180
Views
22
CrossRef citations to date
0
Altmetric
Review

Lipoprotein-associated phospholipase A2: role in atherosclerosis and utility as a cardiovascular biomarker

, , &
Pages 425-438 | Published online: 10 Jan 2014

References

  • Toth PP. Making a case for quantitative assessment of cardiovascular risk. J. Clin. Lipidol.1(4), 234–241 (2007).
  • Ridker PM. Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation107(3), 363–369 (2003).
  • Blake GJ, Dada N, Fox JC, Manson JE, Ridker PM. A prospective evaluation of lipoprotein-associated phospholipase A(2) levels and the risk of future cardiovascular events in women. J. Am. Coll. Cardiol.38(5), 1302–1306 (2001).
  • Nicholls SJ, Hazen SL. Myeloperoxidase and cardiovascular disease. Arterioscler. Thromb. Vasc. Biol.25(6), 1102–1111 (2005).
  • Libby P. What have we learned about the biology of atherosclerosis? The role of inflammation. Am. J. Cardiol.88(7B), 3J–6J (2001).
  • Libby P. Act local, act global: inflammation and the multiplicity of ‘vulnerable’ coronary plaques. J. Am. Coll. Cardiol.45(10), 1600–1602 (2005).
  • Davies MJ, Gordon JL, Gearing AJ et al. The expression of the adhesion molecules ICAM-1, VCAM-1, PECAM, and E-selectin in human atherosclerosis. J. Pathol.171(3), 223–229 (1993).
  • Tabas I. Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis: the importance of lesion stage and phagocytic efficiency. Arterioscler. Thromb. Vasc. Biol.25(11), 2255–2264 (2005).
  • Tabas I, Williams KJ, Boren J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation116(16), 1832–1844 (2007).
  • Ridker P, Bassuk S, Toth PP. C-reactive protein and risk of cardiovascular disease: evidence and clinical application. Curr. Atheroscler. Rep.5(5), 341–349 (2003).
  • Brennan ML, Hazen SL. Emerging role of myeloperoxidase and oxidant stress markers in cardiovascular risk assessment. Curr. Opin. Lipidol.14(4), 353–359 (2003).
  • Ballantyne CM, Hoogeveen RC, Bang H et al. Lipoprotein-associated phospholipase A2, high-sensitivity C-reactive protein, and risk for incident coronary heart disease in middle-aged men and women in the Atherosclerosis Risk in Communities (ARIC) study. Circulation109(7), 837–842 (2004).
  • Ballantyne CM, Hoogeveen RC, Bang H et al. Lipoprotein-associated phospholipase A2, high-sensitivity C-reactive protein, and risk for incident ischemic stroke in middle-aged men and women in the Atherosclerosis Risk in Communities (ARIC) study. Arch. Intern. Med.165(21), 2479–2484 (2005).
  • Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther.69, 89–95 (2001).
  • Hak AE, Stehouwer CD, Bots ML et al. Associations of C-reactive protein with measures of obesity, insulin resistance, and subclinical atherosclerosis in healthy, middle-aged women. Arterioscler. Thromb. Vasc. Biol.19(8), 1986–1991 (1999).
  • Clyne B, Olshaker JS. The C-reactive protein. J. Emerg. Med.17(6), 1019–1025 (1999).
  • Lau DC, Dillon B, Yan H, Szmitko PE, Verma S. Adipokines: molecular links between obesity and atherosclerosis. Am. J. Physiol. Heart Circ. Physiol.288(5), H2031–H2041 (2005).
  • Lloyd-Jones DM, Liu K, Tian L, Greenland P. Assessment of C-reactive protein in risk prediction for cardiovascular disease. Ann. Intern. Med.145(1), 35–42 (2006).
  • Selvin E, Paynter NP, Erlinger TP. The effect of weight loss on C-reactive protein: a systematic review. Arch. Intern. Med.167(1), 31–39 (2007).
  • Zacho J, Tybjaerg-Hansen A, Jensen JS, Grande P, Sillesen H, Nordestgaard BG. Genetically elevated C-reactive protein and ischemic vascular disease. N. Engl. J. Med.359(18), 1897–1908 (2008).
  • Pepys MB, Hirschfield GM. C-reactive protein: a critical update. J. Clin. Invest.111(12), 1805–1812 (2003).
