194
Views
7
CrossRef citations to date
0
Altmetric
Theme: Gynecologic cancer - Review

Dendritic cell immunotherapy in ovarian cancer

, &
Pages 43-53 | Published online: 10 Jan 2014

References

  • Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA. Cancer J. Clin. 62(1), 10–29 (2012).
  • Cannistra SA. Cancer of the ovary. N. Engl. J. Med. 351(24), 2519–2529 (2004).
  • Kantoff PW, Higano CS, Shore ND et al.; IMPACT Study Investigators. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 363(5), 411–422 (2010).
  • Preston CC, Goode EL, Hartmann LC, Kalli KR, Knutson KL. Immunity and immune suppression in human ovarian cancer. Immunotherapy 3(4), 539–556 (2011).
  • Yigit R, Massuger LF, Figdor CG, Torensma R. Ovarian cancer creates a suppressive microenvironment to escape immune elimination. Gynecol. Oncol. 117(2), 366–372 (2010).
  • Fridman WH, Galon J, Pagès F, Tartour E, Sautès-Fridman C, Kroemer G. Prognostic and predictive impact of intra- and peritumoral immune infiltrates. Cancer Res. 71(17), 5601–5605 (2011).
  • Galon J, Costes A, Sanchez-Cabo F et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313(5795), 1960–1964 (2006).
  • Pagès F, Galon J, Dieu-Nosjean MC, Tartour E, Sautès-Fridman C, Fridman WH. Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene 29(8), 1093–1102 (2010).
  • Pagès F, Kirilovsky A, Mlecnik B et al. In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. J. Clin. Oncol. 27(35), 5944–5951 (2009).
  • Zhang L, Conejo-Garcia JR, Katsaros D et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N. Engl. J. Med. 348(3), 203–213 (2003).
  • Sato E, Olson SH, Ahn J et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc. Natl Acad. Sci. USA 102(51), 18538–18543 (2005).
  • Curiel TJ, Cheng P, Mottram P et al. Dendritic cell subsets differentially regulate angiogenesis in human ovarian cancer. Cancer Res. 64(16), 5535–5538 (2004).
  • Wolf AM, Wolf D, Steurer M, Gastl G, Gunsilius E, Grubeck-Loebenstein B. Increase of regulatory T cells in the peripheral blood of cancer patients. Clin. Cancer Res. 9(2), 606–612 (2003).
  • Wolf D, Wolf AM, Rumpold H et al. The expression of the regulatory T cell-specific forkhead box transcription factor FoxP3 is associated with poor prognosis in ovarian cancer. Clin. Cancer Res. 11(23), 8326–8331 (2005).
  • Gobert M, Treilleux I, Bendriss-Vermare N et al. Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Cancer Res. 69(5), 2000–2009 (2009).
  • Qin XJ, Shi HZ, Deng JM, Liang QL, Jiang J, Ye ZJ. CCL22 recruits CD4-positive CD25-positive regulatory T cells into malignant pleural effusion. Clin. Cancer Res. 15(7), 2231–2237 (2009).
  • Manrique SZ, Correa MA, Hoelzinger DB et al. Foxp3-positive macrophages display immunosuppressive properties and promote tumor growth. J. Exp. Med. 208(7), 1485–1499 (2011).
  • Wei S, Kryczek I, Zou L et al. Plasmacytoid dendritic cells induce CD8+ regulatory T cells in human ovarian carcinoma. Cancer Res. 65(12), 5020–5026 (2005).
  • McKenna K, Beignon AS, Bhardwaj N. Plasmacytoid dendritic cells: linking innate and adaptive immunity. J. Virol. 79(1), 17–27 (2005).
  • Gerlini G, Urso C, Mariotti G et al. Plasmacytoid dendritic cells represent a major dendritic cell subset in sentinel lymph nodes of melanoma patients and accumulate in metastatic nodes. Clin. Immunol. 125(2), 184–193 (2007).
