57
Views
2
CrossRef citations to date
0
Altmetric
Theme: Cardiac Imaging - Review

Understanding the genetics of coronary artery disease through the lens of noninvasive imaging

, &
Pages 27-36 | Published online: 10 Jan 2014

References

  • Lloyd-Jones DM, Larson MG, Beiser A, Levy D. Lifetime risk of developing coronary heart disease. Lancet353(9147), 89–92 (1999).
  • Lloyd-Jones DM, Adams RJ, Brown TM et al. Heart disease and stroke statistics – 2010 update: a report from the American Heart Association. Circulation121(7), e46–e215 (2010).
  • Lloyd-Jones DM, Wilson PW, Larson MG et al. Framingham risk score and prediction of lifetime risk for coronary heart disease. Am. J. Cardiol.94(1), 20–24 (2004).
  • Lloyd-Jones DM, Nam BH, D’Agostino RB Sr et al. Parental cardiovascular disease as a risk factor for cardiovascular disease in middle-aged adults: a prospective study of parents and offspring. JAMA291(18), 2204–2211 (2004).
  • Lerner DJ, Kannel WB. Patterns of coronary heart disease morbidity and mortality in the sexes: a 26-year follow-up of the Framingham population. Am. Heart J.111(2), 383–390 (1986).
  • Centers for Disease Control and Prevention (CDC). State-specific mortality from sudden cardiac death – United States, 1999. MMWR Morb. Mortal. Wkly Rep.51(6), 123–126 (2002).
  • Murray CJ, Lopez AD. Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. Lancet349(9064), 1498–1504 (1997).
  • Nora JJ, Lortscher RH, Spangler RD, Nora AH, Kimberling WJ. Genetic–epidemiologic study of early-onset ischemic heart disease. Circulation61(3), 503–508 (1980).
  • Collins FS, Guyer MS, Charkravarti A. Variations on a theme: cataloging human DNA sequence variation. Science278(5343), 1580–1581 (1997).
  • Lander ES. The new genomics: global views of biology. Science274(5287), 536–539 (1996).
  • Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science273(5281), 1516–1517 (1996).
  • Lander ES. Initial impact of the sequencing of the human genome. Nature470(7333), 187–197 (2011).
  • Venter JC. The sequence of the human genome. Science291(5507), 1304–1351 (2001).
  • The International HapMap Project. Nature426(6968), 789–796 (2003).
  • Mardis ER. The impact of next-generation sequencing technology on genetics. Trends Genet.24(3), 133–141 (2008).
  • McPherson R, Pertsemlidis A, Kavaslar N et al. A common allele on chromosome 9 associated with coronary heart disease. Science316(5830), 1488–1491 (2007).
  • Helgadottir A, Thorleifsson G, Manolescu A et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science316(5830), 1491–1493 (2007).
  • Samani NJ, Schunkert H. Chromosome 9p21 and cardiovascular disease: the story unfolds. Circ. Cardiovasc. Genet.1(2), 81–84 (2008).
  • Burton PR, Clayton DG, Cardon LR et al. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature447(7145), 661–678 (2007).
  • Ehret GB, Munroe PB, Rice KM et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature478, 103–109 (2011).
  • Ripke S, Sanders AR, Kendler KS et al. Genome-wide association study identifies five new schizophrenia loci. Nat. Genet.43(10), 969–976 (2011).
  • Biesecker LG, Shianna KV, Mullikin JC. Exome sequencing: the expert view. Genome Biol.12(9), 128 (2011).
  • Shendure J. Next-generation human genetics. Genome Biol.12(9), 408 (2011).
  • Mardis ER. Next-generation DNA sequencing methods. Annu. Rev. Genomics Hum. Genet.9, 387–402 (2008).
  • Ng SB, Turner EH, Robertson PD et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature461(7261), 272–276 (2009).
  • Schunkert H, Konig IR, Kathiresan S et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat. Genet.43(4), 333–338 (2011).