  • Ridker PM, Danielson E, Fonseca FA et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N. Engl. J. Med.359(21), 2195–2207 (2008).
  • Glynn RJ, Danielson E, Fonseca FA et al. A randomized trial of rosuvastatin in the prevention of venous thromboembolism. N. Engl. J. Med.360(18), 1851–1861 (2009).
  • Everett BM, Glynn RJ, MacFadyen JG, Ridker PM. Rosuvastatin in the prevention of stroke among men and women with elevated levels of C-reactive protein: Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER). Circulation121(1), 143–150 (2010).
  • Danesh J. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N. Engl. J. Med.350(14), 1387–1397 (2004).
  • Ridker PM, Cook N. Clinical usefulness of very high and very low levels of C-reactive protein across the full range of Framingham risk scores. Circulation109, 1955–1959 (2004).
  • Zacho J, Tybjaerg-Hansen A, Jensen JS, Grande P, Sillesen H, Nordestgaard BG. Genetically elevated C-reactive protein and ischemic vascular disease. N. Engl. J. Med.359 (18), 1897–1908 (2008).
  • Pepys MB, Hirschfield GM, Tennent GA et al. Targeting C-reactive protein for the treatment of cardiovascular disease. Nature440, 1217–1221 (2006).
  • Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM. C-reactive protein, interleukin 6, and risk of developing Type 2 diabetes mellitus. JAMA286(3), 327–334 (2001).
  • Lopez-Garcia E. Consumption of trans fatty acids is related to plasma biomarkers of inflammation and endothelial dysfunction. J. Nutr.135(3), 562–566 (2005).
  • Klebanoffl SJ. Myeloperoxidase: friend and foe. J. Leukoc. Biol.77, 598–625 (2005).
  • Sugiyama S, Okada Y, Sukhova GK, Virmani R, Heinecke JW, Libby P. Macrophage myeloperoxidase regulation by granulocyte macrophage colony-stimulating factor in human atherosclerosis and implications in acute coronary syndromes. Am J Pathol.158(3), 879–891 (2001).
  • Daugherty A, Dunn JL, Rateri DL, Heinecke JW. Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J. Clin. Invest.94(1), 437–444 (1994).
  • Brennan ML, Anderson MM, Shih DM et al. Increased atherosclerosis in myeloperoxidase-deficient mice. J. Clin. Invest.107, 419–430 (2001).
  • Hansson M, Olsson I, Nauseef WM. Biosynthesis, processing, and sorting of human myeloperoxidase. Arch. Biochem. Biophys.445(2), 214–224 (2006).
  • Zheng L, Nukuna B, Brennan ML et al. Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease. J. Clin. Invest.114(4), 529–541 (2004).
  • Brennan M-L, Penn MS, Van Lente F et al. Prognostic value of myeloperoxidase in patients with chest pain. N. Engl. J. Med.349, 1595–1604 (2003).
  • Baldus S, Heeschen C, Meinertz T et al.; CAPTURE investigators. Myeloperoxidase serum levels predict risk in patients with acute coronary syndromes. Circulation108(12), 1440–1445 (2003).
  • Meuwese MC, Stroes ES, Hazen SL et al. Serum myeloperoxidase levels are associated with the future risk of coronary artery disease in apparently healthy individuals: the EPIC-Norfolk Prospective Population study. J. Am. Coll. Cardiol.50, 159–165 (2007).
  • Mocatta TJ, Pilbrow AP, Cameron VA et al. Plasma concentrations of myeloperoxidase predict mortality after myocardial infarction. J. Am. Coll. Cardiol.49(20), 1993–2000 (2007).
  • Garza CA, Montori VM, McConnell JP et al. Association between lipoprotein-associated phospholipase A2 and cardiovascular disease: a systematic review. Mayo Clin. Proc.82, 159–165 (2007).
  • Corson MA, Jones PH, Davidson MH. Review of the evidence for the clinical utility of lipoprotein-associated phospholipase A2 as a cardiovascular risk marker. Am. J. Cardiol.101(12A), 41F–50F (2008).
  • Ali M, Madjid M. Lipoprotein-associated phospholipase A2: a cardiovascular risk predictor and a potential therapeutic target. Future Cardiol.5(2), 159–173 (2009).