  • Hartmann E, Wollenberg B, Rothenfusser S et al. Identification and functional analysis of tumor-infiltrating plasmacytoid dendritic cells in head and neck cancer. Cancer Res. 63(19), 6478–6487 (2003).
  • Zou W, Machelon V, Coulomb-L’Hermin A et al. Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nat. Med. 7(12), 1339–1346 (2001).
  • Wilke CM, Kryczek I, Zou W. Antigen-presenting cell (APC) subsets in ovarian cancer. Int. Rev. Immunol. 30(2–3), 120–126 (2011).
  • Sharma MD, Baban B, Chandler P et al. Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. J. Clin. Invest. 117(9), 2570–2582 (2007).
  • Inaba T, Ino K, Kajiyama H et al. Role of the immunosuppressive enzyme indoleamine 2,3-dioxygenase in the progression of ovarian carcinoma. Gynecol. Oncol. 115(2), 185–192 (2009).
  • Okamoto A, Nikaido T, Ochiai K et al. Indoleamine 2,3-dioxygenase serves as a marker of poor prognosis in gene expression profiles of serous ovarian cancer cells. Clin. Cancer Res. 11(16), 6030–6039 (2005).
  • Conrad C, Gregorio J, Wang YH et al. Plasmacytoid dendritic cells promote immunosuppression in ovarian cancer via ICOS costimulation of Foxp3+ T-regulatory cells. Cancer Res. 72(20), 5240–5249 (2012).
  • Labidi-Galy SI, Sisirak V, Meeus P et al. Quantitative and functional alterations of plasmacytoid dendritic cells contribute to immune tolerance in ovarian cancer. Cancer Res. 71(16), 5423–5434 (2011).
  • Treilleux I, Blay JY, Bendriss-Vermare N et al. Dendritic cell infiltration and prognosis of early stage breast cancer. Clin. Cancer Res. 10(22), 7466–7474 (2004).
  • Wertel I, Polak G, Bednarek W, Barczynski B, Rolinski J, Kotarski J. Dendritic cell subsets in the peritoneal fluid and peripheral blood of women suffering from ovarian cancer. Cytometry B Clin. Cytom. 74(4), 251–258 (2008).
  • Ali OA, Emerich D, Dranoff G, Mooney DJ. In situ regulation of DC subsets and T cells mediates tumor regression in mice. Sci. Transl. Med. 1(8), 8ra19 (2009).
  • Chen LL, Ye F, Yu Y et al. Ovarian carcinoma cells influence differentiation of Lin-CD45RA- dendritic cell precursors into two mature subtypes in vitro. Gynecol. Oncol. 112(1), 199–204 (2009).
  • Dong H, Chen L. B7-H1 pathway and its role in the evasion of tumor immunity. J. Mol. Med. 81(5), 281–287 (2003).
  • Hamanishi J, Mandai M, Iwasaki M et al. Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc. Natl Acad. Sci. USA 104(9), 3360–3365 (2007).
  • Kryczek I, Wei S, Zhu G et al. Relationship between B7-H4, regulatory T cells, and patient outcome in human ovarian carcinoma. Cancer Res. 67(18), 8900–8905 (2007).
  • Kryczek I, Zou L, Rodriguez P et al. B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J. Exp. Med. 203(4), 871–881 (2006).
  • Wolchok JD, Saenger Y. The mechanism of anti-CTLA-4 activity and the negative regulation of T-cell activation. Oncologist 13(Suppl. 4), 2–9 (2008).
  • Cannon MJ, O’Brien TJ. Cellular immunotherapy for ovarian cancer. Expert Opin. Biol. Ther. 9(6), 677–688 (2009).
  • Inman BA, Frigola X, Dong H, Kwon ED. Costimulation, coinhibition and cancer. Curr. Cancer Drug Targets 7(1), 15–30 (2007).
  • Krempski J, Karyampudi L, Behrens MD et al. Tumor-infiltrating programmed death receptor-1+ dendritic cells mediate immune suppression in ovarian cancer. J. Immunol. 186(12), 6905–6913 (2011).
