306
Views
16
CrossRef citations to date
0
Altmetric
Theme: Sarcoma - Review

Fibroblastic tumors of intermediate malignancy in childhood

, , , , , , & show all
Pages 225-236 | Published online: 10 Jan 2014

References

  • WHO Classification of Tumours. Pathology and Genetics. Tumours of Soft Tissue and Bone. Fletcher CDM, Unni KK, Mertens F (Eds). IARC Press, Lyon, France (2002).
  • Coffin C, Boccon-Gibod L. Fibroblastic-myofibroblastic proliferations of childhood and adolescents. Ann. Pathol. 24(6), 605–620 (2004).
  • Allen PW. The fibromatoses: a clinicopathologic classification based on 140 cases. Am. J. Surg. Pathol. 1(3), 255–270 (1977).
  • Levine E, Fréneaux P, Schleiermacher G et al. Risk-adapted therapy for infantile myofibromatosis in children. Pediatr. Blood Cancer 59(1), 115–120 (2012).
  • Fetsch JF, Miettinen M, Laskin WB, Michal M, Enzinger FM. A clinicopathologic study of 45 pediatric soft tissue tumors with an admixture of adipose tissue and fibroblastic elements, and a proposal for classification as lipofibromatosis. Am. J. Surg. Pathol. 24(11), 1491–1500 (2000).
  • Fetsch JF, Laskin WB, Miettinen M. Palmar-plantar fibromatosis in children and preadolescents: a clinicopathologic study of 56 cases with newly recognized demographics and extended follow-up information. Am. J. Surg. Pathol. 29(8), 1095–1105 (2005).
  • Spiegel DA, Dormans JP, Meyer JS et al. Aggressive fibromatosis from infancy to adolescence. J. Pediatr. Orthop. 19(6), 776–784 (1999).
  • Faulkner LB, Hajdu SI, Kher U et al. Pediatric desmoid tumor: retrospective analysis of 63 cases. J. Clin. Oncol. 13(11), 2813–2818 (1995).
  • Godzin´ski W, Sulka M, Ra˛pała E, Bien´ M, Kurylak CA et al. Aggressive fibromatosis: a challenge for pediatric oncology surgery. Pediatr. Blood Cancer 41, 278 (2003).
  • Goldblum J, Fletcher JA. Desmoid-type fibromatosis. In: WHO Classification of Tumors: Pathology and Genetics of Tumors of Soft Tissue and Bone. Fletcher CDM, Unni KK, Mertens F (Eds). International Agency for Research on Cancer Press, Lyon, France, 83–84 (2002).
  • Posner MC, Shiu MH, Newsome JL, Hajdu SI, Gaynor JJ, Brennan MF. The desmoid tumor. Not a benign disease. Arch. Surg. 124(2), 191–196 (1989).
  • Shields CJ, Winter DC, Kirwan WO, Redmond HP. Desmoid tumours. Eur. J. Surg. Oncol. 27(8), 701–706 (2001).
  • Bertario L, Russo A, Sala P et al.; Hereditary Colorectal Tumor Registry. Multiple approach to the exploration of genotype-phenotype correlations in familial adenomatous polyposis. J. Clin. Oncol. 21(9), 1698–1707 (2003).
  • Lefevre JH, Parc Y, Kernéis S et al. Risk factors for development of desmoid tumours in familial adenomatous polyposis. Br. J. Surg. 95(9), 1136–1139 (2008).
  • Soravia C, Berk T, McLeod RS, Cohen Z. Desmoid disease in patients with familial adenomatous polyposis. Dis. Colon Rectum 43(3), 363–369 (2000).
  • Li C, Bapat B, Alman BA. Adenomatous polyposis coli gene mutation alters proliferation through its beta-catenin-regulatory function in aggressive fibromatosis (desmoid tumor). Am. J. Pathol. 153(3), 709–714 (1998).
  • Meazza C, Bisogno G, Gronchi A et al. Aggressive fibromatosis in children and adolescents: the Italian experience. Cancer 116(1), 233–240 (2010).
