrand M, Di Cristofaro J, Carayon P, Henry JF, de Micco C. Specific pattern of RAS oncogene mutations in follicular thyroid tumors. J. Clin. Endocrinol. Metab.88(6), 2745–2752 (2003).
  • Adeniran AJ, Zhu Z, Gandhi M et al. Correlation between genetic alterations and microscopic features, clinical manifestations, and prognostic characteristics of thyroid papillary carcinomas. Am. J. Surg. Pathol.30(2), 216–222 (2006).
  • Ngan ES, Lang BH, Liu T et al. A germline mutation (A339V) in thyroid transcription factor-1 (TITF-1/NKX2.1) in patients with multinodular goiter and papillary thyroid carcinoma. J. Natl Cancer Inst.101(3), 162–175 (2009).
  • Fabbro D, Di Loreto C, Beltrami CA, Belfiore A, Di Lauro R, Damante G. Expression of thyroid-specific transcription factors TTF-1 and PAX-8 in human thyroid neoplasms. Cancer Res.54(17), 4744–4749 (1994).
  • Tallini G. Molecular pathobiology of thyroid neoplasms. Endocr. Pathol.13(4), 271–288 (2002).
  • Kroll TG, Sarraf P, Pecciarini L et al.PAX8–PPARγ1 fusion oncogene in human thyroid carcinoma (corrected). Science289(5483), 1357–1360 (2000). Erratum in: Science289 (5484), 1474 (2000).
  • Ying H, Suzuki H, Zhao L, Willingham MC, Meltzer P, Cheng SY. Mutant thyroid hormone receptor β represses the expression and transcriptional activity of peroxisome proliferator-activated receptor-γ during thyroid carcinogenesis. Cancer Res.63(17), 5274–5280 (2003).
  • Nikiforov YE. Genetic alterations involved in the transition from well-differentiated to poorly differentiated and anaplastic thyroid carcinomas. Endocr. Pathol.15(4), 319–327 (2004).
  • Marques AR, Espadinha C, Catarino AL et al. Expression of PAX8–PPARγ1 rearrangements in both follicular thyroid carcinomas and adenomas. J. Clin. Endocrinol. Metab.87(8), 3947–3952 (2002).
  • Nikiforova MN, Biddinger PW, Caudill CM, Kroll TG, Nikiforov YE. PAX8–PPARγ rearrangement in thyroid tumors: RT-PCR and immunohistochemical analyses. Am. J. Surg. Pathol.26(8), 1016–1023 (2002).
  • Grommes C, Landreth, GE, Heneka MT. Antineoplastic effects of peroxisome proliferator-activated receptor-γ agonists. Lancet Oncol.5, 419–429 (2004).
  • Antonelli A, Rotondi M, Ferrari SM et al. Interferon-γ-inducible α-chemokine CXCL10 involvement in Graves’ ophthalmopathy: modulation by peroxisome proliferator-activated receptor-γ agonists. J. Clin. Endocrinol. Metab.91, 614–620 (2006).
  • Frohlich E, Machicao F, Wahl R. Action of thiazolidinediones on differentiation, proliferation and apoptosis of normal and transformed thyrocytes in culture. Endocr. Relat. Cancer12, 291–303 (2005).
  • Kebebew E, Peng M, Reiff E et al. A Phase II trial of rosiglitazone in patients with thyroglobulin-positive and radioiodine-negative differentiated thyroid cancer. Surgery140, 960–966 (2006).
  • Tepmongkol S, Keelawat S, Honsawek S, Ruangvejvorachai P. Rosiglitazone effect on radioiodine uptake in thyroid carcinoma patients with high thyroglobulin but negative total body scan: a correlation with the expression of peroxisome proliferator–activated receptor-γ. Thyroid18, 697–704 (2008).
  • Sahin M, Allard BL, Yates M et al.PPARγ staining as a surrogate for PAX8/PPARγ fusion oncogene expression in follicular neoplasms: clinicopathological correlation and histopathological diagnostic value. J. Clin. Endocrinol. Metab.90, 463–468 (2005).
  • Antonelli A, Ferrari SM, Fallahi P et al. Thiazolidinediones and antiblastics in primary human anaplastic thyroid cancer cells. Clin. Endocrinol. (Oxf.)70(6), 946–953 (2008).
  • Eszlinger M, Krohn K, Hauptmann S, Dralle H, Giordano TJ, Paschke R. Perspectives for improved and more accurate classification of thyroid epithelial tumors. J. Clin. Endocrinol. Metab.93(9), 3286–3294 (2008).