  • Kryczek I, Banerjee M, Cheng P et al. Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments. Blood 114(6), 1141–1149 (2009).
  • Zou W, Restifo NP. Th17 cells in tumour immunity and immunotherapy. Nat. Rev. Immunol. 10(4), 248–256 (2010).
  • Hinrichs CS, Kaiser A, Paulos CM et al. Type 17 CD8+ T cells display enhanced antitumor immunity. Blood 114(3), 596–599 (2009).
  • Banchereau J, Briere F, Caux C et al. Immunobiology of dendritic cells. Annu. Rev. Immunol. 18, 767–811 (2000).
  • Banchereau J, Palucka AK. Dendritic cells as therapeutic vaccines against cancer. Nat. Rev. Immunol. 5(4), 296–306 (2005).
  • Hart DN. Dendritic cells: unique leukocyte populations which control the primary immune response. Blood 90(9), 3245–3287 (1997).
  • Liu YJ. Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell 106(3), 259–262 (2001).
  • Harada YaY Y. Recent developments in patented DC-based immunotherapy for various malignancies. Recent Patents on Regenerative Medicine 1, 72–87 (2011).
  • Liu B, Nash J, Runowicz C, Swede H, Stevens R, Li Z. Ovarian cancer immunotherapy: opportunities, progresses and challenges. J. Hematol. Oncol. 7 (2010).
  • Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat. Rev. Cancer 12(4), 265–277 (2012).
  • Brossart P, Wirths S, Stuhler G, Reichardt VL, Kanz L, Brugger W. Induction of cytotoxic T-lymphocyte responses in vivo after vaccinations with peptide-pulsed dendritic cells. Blood 96(9), 3102–3108 (2000).
  • Draube A, Klein-González N, Mattheus S et al. Dendritic cell based tumor vaccination in prostate and renal cell cancer: a systematic review and meta-analysis. PLoS One 6(4), e18801 (2011).
  • Ellebaek E, Andersen MH, Svane IM, Straten PT. Immunotherapy for metastatic colorectal cancer: present status and new options. Scand. J. Gastroenterol. 47(3), 315–324 (2012).
  • Lesterhuis WJ, de Vries IJ, Adema GJ, Punt CJ. Dendritic cell-based vaccines in cancer immunotherapy: an update on clinical and immunological results. Ann. Oncol. 15(Suppl. 4), iv145–iv151 (2004).
  • de Vries IJ, Lesterhuis WJ, Scharenborg NM et al. Maturation of dendritic cells is a prerequisite for inducing immune responses in advanced melanoma patients. Clin. Cancer Res. 9(14), 5091–5100 (2003).
  • Schreibelt G, Klinkenberg LJ, Cruz LJ et al. The C-type lectin receptor CLEC9A mediates antigen uptake and (cross-)presentation by human blood BDCA3+ myeloid dendritic cells. Blood 119(10), 2284–2292 (2012).
  • Schreibelt G, Tel J, Sliepen KH et al. Toll-like receptor expression and function in human dendritic cell subsets: implications for dendritic cell-based anti-cancer immunotherapy. Cancer Immunol. Immunother. 59(10), 1573–1582 (2010).
  • Elgueta R, Benson MJ, de Vries VC, Wasiuk A, Guo Y, Noelle RJ. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol. Rev. 229(1), 152–172 (2009).
  • Scholer A, Hugues S, Boissonnas A, Fetler L, Amigorena S. Intercellular adhesion molecule-1-dependent stable interactions between T cells and dendritic cells determine CD8+ T cell memory. Immunity 28(2), 258–270 (2008).
  • Martín-Fontecha A, Lanzavecchia A, Sallusto F. Dendritic cell migration to peripheral lymph nodes. Handb. Exp. Pharmacol. (188), 31–49 (2009).