  • Meazza C, Alaggio R, Ferrari A. Aggressive fibromatosis in children: a changing approach. Minerva Pediatr. 63(4), 305–318 (2011).
  • Lewis JJ, Boland PJ, Leung DH, Woodruff JM, Brennan MF. The enigma of desmoid tumors. Ann. Surg. 229(6), 866–872; discussion 872 (1999).
  • Alman BA, Li C, Pajerski ME, Diaz-Cano S, Wolfe HJ. Increased beta-catenin protein and somatic APC mutations in sporadic aggressive fibromatoses (desmoid tumors). Am. J. Pathol. 151(2), 329–334 (1997).
  • Tejpar S, Nollet F, Li C et al. Predominance of beta-catenin mutations and beta-catenin dysregulation in sporadic aggressive fibromatosis (desmoid tumor). Oncogene 18(47), 6615–6620 (1999).
  • Salas S, Chibon F, Noguchi T et al. Molecular characterization by array comparative genomic hybridization and DNA sequencing of 194 desmoid tumors. Genes. Chromosomes Cancer 49(6), 560–568 (2010).
  • Colombo C, Bolshakov S, Hajibashi S et al. ‘Difficult to diagnose’ desmoid tumours: a potential role for CTNNB1 mutational analysis. Histopathology 59(2), 336–340 (2011).
  • Wang WL, Nero C, Pappo A, Lev D, Lazar AJ, López-Terrada D. CTNNB1 genotyping and APC screening in pediatric desmoid tumors: a proposed algorithm. Pediatr. Dev. Pathol. 15(5), 361–367 (2012).
  • Dômont J, Salas S, Lacroix L et al. High frequency of beta-catenin heterozygous mutations in extra-abdominal fibromatosis: a potential molecular tool for disease management. Br. J. Cancer 102(6), 1032–1036 (2010).
  • Lazar AJ, Tuvin D, Hajibashi S et al. Specific mutations in the beta-catenin gene (CTNNB1) correlate with local recurrence in sporadic desmoid tumors. Am. J. Pathol. 173(5), 1518–1527 (2008).
  • Signoroni S, Frattini M, Negri T et al. Cyclooxygenase-2 and platelet-derived growth factor receptors as potential targets in treating aggressive fibromatosis. Clin. Cancer Res. 13(17), 5034–5040 (2007).
  • Heinrich MC, McArthur GA, Demetri GD et al. Clinical and molecular studies of the effect of imatinib on advanced aggressive fibromatosis (desmoid tumor). J. Clin. Oncol. 24(7), 1195–1203 (2006).
  • Chugh R, Wathen JK, Patel SR et al.; Sarcoma Alliance for Research Through Collaboration (SARC). Efficacy of imatinib in aggressive fibromatosis: Results of a Phase II Multicenter Sarcoma Alliance for Research Through Collaboration (SARC) trial. Clin. Cancer Res. 16(19), 4884–4891 (2010).
  • Gounder MM, Lefkowitz RA, Keohan ML et al. Activity of sorafenib against desmoid tumor/deep fibromatosis. Clin. Cancer Res. 17(12), 4082–4090 (2011).
  • Skubitz KM, Manivel JC, Clohisy DR, Frolich JW. Response of imatinib-resistant extra-abdominal aggressive fibromatosis to sunitinib: case report and review of the literature on response to tyrosine kinase inhibitors. Cancer Chemother. Pharmacol. 64(3), 635–640 (2009).
  • Mignemi NA, Itani DM, Fasig JH et al. Signal transduction pathway analysis in desmoid-type fibromatosis: Transforming growth factor-β, COX2 and sex steroid receptors. Cancer Sci. 103(12), 2173–2180 (2012).
  • Kong Y, Poon R, Nadesan P et al. Matrix metalloproteinase activity modulates tumor size, cell motility, and cell invasiveness in murine aggressive fibromatosis. Cancer Res. 64(16), 5795–5803 (2004).
