127
Views
17
CrossRef citations to date
0
Altmetric
Theme: Lung Cancer - Review

Anaplastic lymphoma kinase: a glimmer of hope in lung cancer treatment?

, , , , , , , , , & show all
Pages 407-420 | Published online: 10 Jan 2014

References

  • Lamant L, Meggetto F, al Saati T et al. High incidence of the t(2;5)(p23;q35) translocation in anaplastic large cell lymphoma and its lack of detection in Hodgkin’s disease. Comparison of cytogenetic analysis, reverse transcriptase-polymerase chain reaction, and P-80 immunostaining. Blood 87(1), 284–291 (1996).
  • Palmer RH, Vernersson E, Grabbe C, Hallberg B. Anaplastic lymphoma kinase: signalling in development and disease. Biochem. J. 420(3), 345–361 (2009).
  • Souttou B, Carvalho NB, Raulais D, Vigny M. Activation of anaplastic lymphoma kinase receptor tyrosine kinase induces neuronal differentiation through the mitogen-activated protein kinase pathway. J. Biol. Chem. 276(12), 9526–9531 (2001).
  • Chiarle R, Voena C, Ambrogio C, Piva R, Inghirami G. The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat. Rev. Cancer 8(1), 11–23 (2008).
  • Morris SW, Kirstein MN, Valentine MB et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 263(5151), 1281–1284 (1994).
  • Barreca A, Lasorsa E, Riera L et al.; European T-Cell Lymphoma Study Group. Anaplastic lymphoma kinase in human cancer. J. Mol. Endocrinol. 47(1), R11–R23 (2011).
  • Janoueix-Lerosey I, Schleiermacher G, Delattre O. Molecular pathogenesis of peripheral neuroblastic tumors. Oncogene 29(11), 1566–1579 (2010).
  • Carén H, Abel F, Kogner P, Martinsson T. High incidence of DNA mutations and gene amplifications of the ALK gene in advanced sporadic neuroblastoma tumours. Biochem. J. 416(2), 153–159 (2008).
  • Duijkers FA, Gaal J, Meijerink JP et al. Anaplastic lymphoma kinase (ALK) inhibitor response in neuroblastoma is highly correlated with ALK mutation status, ALK mRNA and protein levels. Cell. Oncol. (Dordr.) 34(5), 409–417 (2011).
  • Soda M, Choi YL, Enomoto M et al. Identification of the transforming EML4–ALK fusion gene in non-small-cell lung cancer. Nature 448(7153), 561–566 (2007).
  • Houtman SH, Rutteman M, De Zeeuw CI, French PJ. Echinoderm microtubule-associated protein like protein 4, a member of the echinoderm microtubule-associated protein family, stabilizes microtubules. Neuroscience 144(4), 1373–1382 (2007).
  • Soda M, Takada S, Takeuchi K et al. A mouse model for EML4–ALK-positive lung cancer. Proc. Natl Acad. Sci. USA 105(50), 19893–19897 (2008).
  • Sasaki T, Rodig SJ, Chirieac LR, Jänne PA. The biology and treatment of EML4–ALK non-small cell lung cancer. Eur. J. Cancer 46(10), 1773–1780 (2010).
  • Doebele RC, Pilling AB, Aisner DL et al. Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin. Cancer Res. 18(5), 1472–1482 (2012).
  • Zhang X, Zhang S, Yang X et al. Fusion of EML4 and ALK is associated with development of lung adenocarcinomas lacking EGFR and KRAS mutations and is correlated with ALK expression. Mol. Cancer 9, 188 (2010).
  • Horn L, Pao W. EML4–ALK: honing in on a new target in non-small-cell lung cancer. J. Clin. Oncol. 27(26), 4232–4235 (2009).
  • Rikova K, Guo A, Zeng Q et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131(6), 1190–1203 (2007).
  • Hernández L, Beà S, Bellosillo B et al. Diversity of genomic breakpoints in TFG-ALK translocations in anaplastic large cell lymphomas: identification of a new TFG-ALK(XL) chimeric gene with transforming activity. Am. J. Pathol. 160(4), 1487–1494 (2002).
  • Takeuchi K, Choi YL, Togashi Y et al. KIF5B-ALK, a novel fusion oncokinase identified by an immunohistochemistry-based diagnostic system for ALK-positive lung cancer. Clin. Cancer Res. 15(9), 3143–3149 (2009).
  • Wong DW, Leung EL, Wong SK et al. A novel KIF5B-ALK variant in nonsmall cell lung cancer. Cancer 117(12), 2709–2718 (2011).