  • Tal O, Lim HY, Gurevich I et al. DC mobilization from the skin requires docking to immobilized CCL21 on lymphatic endothelium and intralymphatic crawling. J. Exp. Med. 208(10), 2141–2153 (2011).
  • Kalinski P, Hilkens CM, Snijders A, Snijdewint FG, Kapsenberg ML. Dendritic cells, obtained from peripheral blood precursors in the presence of PGE2, promote Th2 responses. Adv. Exp. Med. Biol. 417, 363–367 (1997).
  • Lee JJ, Foon KA, Mailliard RB, Muthuswamy R, Kalinski P. Type 1-polarized dendritic cells loaded with autologous tumor are a potent immunogen against chronic lymphocytic leukemia. J. Leukoc. Biol. 84(1), 319–325 (2008).
  • Mailliard RB, Wankowicz-Kalinska A, Cai Q et al. Alpha-type-1 polarized dendritic cells: a novel immunization tool with optimized CTL-inducing activity. Cancer Res. 64(17), 5934–5937 (2004).
  • Muthuswamy R, Mueller-Berghaus J, Haberkorn U, Reinhart TA, Schadendorf D, Kalinski P. PGE(2) transiently enhances DC expression of CCR7 but inhibits the ability of DCs to produce CCL19 and attract naive T cells. Blood 116(9), 1454–1459 (2010).
  • Muthuswamy R, Urban J, Lee JJ, Reinhart TA, Bartlett D, Kalinski P. Ability of mature dendritic cells to interact with regulatory T cells is imprinted during maturation. Cancer Res. 68(14), 5972–5978 (2008).
  • Dhodapkar MV, Steinman RM. Antigen-bearing immature dendritic cells induce peptide-specific CD8(+) regulatory T cells in vivo in humans. Blood 100(1), 174–177 (2002).
  • Roncarolo MG, Levings MK, Traversari C. Differentiation of T regulatory cells by immature dendritic cells. J. Exp. Med. 193(2), F5–F9 (2001).
  • Verdijk P, Aarntzen EH, Lesterhuis WJ et al. Limited amounts of dendritic cells migrate into the T-cell area of lymph nodes but have high immune activating potential in melanoma patients. Clin. Cancer Res. 15(7), 2531–2540 (2009).
  • Fong L, Brockstedt D, Benike C, Wu L, Engleman EG. Dendritic cells injected via different routes induce immunity in cancer patients. J. Immunol. 166(6), 4254–4259 (2001).
  • Schuler-Thurner B, Schultz ES, Berger TG et al. Rapid induction of tumor-specific type 1 T helper cells in metastatic melanoma patients by vaccination with mature, cryopreserved, peptide-loaded monocyte-derived dendritic cells. J. Exp. Med. 195(10), 1279–1288 (2002).
  • Thurner B, Haendle I, Röder C et al. Vaccination with MAGE-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J. Exp. Med. 190(11), 1669–1678 (1999).
  • Lesterhuis WJ, de Vries IJ, Schreibelt G et al. Route of administration modulates the induction of dendritic cell vaccine-induced antigen-specific T cells in advanced melanoma patients. Clin. Cancer Res. 17(17), 5725–5735 (2011).
  • Hernando JJ, Park TW, Fischer HP et al. Vaccination with dendritic cells transfected with mRNA-encoded folate-receptor-alpha for relapsed metastatic ovarian cancer. Lancet Oncol. 8(5), 451–454 (2007).
  • Jonuleit H, Giesecke-Tuettenberg A, Tüting T et al. A comparison of two types of dendritic cell as adjuvants for the induction of melanoma-specific T-cell responses in humans following intranodal injection. Int. J. Cancer 93(2), 243–251 (2001).
  • Whiteside TL. Evaluation of dendritic cell products generated for human therapy and post-treatment immune monitoring. BioPharm International 21(3), (2008).
  • Hung CF, Wu TC, Monie A, Roden R. Antigen-specific immunotherapy of cervical and ovarian cancer. Immunol. Rev. 222, 43–69 (2008).