  • Wild PS, Zeller T, Schillert A et al. A genome-wide association study identifies LIPA as a susceptibility gene for coronary artery disease. Circ. Cardiovasc. Genet.4(4), 403–412 (2011).
  • Webb KE, Martin JF, Hamsten A et al. Polymorphisms in the thrombopoietin gene are associated with risk of myocardial infarction at a young age. Atherosclerosis154(3), 703–711 (2001).
  • Vohnout B, Di Castelnuovo A, Trotta R et al. Interleukin-1 gene cluster polymorphisms and risk of coronary artery disease. Haematologica88(1), 54–60 (2003).
  • Iacoviello L, Di Castelnuovo A, De Knijff P et al. Polymorphisms in the coagulation factor VII gene and the risk of myocardial infarction. N. Engl. J. Med.338(2), 79–85 (1998).
  • Iacoviello L, Di Castelnuovo A, Gattone M et al. Polymorphisms of the interleukin-1beta gene affect the risk of myocardial infarction and ischemic stroke at young age and the response of mononuclear cells to stimulation in vitro. Arterioscler. Thromb. Vasc. Biol.25(1), 222–227 (2005).
  • Georgoulias P, Wozniak G, Samara M et al. Impact of ACE and ApoE polymorphisms on myocardial perfusion: correlation with myocardial single photon emission computed tomographic imaging. J. Hum. Genet.54(10), 595–602 (2009).
  • Ikram MA, Seshadri S, Bis JC et al. Genomewide association studies of stroke. N. Engl. J. Med.360(17), 1718–1728 (2009).
  • Macedo R, Chen S, Lai S et al. MRI detects increased coronary wall thickness in asymptomatic individuals: the Multi-Ethnic Study of Atherosclerosis (MESA). J. Magn. Reson. Imaging28(5), 1108–1115 (2008).
  • Motoyama S, Kondo T, Sarai M et al. Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J. Am. Coll. Cardiol.50(4), 319–326 (2007).
  • Motoyama S, Sarai M, Harigaya H et al. Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J. Am. Coll. Cardiol.54(1), 49–57 (2009).
  • Ehara S, Kobayashi Y, Yoshiyama M et al. Spotty calcification typifies the culprit plaque in patients with acute myocardial infarction: an intravascular ultrasound study. Circulation110(22), 3424–3429 (2004).
  • Marwan M, Taher MA, El Meniawy K et al.In vivo CT detection of lipid-rich coronary artery atherosclerotic plaques using quantitative histogram analysis: a head to head comparison with IVUS. Atherosclerosis215(1), 110–115 (2011).
  • Detrano R, Guerci AD, Carr JJ et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N. Engl. J. Med.358(13), 1336–1345 (2008).
  • Doherty TM, Fitzpatrick LA, Shaheen A, Rajavashisth TB, Detrano RC. Genetic determinants of arterial calcification associated with atherosclerosis. Mayo Clin. Proc.79(2), 197–210 (2004).
  • Mautner GC, Mautner SL, Froehlich J et al. Coronary artery calcification: assessment with electron beam CT and histomorphometric correlation. Radiology192(3), 619–623 (1994).
  • Rumberger JA, Simons DB, Fitzpatrick LA, Sheedy PF, Schwartz RS. Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area. A histopathologic correlative study. Circulation92(8), 2157–2162 (1995).
  • Mintz GS, Pichard AD, Popma JJ et al. Determinants and correlates of target lesion calcium in coronary artery disease: a clinical, angiographic and intravascular ultrasound study. J. Am. Coll. Cardiol.29(2), 268–274 (1997).
  • Maehara A, Fitzgerald PJ. Coronary calcification: assessment by intravascular ultrasound imaging. Z. Kardiol.89(Suppl. 2), 112–116 (2000).
  • Erbel R, Mohlenkamp S, Moebus S et al. Coronary risk stratification, discrimination, and reclassification improvement based on quantification of subclinical coronary atherosclerosis: the Heinz Nixdorf Recall study. J. Am. Coll. Cardiol.56(17), 1397–1406 (2010).