  • Togashi Y, Soda M, Sakata S et al. KLC1-ALK: a novel fusion in lung cancer identified using a formalin-fixed paraffin-embedded tissue only. PLoS ONE 7(2), e31323 (2012).
  • Varella-Garcia M. Chromosomal and genomic changes in lung cancer. Cell Adh. Migr. 4(1), 100–106 (2010).
  • Sequist LV, Heist RS, Shaw AT et al. Implementing multiplexed genotyping of non-small-cell lung cancers into routine clinical practice. Ann. Oncol. 22(12), 2616–2624 (2011).
  • Kwak EL, Bang YJ, Camidge DR et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N. Engl. J. Med. 363(18), 1693–703 (2010).
  • Solomon B, Varella-Garcia M, Camidge DR. ALK gene rearrangements: a new therapeutic target in a molecularly defined subset of non-small cell lung cancer. J. Thorac. Oncol. 4(12), 1450–1454 (2009).
  • Janku F, Stewart DJ, Kurzrock R. Targeted therapy in non-small-cell lung cancer – is it becoming a reality? Nat. Rev. Clin. Oncol. 7(7), 401–414 (2010).
  • Rodig SJ, Mino-Kenudson M, Dacic S et al. Unique clinicopathologic features characterize ALK-rearranged lung adenocarcinoma in the western population. Clin. Cancer Res. 15(16), 5216–5223 (2009).
  • Yoshida A, Tsuta K, Nakamura H et al. Comprehensive histologic analysis of ALK-rearranged lung carcinomas. Am. J. Surg. Pathol. 35(8), 1226–1234 (2011).
  • Atherly AJ, Camidge DR. The cost–effectiveness of screening lung cancer patients for targeted drug sensitivity markers. Br. J. Cancer 106(6), 1100–1106 (2012).
  • Tomizawa Y, Iijima H, Sunaga N et al. Clinicopathologic significance of the mutations of the epidermal growth factor receptor gene in patients with non-small cell lung cancer. Clin. Cancer Res. 11(19 Pt 1), 6816–6822 (2005).
  • Inamura K, Takeuchi K, Togashi Y et al. EML4–ALK lung cancers are characterized by rare other mutations, a TTF-1 cell lineage, an acinar histology, and young onset. Mod. Pathol. 22(4), 508–515 (2009).
  • Shaw AT, Yeap BY, Mino-Kenudson M et al. Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4–ALK. J. Clin. Oncol. 27(26), 4247–4253 (2009).
  • Paik JH, Choe G, Kim H et al. Screening of anaplastic lymphoma kinase rearrangement by immunohistochemistry in non-small cell lung cancer: correlation with fluorescence in situ hybridization. J. Thorac. Oncol. 6(3), 466–472 (2011).
  • Koh Y, Kim DW, Kim TM et al. Clinicopathologic characteristics and outcomes of patients with anaplastic lymphoma kinase-positive advanced pulmonary adenocarcinoma: suggestion for an effective screening strategy for these tumors. J. Thorac. Oncol. 6(5), 905–912 (2011).
  • Fukui T, Yatabe Y, Kobayashi Y et al. Clinicoradiologic characteristics of patients with lung adenocarcinoma harboring EML4–ALK fusion oncogene. Lung Cancer 77(2), 319–325 (2012).
  • Nakajima T, Kimura H, Takeuchi K et al. Treatment of lung cancer with an ALK inhibitor after EML4–ALK fusion gene detection using endobronchial ultrasound-guided transbronchial needle aspiration. J. Thorac. Oncol. 5(12), 2041–2043 (2010).
  • Inamura K, Takeuchi K, Togashi Y et al. EML4–ALK fusion is linked to histological characteristics in a subset of lung cancers. J. Thorac. Oncol. 3(1), 13–17 (2008).
  • Jokoji R, Yamasaki T, Minami S et al. Combination of morphological feature analysis and immunohistochemistry is useful for screening of EML4–ALK-positive lung adenocarcinoma. J. Clin. Pathol. 63(12), 1066–1070 (2010).
  • Boland JM, Erdogan S, Vasmatzis G et al. Anaplastic lymphoma kinase immunoreactivity correlates with ALK gene rearrangement and transcriptional up-regulation in non-small cell lung carcinomas. Hum. Pathol. 40(8), 1152–1158 (2009).