  • Sabado RL, Bhardwaj N. Directing dendritic cell immunotherapy towards successful cancer treatment. Immunotherapy 2(1), 37–56 (2010).
  • Chen YT, Scanlan MJ, Sahin U et al. A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc. Natl Acad. Sci. USA 94(5), 1914–1918 (1997).
  • Gjerstorff MF, Kock K, Nielsen O, Ditzel HJ. MAGE-A1, GAGE and NY-ESO-1 cancer/testis antigen expression during human gonadal development. Hum. Reprod. 22(4), 953–960 (2007).
  • Gnjatic S, Nishikawa H, Jungbluth AA et al. NY-ESO-1: review of an immunogenic tumor antigen. Adv. Cancer Res. 95, 1–30 (2006).
  • Odunsi K, Jungbluth AA, Stockert E et al. NY-ESO-1 and LAGE-1 cancer-testis antigens are potential targets for immunotherapy in epithelial ovarian cancer. Cancer Res. 63(18), 6076–6083 (2003).
  • Bast RC Jr, Feeney M, Lazarus H, Nadler LM, Colvin RB, Knapp RC. Reactivity of a monoclonal antibody with human ovarian carcinoma. J. Clin. Invest. 68(5), 1331–1337 (1981).
  • Bast RC Jr, Siegal FP, Runowicz C et al. Elevation of serum CA 125 prior to diagnosis of an epithelial ovarian carcinoma. Gynecol. Oncol. 22(1), 115–120 (1985).
  • Vlad AM, Kettel JC, Alajez NM, Carlos CA, Finn OJ. MUC1 immunobiology: from discovery to clinical applications. Adv. Immunol. 82, 249–293 (2004).
  • Parker N, Turk MJ, Westrick E, Lewis JD, Low PS, Leamon CP. Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal. Biochem. 338(2), 284–293 (2005).
  • Chang K, Pastan I. Molecular cloning of mesothelin, a differentiation antigen present on mesothelium, mesotheliomas, and ovarian cancers. Proc. Natl Acad. Sci. USA 93(1), 136–140 (1996).
  • Müller MR, Tsakou G, Grünebach F, Schmidt SM, Brossart P. Induction of chronic lymphocytic leukemia (CLL)-specific CD4- and CD8-mediated T-cell responses using RNA-transfected dendritic cells. Blood 103(5), 1763–1769 (2004).
  • Redman BG, Chang AE, Whitfield J et al. Phase Ib trial assessing autologous, tumor-pulsed dendritic cells as a vaccine administered with or without IL-2 in patients with metastatic melanoma. J. Immunother. 31(6), 591–598 (2008).
  • Schnurr M, Galambos P, Scholz C et al. Tumor cell lysate-pulsed human dendritic cells induce a T-cell response against pancreatic carcinoma cells: an in vitro model for the assessment of tumor vaccines. Cancer Res. 61(17), 6445–6450 (2001).
  • Thumann P, Moc I, Humrich J et al. Antigen loading of dendritic cells with whole tumor cell preparations. J. Immunol. Methods 277(1–2), 1–16 (2003).
  • Brockstedt DG, Dubensky TW. Promises and challenges for the development of Listeria monocytogenes-based immunotherapies. Expert Rev. Vaccines 7(7), 1069–1084 (2008).
  • Jenne L, Schuler G, Steinkasserer A. Viral vectors for dendritic cell-based immunotherapy. Trends Immunol. 22(2), 102–107 (2001).
  • Skoberne M, Yewdall A, Bahjat KS et al. KBMA Listeria monocytogenes is an effective vector for DC-mediated induction of antitumor immunity. J. Clin. Invest. 118(12), 3990–4001 (2008).
  • Veron P, Allo V, Rivière C, Bernard J, Douar AM, Masurier C. Major subsets of human dendritic cells are efficiently transduced by self-complementary adeno-associated virus vectors 1 and 2. J. Virol. 81(10), 5385–5394 (2007).