  • Matono H, Tamiya S, Yokoyama R et al. Abnormalities of the Wnt/β-catenin signalling pathway induce tumour progression in sporadic desmoid tumours: correlation between β-catenin widespread nuclear expression and VEGF overexpression. Histopathology 59(3), 368–375 (2011).
  • Takemaru KI, Ohmitsu M, Li FQ. An oncogenic hub: beta-catenin as a molecular target for cancer therapeutics. Handb. Exp. Pharmacol. 186, 261–284 (2008).
  • Kotiligam D, Lazar AJ, Pollock RE, Lev D. Desmoid tumor: a disease opportune for molecular insights. Histol. Histopathol. 23(1), 117–126 (2008).
  • Buitendijk S, van de Ven CP, Dumans TG et al. Pediatric aggressive fibromatosis: a retrospective analysis of 13 patients and review of literature. Cancer 104(5), 1090–1099 (2005).
  • Skapek SX, Ferguson WS, Granowetter L et al.; Pediatric Oncology Group. Vinblastine and methotrexate for desmoid fibromatosis in children: results of a Pediatric Oncology Group Phase II Trial. J. Clin. Oncol. 25(5), 501–506 (2007).
  • Oudot C, Orbach D, Minard-Colin V et al. Desmoid fibromatosis in pediatric patients: management based on a retrospective analysis of 59 patients and a review of the literature. Sarcoma 2012, 475202 (2012).
  • Papagelopoulos PJ, Mavrogenis AF, Mitsiokapa EA, Papaparaskeva KT, Galanis EC, Soucacos PN. Current trends in the management of extra-abdominal desmoid tumours. World J. Surg. Oncol. 4, 21 (2006).
  • Skene AI, Barr L, A’Hern RP, Fisher C, Meirion Thomas J. Multimodality treatment in the control of deep musculoaponeurotic fibromatosis. Br. J. Surg. 85(5), 655–658 (1998).
  • Smith AJ, Lewis JJ, Merchant NB, Leung DH, Woodruff JM, Brennan MF. Surgical management of intra-abdominal desmoid tumours. Br. J. Surg. 87(5), 608–613 (2000).
  • Gronchi A, Casali PG, Mariani L et al. Quality of surgery and outcome in extra-abdominal aggressive fibromatosis: a series of patients surgically treated at a single institution. J. Clin. Oncol. 21(7), 1390–1397 (2003).
  • Ballo MT, Zagars GK, Pollack A, Pisters PW, Pollack RA. Desmoid tumor: prognostic factors and outcome after surgery, radiation therapy, or combined surgery and radiation therapy. J. Clin. Oncol. 17(1), 158–167 (1999).
  • Guadagnolo BA, Zagars GK, Ballo MT. Long-term outcomes for desmoid tumors treated with radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 71(2), 441–447 (2008).
  • Azzarelli A, Gronchi A, Bertulli R et al. Low-dose chemotherapy with methotrexate and vinblastine for patients with advanced aggressive fibromatosis. Cancer 92(5), 1259–1264 (2001).
  • Bonvalot S, Eldweny H, Haddad V et al. Extra-abdominal primary fibromatosis: Aggressive management could be avoided in a subgroup of patients. Eur. J. Surg. Oncol. 34(4), 462–468 (2008).
  • Fiore M, Rimareix F, Mariani L et al. Desmoid-type fibromatosis: a front-line conservative approach to select patients for surgical treatment. Ann. Surg. Oncol. 16(9), 2587–2593 (2009).
  • Salas S, Dufresne A, Bui B et al. Prognostic factors influencing progression-free survival determined from a series of sporadic desmoid tumors: a wait-and-see policy according to tumor presentation. J. Clin. Oncol. 29(26), 3553–3558 (2011).
  • Mezhir JJ. The desmoid tumor: still an enigma. J. Surg. Res. 173(1), 46–48 (2012).
  • Lev D, Kotilingam D, Wei C et al. Optimizing treatment of desmoid tumors. J. Clin. Oncol. 25(13), 1785–1791 (2007).