  • Kolodgie FD, Burke AP, Skorija KS et al. Lipoprotein-associated phospholipase A2 protein expression in the natural progression of human coronary atherosclerosis. Arterioscler. Thromb. Vasc. Biol.26, 2523–2529 (2006).
  • Lavi S, McConnell JP, Rihal CS et al. Local production of lipoprotein-associated phospholipase A2 and lysophosphatidylcholine in the coronary circulation: association with early coronary atherosclerosis and endothelial dysfunction in humans. Circulation115, 2715–2721 (2007).
  • Mannheim D, Herrmann J, Versari D et al. Enhanced expression of Lp-PLA2 and lysophosphatidylcholine in symptomatic carotid atherosclerotic plaque. Stroke39, 1445–1448 (2008).
  • Vickers KC, Maguire CT, Wolfert R et al. Relationship of lipoprotein-associated phospholipase A 2 and oxidized low density lipoprotein in carotid atherosclerosis. J. Lipid Res.50, 1735–1743 (2009).
  • Macphee CH, Moores KE, Boyd HF et al. Lipoprotein-associated phospholipase A2, platelet-activating factor acetylhydrolase, generates two bioactive products during the oxidation of low-density lipoprotein: use of a novel inhibitor. Biochem. J.338, 479–487 (1999).
  • Safaya R, Chai H, Kougias P et al. Effect of lysophosphatidylcholine on vasomotor functions of porcine coronary arteries. J. Surg. Res.126(2), 182–188 (2005).
  • Zalewski A, Macphee C. Role of lipoprotein-associated phospholipase A2 in atherosclerosis: biology, epidemiology, and possible therapeutic target. Arterioscler. Thromb. Vasc. Biol.25, 923–931 (2005).
  • Tuczu EM, Kapadia SR, Tutar E et al. High prevalence of coronary atherosclerosis in asymptomatic teenagers and young adults: evidence from intravascular ultrasound. Circulation103, 2705–2710 (2001).
  • Wassertheil-Smoller S, Kooperberg C, McGinn AP et al. Lipoprotein-associated phospholipase A2, hormone use, and the risk of ischemic stroke in postmenopausal women. Hypertension51(4), 1115–1122 (2008).
  • Sabatine MS, Morrow DA, O’Donoghue M et al.; PEACE investigators. Prognostic utility of lipoprotein-associated phospholipase A2 for cardiovascular outcomes in patients with stable coronary artery disease. Arterioscler. Thromb. Vasc. Biol.27, 2463–2469 (2007).
  • Elkind MS, Tai W, Coates K, Paik MC, Sacco RL. High- sensitivity C-reactive protein, lipoprotein-associated phospholipase A2, and outcome after ischemic stroke. Arch. Intern. Med.166, 2073–2080 (2006).
  • Brilakis ES, McConnell JP, Lennon RJ, Elesber AA, Meyer JG, Berger PB. Association of lipoprotein-associated phospholipase A2 levels with coronary artery disease risk factors, angiographic coronary artery disease, and major adverse events at follow-up. Eur. Heart J.26, 137–144 (2005).
  • Melander O, Newton-Cheh C, Almgren P et al. Novel and conventional biomarkers for prediction of incident cardiovascular events in the community. JAMA302(1), 49–57 (2009).
  • Cook N. Use and misuse of the receiver operating characteristic curve in risk prediction. Circulation115, 928–935 (2007).
  • Nambi V, Hoogeveen RC, Chambliss L et al. Lipoprotein associated phospholipase A2 and high-sensitivity C-reactive protein improve the stratification of ischemic stroke risk in the atherosclerosis risk in communities (ARIC) study. Stroke40, 376–381 (2009).
  • Davidson MH, Alberts MJ, Anderson JL et al. Consensus panel recommendation for incorporating Lp-PLA2 testing into cardiovascular disease risk assessment guidelines. Am. J. Cardiol.101(Suppl.), 51F–57F (2008).
  • Winkler K, Hoffman MM, Winkelmann BR et al. Lipoprotein- associated phospholipase A2 predicts 5-year mortality independently of established risk factors and adds prognostic information in patients with low and medium high-sensitivity C-reactive protein (the Ludwigshafen Risk and Cardiovascular Health Study). Clin. Chem.53, 1440–1447 (2007).