  • Detours V, Versteyhe S, Dumont JE, Maenhaut C. Gene expression profiles of post-Chernobyl thyroid cancers. Curr. Opin. Endocrinol. Diabetes Obes.15(5), 440–445 (2008).
  • Puxeddu E, Moretti S. Clinical prognosis in BRAF-mutated PTC. Arq. Bras. Endocrinol. Metabol.51(5), 736–747 (2007).
  • Krause DS, Van Etten RA. Tyrosine kinases as targets for cancer therapy. N. Engl. J. Med.353(2), 172–187 (2005).
  • Fagin JA. How thyroid tumors start and why it matters: kinase mutants as targets for solid cancer pharmacotherapy. J. Endocrinol.183(2), 249–256 (2004).
  • Ouyang B, Knauf JA, Smith EP et al. Inhibitors of Raf kinase activity block growth of thyroid cancer cells with RET/PTC or BRAF mutations in vitro and in vivo. Clin. Cancer Res.12(6), 1785–1793 (2006).
  • de la Torre NG, Buley I, Wass JA, Turner HE. Angiogenesis and lymphangiogenesis in thyroid proliferative lesions: relationship to type and tumour behaviour. Endocr. Relat. Cancer13(3), 931–944 (2006).
  • Schoenberger J, Grimm D, Kossmehl P, Infanger M, Kurth E, Eilles C. Effects of PTK787/ZK222584, a tyrosine kinase inhibitor, on the growth of a poorly differentiated thyroid carcinoma: an animal study. Endocrinology145(3), 1031–1038 (2004).
  • Younes MN, Yazici YD, Kim S, Jasser SA, El-Naggar AK, Myers JN. Dual epidermal growth factor receptor and vascular endothelial growth factor receptor inhibition with NVP-AEE788 for the treatment of aggressive follicular thyroid cancer. Clin. Cancer Res.12(11 Pt 1), 3425–3434 (2006).
  • Knauf JA, Ma X, Smith EP et al. Targeted expression of BRAFV600E in thyroid cells of transgenic mice results in papillary thyroid cancers that undergo dedifferentiation. Cancer Res.65(10), 4238–4245 (2005).
  • Santoro M, Carlomagno F. Drug insight: Small-molecule inhibitors of protein kinases in the treatment of thyroid cancer. Nat. Clin. Pract. Endocrinol. Metab.2(1), 42–52 (2006).
  • Polverino A, Coxon A, Starnes C et al. AMG 706, an oral, multikinase inhibitor that selectively targets vascular endothelial growth factor, platelet-derived growth factor, and kit receptors, potently inhibits angiogenesis and induces regression in tumor xenografts. Cancer Res.66(17), 8715–8721 (2006).
  • Carlomagno F, Anaganti S, Guida T et al. BAY 43-9006 inhibition of oncogenic RET mutants. J. Natl Cancer Inst.98(5), 326–334 (2006).
  • Kim DW, Jo YS, Jung HS et al. An orally administered multitarget tyrosine kinase inhibitor, SU11248, is a novel potent inhibitor of thyroid oncogenic RET/papillary thyroid cancer kinases. J. Clin. Endocrinol. Metab.91(10), 4070–4076 (2006).
  • Vidal M, Wells S, Ryan A, Cagan R. ZD6474 suppresses oncogenic RET isoforms in a Drosophila model for type 2 multiple endocrine neoplasia syndromes and papillary thyroid carcinoma. Cancer Res.65(9), 3538–3541 (2005).
  • Boughton D, Rosen L, Van Vugt A et al. Safety and antitumor activity of AMG 706 in patients (pts) with thyroid cancer (TC): a subset analysis from a Phase 1 dose-finding study. Program and abstracts at the 42nd Annual ASCO Meeting. Atlanta, GA, USA, 2–6 June 2006 (Abstract 3030).
  • Kim S, Rosen LS, Cohen EE et al. A Phase II study of axinitib (AG-013736), a potent inhibitor of VEGFRs, in patients with advanced thyroid cancer. Program and abstracts at the 42nd Annual ASCO Meeting. Atlanta, GA, USA, 2–6 June 2006 (Abstract 5529).
  • Kloos R, Ringel M, Knopp M et al. Significant clinical and biologic activity of RAF/VEGF-R kinase inhibitor BAY 43–9006 in patients with metastatic papillary thyroid carcinoma (PTC): updated results of a Phase II study. Program and abstracts at the 42nd Annual ASCO Meeting. Atlanta, GA, USA, 2–6 June 2006 (Abstract 5534).