  • Lazar AJ, Hajibashi S, Lev D. Desmoid tumor: from surgical extirpation to molecular dissection. Curr. Opin. Oncol. 21(4), 352–359 (2009).
  • Barbier O, Anract P, Pluot E et al. Primary or recurring extra-abdominal desmoid fibromatosis: assessment of treatment by observation only. Orthop. Traumatol. Surg. Res. 96(8), 884–889 (2010).
  • Janinis J, Patriki M, Vini L, Aravantinos G, Whelan JS. The pharmacological treatment of aggressive fibromatosis: a systematic review. Ann. Oncol. 14(2), 181–190 (2003).
  • Garbay D, Le Cesne A, Penel N et al. Chemotherapy in patients with desmoid tumors: a study from the French Sarcoma Group (FSG). Ann. Oncol. 23(1), 182–186 (2012).
  • Reich S, Overberg-Schmidt US, Bührer C, Henze G. Low-dose chemotherapy with vinblastine and methotrexate in childhood desmoid tumors. J. Clin. Oncol. 17(3), 1086 (1999).
  • Lackner H, Urban C, Benesch M et al. Multimodal treatment of children with unresectable or recurrent desmoid tumors: an 11-year longitudinal observational study. J. Pediatr. Hematol. Oncol. 26(8), 518–522 (2004).
  • Constantinidou A, Jones RL, Scurr M, Al-Muderis O, Judson I. Pegylated liposomal doxorubicin, an effective, well-tolerated treatment for refractory aggressive fibromatosis. Eur. J. Cancer 45(17), 2930–2934 (2009).
  • Meazza C, Casanova M, Trecate G, Ferrari A. Objective response to hydroxyurea in a patient with heavily pre-treated aggressive fibromatosis. Pediatr. Blood Cancer 55(3), 587–588 (2010).
  • Bisogno G, Tagarelli A, Stramare R, Beltrame V, Carli M. Hydroxyurea treatment can avoid the need for aggressive surgery in pediatric fibromatosis. J. Pediatr. Hematol. Oncol. (2012).
  • Bocale D, Rotelli MT, Cavallini A, Altomare DF. Anti-oestrogen therapy in the treatment of desmoid tumours: a systematic review. Colorectal Dis. 13(12), e388–e395 (2011).
  • Kinzbrunner B, Ritter S, Domingo J, Rosenthal CJ. Remission of rapidly growing desmoid tumors after tamoxifen therapy. Cancer 52(12), 2201–2204 (1983).
  • Hansmann A, Adolph C, Vogel T, Unger A, Moeslein G. High-dose tamoxifen and sulindac as first-line treatment for desmoid tumors. Cancer 100(3), 612–620 (2004).
  • Altomare DF, Rotelli MT, Rinaldi M et al. Potential role of the steroid receptor pattern in the response of inoperable intra-abdominal desmoid to toremifene after failure of tamoxifen therapy. Int. J. Colorectal Dis. 25(6), 787–789 (2010).
  • Merchant TE, Nguyen D, Walter AW, Pappo AS, Kun LE, Rao BN. Long-term results with radiation therapy for pediatric desmoid tumors. Int. J. Radiat. Oncol. Biol. Phys. 47(5), 1267–1271 (2000).
  • Rutenberg MS, Indelicato DJ, Knapik JA et al. External-beam radiotherapy for pediatric and young adult desmoid tumors. Pediatr. Blood Cancer 57(3), 435–442 (2011).
  • Chung EB, Enzinger FM. Infantile fibrosarcoma. Cancer 38(2), 729–739 (1976).
  • Coffin CM, Jaszcz W, O’Shea PA, Dehner LP. So-called congenital-infantile fibrosarcoma: does it exist and what is it? Pediatr. Pathol. 14(1), 133–150 (1994).