  • Tiseo M, Gelsomino F, Boggiani D et al. EGFR and EML4–ALK gene mutations in NSCLC: a case report of erlotinib-resistant patient with both concomitant mutations. Lung Cancer 71(2), 241–243 (2011).
  • Camidge DR, Kono SA, Flacco A et al. Optimizing the detection of lung cancer patients harboring anaplastic lymphoma kinase (ALK) gene rearrangements potentially suitable for ALK inhibitor treatment. Clin. Cancer Res. 16(22), 5581–5590 (2010).
  • Popat S, Vieira de Araújo A, Min T et al. Lung adenocarcinoma with concurrent exon 19 EGFR mutation and ALK rearrangement responding to erlotinib. J. Thorac. Oncol. 6(11), 1962–1963 (2011).
  • Mino-Kenudson M, Chirieac LR, Law K et al. A novel, highly sensitive antibody allows for the routine detection of ALK-rearranged lung adenocarcinomas by standard immunohistochemistry. Clin. Cancer Res. 16(5), 1561–1571 (2010).
  • Cataldo KA, Jalal SM, Law ME et al. Detection of t(2;5) in anaplastic large cell lymphoma: comparison of immunohistochemical studies, FISH, and RT-PCR in paraffin-embedded tissue. Am. J. Surg. Pathol. 23(11), 1386–1392 (1999).
  • Yi ES, Boland JM, Maleszewski JJ et al. Correlation of IHC and FISH for ALK gene rearrangement in non-small cell lung carcinoma: IHC score algorithm for FISH. J. Thorac. Oncol. 6(3), 459–465 (2011).
  • Kim H, Yoo SB, Choe JY et al. Detection of ALK gene rearrangement in non-small cell lung cancer: a comparison of fluorescence in situ hybridization and chromogenic in situ hybridization with correlation of ALK protein expression. J. Thorac. Oncol. 6(8), 1359–1366 (2011).
  • Takeuchi K, Choi YL, Soda M et al. Multiplex reverse transcription-PCR screening for EML4–ALK fusion transcripts. Clin. Cancer Res. 14(20), 6618–6624 (2008).
  • Just PA, Cazes A, Audebourg A et al. Histologic subtypes, immunohistochemistry, FISH or molecular screening for the accurate diagnosis of ALK-rearrangement in lung cancer: a comprehensive study of Caucasian non-smokers. Lung Cancer 76(3), 309–315 (2012).
  • Osajima-Hakomori Y, Miyake I, Ohira M, Nakagawara A, Nakagawa A, Sakai R. Biological role of anaplastic lymphoma kinase in neuroblastoma. Am. J. Pathol. 167(1), 213–222 (2005).
  • Perner S, Wagner PL, Demichelis F et al. EML4–ALK fusion lung cancer: a rare acquired event. Neoplasia 10(3), 298–302 (2008).
  • Salido M, Pijuan L, Martínez-Avilés L et al. Increased ALK gene copy number and amplification are frequent in non-small cell lung cancer. J. Thorac. Oncol. 6(1), 21–27 (2011).
  • Zou HY, Li Q, Lee JH et al. An orally available small-molecule inhibitor of c-Met, PF-2341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms. Cancer Res. 67(9), 4408–4417 (2007).
  • Cui JJ, Tran-Dubé M, Shen H et al. Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J. Med. Chem. 54(18), 6342–6363 (2011).
  • Gambacorti-Passerini C, Messa C, Pogliani EM. Crizotinib in anaplastic large-cell lymphoma. N. Engl. J. Med. 364(8), 775–776 (2011).
  • Butrynski JE, D’Adamo DR, Hornick JL et al. Crizotinib in ALK-rearranged inflammatory myofibroblastic tumor. N. Engl. J. Med. 363(18), 1727–1733 (2010).
  • Choi YL, Soda M, Yamashita Y et al. EML4–ALK mutations in lung cancer that confer resistance to ALK inhibitors. N. Engl. J. Med. 363(18), 1734–1739 (2010).
  • Katayama R, Shaw AT, Khan TM et al. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung Cancers. Sci. Transl. Med. 4(120), 120ra17 (2012).
  • Ardini E, Galvani A. ALK inhibitors, a pharmaceutical perspective. Front. Oncol. 2, 17 (2012).
  • Yun CH, Mengwasser KE, Toms AV et al. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc. Natl Acad. Sci. USA 105(6), 2070–2075 (2008).
  • Mologni L. Inhibitors of the anaplastic lymphoma kinase. Expert Opin. Investig. Drugs 21(7), 985–994 (2012).