  • Gerber Y, McConnell JP, Jaffe AS, Weston SA, Killian JM, Roger VL. Lipoprotein-associated phospholipase A2 and prognosis after myocardial infarction in the community. Arterioscler. Thromb. Vasc. Biol.26, 2517–2522 (2006).
  • Lanman RB, Wolfert RL, Fleming JK et al. Lipoprotein-associated phospholipase A2: review and recommendation of a clinical cut point for adults. Prev. Card.9(3), 138–143 (2006).
  • Rosenson RS. Fenofibrate reduces lipoprotein associated phospholipase A2 mass and oxidative lipids in hypertriglyceridemic subjects with the metabolic syndrome. Am Heart J.155(3), 499.e9–e16 (2008).
  • Kuvin JT, Dave DM, Sliney KA et al. Effects of extended-release niacin on lipoprotein particle size, distribution, and inflammatory markers in patients with coronary artery disease. Am. J. Cardiol.98, 743–745 (2006).
  • Saougos VG, Tambaki AP, Kalogirou M et al. Differential effect of hypolipidemic drugs on lipoprotein-associated phospholipase A2. Arterioscler. Thromb. Vasc. Biol.27, 2236–2243 (2007).
  • Aird WC, Daugherty A, Davis GE et al. Lipoprotein subfraction responses differentially predict changes in lipoprotein-associated phospholipase A2 during prescription omega-3 therapy. Arterioscler. Thromb. Vasc. Biol.e94 (2007) (Abstract P328).
  • Albert MA, Glynn RJ, Wolfert RL, Ridker PM. The effect of statin therapy on lipoprotein associated phospholipase A2 levels. Atherosclerosis182(1), 193–198 (2005).
  • Wilensky RL, Shi Y, Mohler ER et al. Inhibition of lipoprotein-associated phospholipase A2 reduces complex coronary atherosclerotic plaque development. Nat. Med.14(10), 1059–1066 (2008).
  • McCullough PA. Darapladib and atherosclerotic plaque: should lipoprotein-associated phospholipase A2 be a therapeutic target?. Curr. Atheroscler. Rep.11(5), 334–337 (2009).
  • Shi Y, Zalewski A, Macphee C, Dawson M. Selective inhibition of lipoprotein-associated phospholipase A2 attenuates markers of plaque vulnerability in humans. Circulation116(Suppl.), II–108 (2007).
  • Mohler ER, Ballantyne CM, Davidson MH et al.; Darapladib investigators. The effect of darapladib on plasma lipoprotein-associated phospholipase A2 activity and cardiovascular biomarkers in patients with stable coronary heart disease or coronary heart disease risk equivalent: the results of a multicenter, randomized, double-blind, placebo-controlled study. J. Am. Coll. Cardiol.51(17), 1632–1641 (2008).
  • Serruys PW, García-García HM, Buszman P et al.; Integrated Biomarker and Imaging Study-2 investigators. Effects of the direct lipoprotein-associated phospholipase A2 inhibitor darapladib on human coronary atherosclerotic plaque. Circulation118(11), 1172–1182 (2008).
  • Riley RF, Corson MA. Darapladib, a reversible lipoprotein-associated phospholipase A2 inhibitor, for the oral treatment of atherosclerosis and coronary artery disease. IDrugs12(10), 648–655 (2009).
  • McCullough PA, Lepor NE. Lipids, biomarkers, and noninvasive imaging of atherosclerotic disease activity in clinical trials. Rev. Cardiovasc. Med.9(2), 142–149 (2008).
  • Lele S, Shah S, McCullough PA, Rajapurkar M. Serum catalytic iron as a novel biomarker in acute coronary syndromes. EuroIntervention5(3), 336–342 (2009).
  • Lowe GD, Pepys MB. C-reactive protein and cardiovascular disease: weighing the evidence. Curr. Atheroscler. Rep.8(5), 421–428 (2006).
  • Koenig W, Khuseyinova N, Löwel H, Trischler G, Meisinger C. Lipoprotein-associated phospholipase A2 adds to risk prediction of incident coronary events by C-reactive protein in apparently healthy middle-aged men from the general population: results from the 14-year follow-up of a large cohort from southern Germany (MONICA study). Circulation110(14), 1903–1908 (2004).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.