  • Klopper JP, Hays WR, Sharma V, Baumbusch MA, Hershman JM, Haugen BR. Retinoid X receptor-γ and peroxisome proliferator-activated receptor-γ expression predicts thyroid carcinoma cell response to retinoid and thiazolidinedione treatment. Mol. Cancer Ther.3(8), 1011–1020 (2004).
  • Philips JC, Petite C, Willi JP, Buchegger F, Meier CA. Effect of peroxisome proliferator-activated receptor-γ agonist, rosiglitazone, on dedifferentiated thyroid cancers. Nucl. Med. Commun.25(12), 1183–1186 (2004).
  • Park JW, Zarnegar R, Kanauchi H et al. Troglitazone, the peroxisome proliferator-activated receptor-γ agonist, induces antiproliferation and redifferentiation in human thyroid cancer cell lines. Thyroid15(3), 222–231 (2005).
  • Hayashi N, Nakamori S, Hiraoka N et al. Antitumor effects of peroxisome proliferator activate receptor-γ ligands on anaplastic thyroid carcinoma. Int. J. Oncol.24(1), 89–95 (2004).
  • Antonelli A, Ferrari SM, Fallahi P et al. Evaluation of the sensitivity to chemotherapeutics or thiazolidinediones of primary anaplastic thyroid cancer cells obtained by fine-needle aspiration. Eur. J. Endocrinol.159(3), 283–291 (2008).
  • Antonelli A, Ferrari SM, Fallahi P et al. Primary cell cultures from anaplastic thyroid cancer obtained by fine-needle aspiration used for chemosensitivity tests. Clin. Endocrinol. (Oxf.)69(1), 148–152 (2008).
  • Antonelli A, Fallahi P, Ferrari SM et al. Dedifferentiated thyroid cancer: a therapeutic challenge. Biomed. Pharmacother.62(8), 559–563 (2008).
  • Miccoli P, Berti P, Materazzi G, Minuto M, Barellini L. Minimally invasive video-assisted thyroidectomy: five years of experience. J. Am. Coll. Surg.199(2), 243–248 (2004).
  • Terris DJ, Opraseuth J. Minimally invasive reoperative thyroid surgery. Otolaryngol. Clin. North Am.41(6), 1199–1205 (2008).
  • Wang M, Zhang T, Mao Z et al. Effect of endoscopic thyroidectomy via anterior chest wall approach on treatment of benign thyroid tumors. J. Laparoendosc. Adv. Surg. Tech.19(2), 149–152 (2009).
  • Benhidjeb T, Wilhelm T, Harlaar J et al. Natural orifice surgery on thyroid gland: totally transoral video-assisted thyroidectomy (TOVAT): report of first experimental results of a new surgical method. Surg. Endosc.23(5), 1119–1120 (2009).
  • Perigli G, Cortesini C, Quirici E, Boni D, Cianchi F. Clinical benefits of minimally invasive techniques in thyroid surgery. World J. Surg.32(1), 45–50 (2008).
  • Miyano G, Lobe TE, Wright SK. Bilateral transaxillary endoscopic total thyroidectomy. J. Pediatr. Surg.43(2), 299–303 (2008).
  • Miccoli P, Pinchera A, Materazzi G et al. Surgical treatment of low- and intermediate-risk papillary thyroid cancer with minimally invasive video-assisted thyroidectomy. J. Clin. Endocrinol. Metab.94(5), 1618–1622 (2009).
  • Miccoli P, Elisei R, Donatini G, Materazzi G, Berti P. Video-assisted central compartment lymphadenectomy in a patient with a positive RET oncogene: initial experience. Surg. Endosc.21(1), 120–123 (2007).
  • Loh KC, Greenspan FS, Gee L, Miller TR, Yeo PP. Pathological tumor-node-metastasis (pTNM) staging for papillary and follicular thyroid carcinomas: a retrospective analysis of 700 patients. J. Clin. Endocrinol. Metab.82(11), 3553–3562 (1997).
  • Haigh PI, Urbach DR, Rotstein LE. Extent of thyroidectomy is not a major determinant of survival in low- or high-risk papillary thyroid cancer. Ann. Surg. Oncol.12(1), 81–89 (2005).
  • Miccoli P, Minuto MN, Ugolini C et al. Intrathyroidal differentiated thyroid carcinoma: tumor size-based surgical concepts. World J. Surg.31(5), 888–894 (2007).
  • Wanebo H, Coburn M, Teates D, Cole B. Total thyroidectomy does not enhance disease control or survival even in high-risk patients with differentiated thyroid cancer. Ann. Surg.227(6), 912–921 (1998).
  • Wada N, Duh QY, Sugino K et al. Lymph node metastasis from 259 papillary thyroid microcarcinomas: frequency, pattern of occurrence and recurrence, and optimal strategy for neck dissection. Ann. Surg.237(3), 399–407 (2003).