  • Gilboa E, Vieweg J. Cancer immunotherapy with mRNA-transfected dendritic cells. Immunol. Rev. 199, 251–263 (2004).
  • Nair SK, Morse M, Boczkowski D et al. Induction of tumor-specific cytotoxic T lymphocytes in cancer patients by autologous tumor RNA-transfected dendritic cells. Ann. Surg. 235(4), 540–549 (2002).
  • Van Driessche A, Van de Velde AL, Nijs G et al. Clinical-grade manufacturing of autologous mature mRNA-electroporated dendritic cells and safety testing in acute myeloid leukemia patients in a Phase I dose-escalation clinical trial. Cytotherapy 11(5), 653–668 (2009).
  • Knippertz I, Hesse A, Schunder T et al. Generation of human dendritic cells that simultaneously secrete IL-12 and have migratory capacity by adenoviral gene transfer of hCD40L in combination with IFN-γ. J. Immunother. 32(5), 524–538 (2009).
  • Gong J, Nikrui N, Chen D et al. Fusions of human ovarian carcinoma cells with autologous or allogeneic dendritic cells induce antitumor immunity. J. Immunol. 165(3), 1705–1711 (2000).
  • Koido S, Nikrui N, Ohana M et al. Assessment of fusion cells from patient-derived ovarian carcinoma cells and dendritic cells as a vaccine for clinical use. Gynecol. Oncol. 99(2), 462–471 (2005).
  • Santin AD, Bellone S, Ravaggi A, Pecorelli S, Cannon MJ, Parham GP. Induction of ovarian tumor-specific CD8+ cytotoxic T lymphocytes by acid-eluted peptide-pulsed autologous dendritic cells. Obstet. Gynecol. 96(3), 422–430 (2000).
  • Schlienger K, Chu CS, Woo EY et al. TRANCE- and CD40 ligand-matured dendritic cells reveal MHC class I-restricted T cells specific for autologous tumor in late-stage ovarian cancer patients. Clin. Cancer Res. 9(4), 1517–1527 (2003).
  • Yu Y, Pilgrim P, Zhou W et al. rAAV/Her-2/neu loading of dendritic cells for a potent cellular-mediated MHC class I restricted immune response against ovarian cancer. Viral Immunol. 21(4), 435–442 (2008).
  • Hernando JJ, Park TW, Kübler K, Offergeld R, Schlebusch H, Bauknecht T. Vaccination with autologous tumour antigen-pulsed dendritic cells in advanced gynaecological malignancies: clinical and immunological evaluation of a phase I trial. Cancer Immunol. Immunother. 51(1), 45–52 (2002).
  • Rahma OE, Ashtar E, Czystowska M et al. A gynecologic oncology group Phase II trial of two p53 peptide vaccine approaches: subcutaneous injection and intravenous pulsed dendritic cells in high recurrence risk ovarian cancer patients. Cancer Immunol. Immunother. 61(3), 373–384 (2012).
  • Chu CS, Boyer J, Schullery DS et al. Phase I/II randomized trial of dendritic cell vaccination with or without cyclophosphamide for consolidation therapy of advanced ovarian cancer in first or second remission. Cancer Immunol. Immunother. 61(5), 629–641 (2012).
  • Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J. Exp. Med. 137(5), 1142–1162 (1973).
  • Hsu FJ, Benike C, Fagnoni F et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat. Med. 2(1), 52–58 (1996).
  • Morse MA, Hobeika AC, Osada T et al. Depletion of human regulatory T cells specifically enhances antigen-specific immune responses to cancer vaccines. Blood 112(3), 610–618 (2008).
  • Lipson EJ, Drake CG. Ipilimumab: an anti-CTLA-4 antibody for metastatic melanoma. Clin. Cancer Res. 17(22), 6958–6962 (2011).