  • Ries LAG, Smith MA, Gurney JG et al. Cancer Incidence and Survival among Children and Adolescents: United States SEER Program 1975–1995. National Cancer Institute, MD, USA (1999)
  • Ferrari A, Alaggio R, Ferrari S. Rare mesenchymal tumors. In: Rare Tumors in Children and Adolescents. Schneider DT, Brecht IB, Olson TA, Ferrari A (Eds). Springer, Berlin, Germany, 485–517 (2012).
  • Knezevich SR, Garnett MJ, Pysher TJ et al. ETV6-NTRK3 gene fusions and trisomy 11 establish a histogenetic link between mesoblastic nephroma and congenital fibrosarcoma. Cancer Res. 58, 5046–5048 (1998).
  • Bourgeois JM, Knezevich SR, Mathers JA, Sorensen PH. Molecular detection of the ETV6-NTRK3 gene fusion differentiates congenital fibrosarcoma from other childhood spindle cell tumors. Am. J. Surg. Pathol. 24(7), 937–946 (2000).
  • Dal Cin P, Brock P, Casteels-Van Daele M, De Wever I, Van Damme B, Van den Berghe H. Cytogenetic characterization of congenital or infantile fibrosarcoma. Eur. J. Pediatr. 150(8), 579–581 (1991).
  • Gadd S, Beezhold P, Jennings L et al. Mediators of receptor tyrosine kinase activation in infantile fibrosarcoma: a Children’s Oncology Group study. J. Pathol. 228(1), 119–130 (2012).
  • Alaggio R, Ninfo V, Rosolen A, Coffin CM. Primitive myxoid mesenchymal tumor of infancy: a clinicopathologic report of 6 cases. Am. J. Surg. Pathol. 30(3), 388–394 (2006).
  • Ferrari A, Orbach D, Sultan I, Casanova M, Bisogno G. Neonatal soft tissue sarcomas. Semin. Fetal Neonatal Med. 17(4), 231–238 (2012).
  • Steelman C, Katzenstein H, Parham D et al. Unusual presentation of congenital infantile fibrosarcoma in seven infants with molecular-genetic analysis. Fetal Pediatr. Pathol. 30(5), 329–337 (2011).
  • Brisse HJ, Orbach D, Klijanienko J. Soft tissue tumours: imaging strategy. Pediatr. Radiol. 40(6), 1019–1028 (2010).
  • Yan AC, Chamlin SL, Liang MG et al. Congenital infantile fibrosarcoma: a masquerader of ulcerated hemangioma. Pediatr. Dermatol. 23(4), 330–334 (2006).
  • Orbach D, Rey A, Cecchetto G et al. Infantile fibrosarcoma: management based on the European experience. J. Clin. Oncol. 28(2), 318–323 (2010).
  • Ferrari A, Casanova M. New concepts for the treatment of pediatric nonrhabdomyosarcoma soft tissue sarcomas. Expert Rev. Anticancer Ther. 5(2), 307–318 (2005).
  • Coffin CM, Watterson J, Priest JR, Dehner LP. Extrapulmonary inflammatory myofibroblastic tumor (inflammatory pseudotumor). A clinicopathologic and immunohistochemical study of 84 cases. Am. J. Surg. Pathol. 19(8), 859–872 (1995).
  • Coffin CM, Humphrey PA, Dehner LP. Extrapulmonary inflammatory myofibroblastic tumor: a clinical and pathological survey. Semin. Diagn. Pathol. 15(2), 85–101 (1998).
  • Mergan F, Jaubert F, Sauvat F et al. Inflammatory myofibroblastic tumor in children: clinical review with anaplastic lymphoma kinase, Epstein–Barr virus, and human herpesvirus 8 detection analysis. J. Pediatr. Surg. 40(10), 1581–1586 (2005).
  • Alaggio R, Cecchetto G, Bisogno G et al. Inflammatory myofibroblastic tumors in childhood: a report from the Italian Cooperative Group studies. Cancer 116(1), 216–226 (2010).
  • Treissman SP, Gillis DA, Lee CL, Giacomantonio M, Resch L. Omental-mesenteric inflammatory pseudotumor. Cytogenetic demonstration of genetic changes and monoclonality in one tumor. Cancer 73(5), 1433–1437 (1994).