  • Sasaki T, Koivunen J, Ogino A et al. A novel ALK secondary mutation and EGFR signaling cause resistance to ALK kinase inhibitors. Cancer Res. 71(18), 6051–6060 (2011).
  • Engelman JA, Zejnullahu K, Mitsudomi T et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316(5827), 1039–1043 (2007).
  • Johannessen CM, Boehm JS, Kim SY et al. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468(7326), 968–972 (2010).
  • Nazarian R, Shi H, Wang Q et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468(7326), 973–977 (2010).
  • Caraglia M, Pinto A, Correale P et al. 5-Aza-2´-deoxycytidine induces growth inhibition and upregulation of epidermal growth factor receptor on human epithelial cancer cells. Ann. Oncol. 5(3), 269–276 (1994).
  • Caraglia M, Tagliaferri P, Marra M et al. EGF activates an inducible survival response via the RAS-> Erk-1/2 pathway to counteract interferon-alpha-mediated apoptosis in epidermoid cancer cells. Cell Death Differ. 10(2), 218–229 (2003).
  • Ou SH. Crizotinib: a novel and first-in-class multitargeted tyrosine kinase inhibitor for the treatment of anaplastic lymphoma kinase rearranged non-small cell lung cancer and beyond. Drug Des. Devel. Ther. 5, 471–485 (2011).
  • Li N, Michellys P, Kim S et al. Activity of a potent and selective Phase I ALK inhibitor LDK378 in naive and crizotinib-resistant preclinical tumor models. Presented at: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics. San Francisco, CA, USA, 12–16 November 2011.
  • Lennerz JK, Kwak EL, Ackerman A et al. MET amplification identifies a small and aggressive subgroup of esophagogastric adenocarcinoma with evidence of responsiveness to crizotinib. J. Clin. Oncol. 29(36), 4803–4810 (2011).
  • Zhang S, Wang F, Keats J et al. AP26113, a potent ALK inhibitor, overcomes mutations in EML4–ALK that confer resistance to PF-02341066. Presented at: 101st AACR Annual Meeting. Washington, DC, USA, 17–21 April 2010.
  • Sabbatini P, Korenchuk S, Rowand JL et al. GSK1838705A inhibits the insulin-like growth factor-1 receptor and anaplastic lymphoma kinase and shows antitumor activity in experimental models of human cancers. Mol. Cancer Ther. 8(10), 2811–2820 (2009).
  • Schwer AL, Gaspar LE. Update in the treatment of brain metastases from lung cancer. Clin. Lung Cancer 8(3), 180–186 (2006).
  • Ardini E, Menichincheri M, De Ponti C et al. Characterization of NMS-E628, a small molecule inhibitor of anaplastic lymphoma kinase with antitumor efficacy in ALK-dependent lymphoma and non-small cell lung cancer models. Presented at: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics. Boston, MA, USA, 15–19 November 2009.
  • Koivunen JP, Mermel C, Zejnullahu K et al. EML4–ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer. Clin. Cancer. Res. 14(13), 4275–7283 (2008).
  • Martelli MP, Sozzi G, Hernandez L et al. EML4–ALK rearrangement in non-small cell lung cancer and non-tumor lung tissues. Am. J. Pathol. 174(2), 661–670 (2009).
  • Wong DW, Leung EL, So KK et al. The EML4–ALK fusion gene is involved in various histologic types of lung cancers from nonsmokers with wild-type EGFR and KRAS. Cancer 115(8), 1723–1733 (2009).
  • Lee JO, Kim TM, Lee L et al. Anaplastic lymphoma kinase translocation: a predictive biomarker of pemetrexed in patients with non-small cell lung cancer. J. Thorac. Oncol. 6(9), 1474–1780 (2011).
  • Kim HR, Shim HS, Chung JH et al. Distinct clinical features and outcomes in never-smokers with nonsmall cell lung cancer who harbor EGFR or KRAS mutations or ALK rearrangement. Cancer 118(3), 729–739 (2012).
  • Shinmura K, Kageyama S, Tao H et al. EML4–ALK fusion transcripts, but no NPM-, TPM3-, CLTC-, ATIC-, or TFG-ALK fusion transcripts, in non-small cell lung carcinomas. Lung Cancer 61(2), 163–169 (2008).
  • Sun Y, Ren Y, Fang Z et al. Lung adenocarcinoma from East Asian never-smokers is a disease largely defined by targetable oncogenic mutant kinases. J. Clin. Oncol. 28(30), 4616–4620 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.