  • Giusti L, Iacconi P, Ciregia F et al. Fine-needle aspiration of thyroid nodules: proteomic analysis to identify cancer biomarkers. J. Proteome Res.7(9), 4079–4088 (2008).
  • Hay ID, Grant CS, Taylor WF, McConahey WM. Ipsilateral lobectomy versus bilateral lobar resection in papillary thyroid carcinoma: a retrospective analysis of surgical outcome using a novel prognostic scoring system. Surgery102(6), 1088–1095 (1987).
  • Cady B, Rossi R. An expanded view of risk-group definition in differentiated thyroid carcinoma. Surgery104(6), 947–953 (1988).
  • Hay ID, Bergstralh EJ, Goellner JR, Ebersold JR, Grant CS. Predicting outcome in papillary thyroid carcinoma: development of a reliable prognostic scoring system in a cohort of 1779 patients surgically treated at one institution during 1940 through 1989. Surgery114(6), 1050–1057 (1993).
  • Greene FL, Compton CC, Fritz AG, Shah JP, Winchester DP. AJCC Cancer Staging Atlas (6th Edition). Springer Educational, NY, USA (2006).
  • Byar DP, Green SB, Dor P et al. A prognostic index for thyroid carcinoma: a study of the E.O.R.T.C: Thyroid Cancer Cooperative Group. Eur. J. Cancer15(8), 1033–1041 (1979).
  • Mazzaferri EL. Long-term outcome of patients with differentiated thyroid carcinoma: effect of therapy. Endocr. Pract.6(6), 469–476 (2000).
  • Degroot LJ, Kaplan EL, McCormick M, Straus FH. Natural history, treatment, and course of papillary thyroid carcinoma. J. Clin. Endocrinol. Metab.71, 414–424 (1990).
  • Nikiforova MN, Kimura ET, Gandhi M et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J. Clin. Endocrinol. Metab.88(11), 5399–5404 (2003).
  • Kim TY, Kim WB, Song JY et al. The BRAF mutation is not associated with poor prognostic factors in Korean patients with conventional papillary thyroid microcarcinoma. Clin. Endocrinol. (Oxf.)63(5), 588–593 (2005).
  • Liu RT, Chen YJ, Chou FF et al. No correlation between BRAFV600E mutation and clinicopathological features of papillary thyroid carcinomas in Taiwan. Clin. Endocrinol. (Oxf.)63(4), 461–466 (2005).
  • Abrosimov A, Saenko V, Rogounovitch T et al. Different structural components of conventional papillary thyroid carcinoma display mostly identical BRAF status. Int. J. Cancer120(1), 196–200 (2007).
  • Kim J, Giuliano AE, Turner RR et al. Lymphatic mapping establishes the role of BRAF gene mutation in papillary thyroid carcinoma. Ann. Surg.244(5), 799–804 (2006).
  • Park SY, Park YJ, Lee YJ et al. Analysis of differential BRAF(V600E) mutational status in multifocal papillary thyroid carcinoma: evidence of independent clonal origin in distinct tumor foci. Cancer107(8), 1831–1838 (2006).
  • Riesco-Eizaguirre G, Gutiérrez-Martínez P, García-Cabezas MA, Nistal M, Santisteban P. The oncogene BRAF V600E is associated with a high risk of recurrence and less differentiated papillary thyroid carcinoma due to the impairment of Na+/I- targeting to the membrane. Endocr. Relat. Cancer13(1), 257–269 (2006).
  • Kebebew E, Weng J, Bauer J et al. The prevalence and prognostic value of BRAF mutation in thyroid cancer. Ann. Surg.246(3), 466–470 (2007).
  • Elisei R, Ugolini C, Viola D et al. BRAF(V600E) mutation and outcome of patients with papillary thyroid carcinoma: a 15-year median follow-up study. J. Clin. Endocrinol. Metab.93(10), 3943–3949 (2008).
  • Frasca F, Nucera C, Pellegriti G et al. BRAF(V600E) mutation and the biology of papillary thyroid cancer. Endocr. Relat. Cancer15(1), 191–205 (2008).
  • Ito Y, Yoshida H, Maruo R et al. BRAF mutation in papillary thyroid carcinoma in a Japanese population: its lack of correlation with high-risk clinicopathological features and disease-free survival of patients. Endocr. J.56(1), 89–97 (2009).
  • Xing M. Comments on the Ito et al. article. The lack of clinicopathological correlation of BRAF mutation in papillary thyroid cancer needs to be interpreted with caution. Endocr. J.56(2), 305–306 (2009).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.