  • Chen ST, Lee JC. An inflammatory myofibroblastic tumor in liver with ALK and RANBP2 gene rearrangement: combination of distinct morphologic, immunohistochemical, and genetic features. Hum. Pathol. 39(12), 1854–1858 (2008).
  • Bridge JA, Kanamori M, Ma Z et al. Fusion of the ALK gene to the clathrin heavy chain gene, CLTC, in inflammatory myofibroblastic tumor. Am. J. Pathol. 159(2), 411–415 (2001).
  • Cook JR, Dehner LP, Collins MH et al. Anaplastic lymphoma kinase (ALK) expression in the inflammatory myofibroblastic tumor: a comparative immunohistochemical study. Am. J. Surg. Pathol. 25(11), 1364–1371 (2001).
  • Coffin CM, Patel A, Perkins S, Elenitoba-Johnson KS, Perlman E, Griffin CA. ALK1 and p80 expression and chromosomal rearrangements involving 2p23 in inflammatory myofibroblastic tumor. Mod. Pathol. 14(6), 569–576 (2001).
  • Chun YS, Wang L, Nascimento AG, Moir CR, Rodeberg DA. Pediatric inflammatory myofibroblastic tumor: anaplastic lymphoma kinase (ALK) expression and prognosis. Pediatr. Blood Cancer 45(6), 796–801 (2005).
  • Meis JM, Enzinger FM. Inflammatory fibrosarcoma of the mesentery and retroperitoneum. A tumor closely simulating inflammatory pseudotumor. Am. J. Surg. Pathol. 15(12), 1146–1156 (1991).
  • Hussong JW, Brown M, Perkins SL, Dehner LP, Coffin CM. Comparison of DNA ploidy, histologic, and immunohistochemical findings with clinical outcome in inflammatory myofibroblastic tumors. Mod. Pathol. 12(3), 279–286 (1999).
  • Coffin CM, Hornick JL, Fletcher CD. Inflammatory myofibroblastic tumor: comparison of clinicopathologic, histologic, and immunohistochemical features including ALK expression in atypical and aggressive cases. Am. J. Surg. Pathol. 31(4), 509–520 (2007).
  • Dishop MK, Warner BW, Dehner LP et al. Successful treatment of inflammatory myofibroblastic tumor with malignant transformation by surgical resection and chemotherapy. J. Pediatr. Hematol. Oncol. 25(2), 153–158 (2003).
  • Favini F, Resti AG, Collini P et al. Inflammatory myofibroblastic tumor of the conjunctiva: response to chemotherapy with low-dose methotrexate and vinorelbine. Pediatr. Blood Cancer 54(3), 483–485 (2010).
  • Applebaum H, Kieran MW, Cripe TP et al. The rationale for nonsteroidal anti-inflammatory drug therapy for inflammatory myofibroblastic tumors: a Children’s Oncology Group Study. J. Pediatr. Surg. 40(6), 999–1003; discussion 1003 (2005).
  • Berger A, Kim C, Hagstrom N, Ferrer F. Successful preoperative treatment of pediatric bladder inflammatory myofibroblastic tumor with anti-inflammatory therapy. Urology 70(2), 372.e13–372.e15 (2007).
  • Lee MH, Lee HB, Lee YC et al. Bilateral multiple inflammatory myofibroblastic tumors of the lung successfully treated with corticosteroids. Lung 189(5), 433–435 (2011).
  • Butrynski JE, D’Adamo DR, Hornick JL et al. Crizotinib in ALK-rearranged inflammatory myofibroblastic tumor. N. Engl. J. Med. 363(18), 1727–1733 (2010).
  • Olson TA, Schneider DT, Brecht IB, Ferrari A. Rare tumors: a different perspective on oncology. In: Rare Tumors in Children and Adolescents. Schneider DT, Brecht IB, Olson TA, Ferrari A (Eds). Springer, Berlin, UK, 3–15 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.