  • Prieto PA, Yang JC, Sherry RM et al. CTLA-4 blockade with ipilimumab: long-term follow-up of 177 patients with metastatic melanoma. Clin. Cancer Res. 18(7), 2039–2047 (2012).
  • Weber J, Thompson JA, Hamid O et al. A randomized, double-blind, placebo-controlled, Phase II study comparing the tolerability and efficacy of ipilimumab administered with or without prophylactic budesonide in patients with unresectable stage III or IV melanoma. Clin. Cancer Res. 15(17), 5591–5598 (2009).
  • Wolchok JD, Neyns B, Linette G, et al. Ipilimumab monotherapy in patients with pretreated advanced melanoma: a randomised, double-blind, multicentre, Phase 2, dose-ranging study. Lancet Oncol. 11, 155–164 (2010).
  • Berger R, Rotem-Yehudar R, Slama G et al. Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin. Cancer Res. 14(10), 3044–3051 (2008).
  • Ray-Coquard I, Guastalla, JP, Allouache D et al. HER2 overexpression/amplification and trastuzumab treatment in advanced ovarian cancer: a GINECO Phase II study. Clin. Ovarian Cancer 1(1), 54–59 (2008).
  • Konner JA, Bell-McGuinn KM, Sabbatini P et al. Farletuzumab, a humanized monoclonal antibody against folate receptor alpha, in epithelial ovarian cancer: a Phase I study. Clin. Cancer Res. 16(21), 5288–5295 (2010).
  • Chianese-Bullock KA, Irvin WP Jr, Petroni GR et al. A multipeptide vaccine is safe and elicits T-cell responses in participants with advanced stage ovarian cancer. J. Immunother. 31(4), 420–430 (2008).
  • Diefenbach CS, Gnjatic S, Sabbatini P et al. Safety and immunogenicity study of NY-ESO-1b peptide and montanide ISA-51 vaccination of patients with epithelial ovarian cancer in high-risk first remission. Clin. Cancer Res. 14(9), 2740–2748 (2008).
  • Leffers N, Lambeck AJ, Gooden MJ et al. Immunization with a p53 synthetic long peptide vaccine induces p53-specific immune responses in ovarian cancer patients, a Phase II trial. Int. J. Cancer 125(9), 2104–2113 (2009).
  • Minkis K, Kavanagh DG, Alter G et al. Type 2 bias of T cells expanded from the blood of melanoma patients switched to type 1 by IL-12p70 mRNA-transfected dendritic cells. Cancer Res. 68(22), 9441–9450 (2008).
  • Adams S, O’Neill DW, Nonaka D et al. Immunization of malignant melanoma patients with full-length NY-ESO-1 protein using Toll-like receptor7 agonist imiquimod as vaccine adjuvant. J. Immunol. 181(1), 776–784 (2008).
  • Fourcade J, Kudela P, Andrade Filho PA et al. Immunization with analog peptide in combination with CpG and montanide expands tumor antigen-specific CD8+ T cells in melanoma patients. J. Immunother. 31(8), 781–791 (2008).
  • Speiser DE, Liénard D, Rufer N et al. Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. J. Clin. Invest. 115(3), 739–746 (2005).
  • Knutson KL, Wagner W, Disis ML. Adoptive T cell therapy of solid cancers. Cancer Immunol. Immunother. 55(1), 96–103 (2006).
  • Kondo H, Hazama S, Kawaoka T et al. Adoptive immunotherapy for pancreatic cancer using MUC1 peptide-pulsed dendritic cells and activated T lymphocytes. Anticancer Res. 28(1B), 379–387 (2008).
  • Kershaw MH, Westwood JA, Parker LL et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin. Cancer Res. 12(20 Pt 1), 6106–6115 (2006).
  • Dobrzanski MJ, Rewers-Felkins KA, Quinlin IS et al. Autologous MUC1-specific Th1 effector cell immunotherapy induces differential levels of systemic Treg cell subpopulations that result in increased ovarian cancer patient survival. Clin. Immunol. 133(3), 333–352 (2009).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.