  • Vliegenthart R, Oudkerk M, Hofman A et al. Coronary calcification improves cardiovascular risk prediction in the elderly. Circulation112(4), 572–577 (2005).
  • Vliegenthart R, Hollander M, Breteler MM et al. Stroke is associated with coronary calcification as detected by electron-beam CT: the Rotterdam Coronary Calcification Study. Stroke33(2), 462–465 (2002).
  • Pfohl M, Athanasiadis A, Koch M et al. Insertion/deletion polymorphism of the angiotensin I-converting enzyme gene is associated with coronary artery plaque calcification as assessed by intravascular ultrasound. J. Am. Coll. Cardiol.31(5), 987–991 (1998).
  • Kardia SLR, Haviland MB, Ferrell RE, Sing CF. The relationship between risk factor levels and presence of coronary artery calcification is dependent on Apolipoprotein E genotype. Arterioscl. Thromb. Vasc.19(2), 427–435 (1999).
  • Glaeser C, Handschug K, Boehm U et al. Endothelial factors and atherosclerosis: Investigation of the LRP (low density lipoprotein receptor related protein) and E-selectin gene-polymorphism in patients with coronary and peripheral arterial and cerebro-vascular diseases. Circulation94(8), 1585–1585 (1996).
  • Revelle BM, Scott D, Beck PJ. Single amino acid residues in the E- and P-selectin epidermal growth factor domains can determine carbohydrate binding specificity. J. Biol. Chem.271(27), 16160–16170 (1996).
  • Ellsworth DL, Bielak LF, Turner ST, Sheedy PF 2nd, Boerwinkle E, Peyser PA. Gender- and age-dependent relationships between the E-selectin S128R polymorphism and coronary artery calcification. J. Mol. Med. (Berl.)79(7), 390–398 (2001).
  • Pollanen PJ, Lehtimaki T, Ilveskoski E et al. Coronary artery calcification is related to functional polymorphism of matrix metalloproteinase 3: the Helsinki Sudden Death Study. Atherosclerosis164(2), 329–335 (2002).
  • Herrmann SM, Nicaud V, Tiret L et al. Polymorphisms of the beta2-adrenoceptor (ADRB2) gene and essential hypertension: the ECTIM and PEGASE studies. J. Hypertens.20(2), 229–235 (2002).
  • Farzaneh-Far A, Davies JD, Braam LA et al. A polymorphism of the human matrix gamma-carboxyglutamic acid protein promoter alters binding of an activating protein-1 complex and is associated with altered transcription and serum levels. 276(35), 32466–32473 (2001).
  • Emi M, Tsukamoto K, Orimo H et al. Association of bone mineral density with polymorphism of the human calcium-sensing receptor locus. Calcified Tissue Int.66(3), 181–183 (2000).
  • Gonzalez P, Alvarez R, Batalla A et al. Genetic variation at the chemokine receptors CCR5/CCR2 in myocardial infarction. Genes Immunol.2(4), 191–195 (2001).
  • Valdes AM, Wolfe ML, O’Brien EJ et al. Val64Ile polymorphism in the C–C chemokine receptor 2 is associated with reduced coronary artery calcification. Arterioscler. Thromb. Vasc. Biol.22(11), 1924–1928 (2002).
  • Oei HH, Sayed-Tabatabaei FA, Hofman A, Oudkerk M, van Duijn CM, Witteman JC. The association between angiotensin-converting enzyme gene polymorphism and coronary calcification. The Rotterdam Coronary Calcification Study. Atherosclerosis182(1), 169–173 (2005).
  • Lange LA, Lange EM, Bielak LF et al. Autosomal genome-wide scan for coronary artery calcification loci in sibships at high risk for hypertension. Arterioscler. Thromb. Vasc. Biol.22(3), 418–423 (2002).
  • Yuan C, Polissar NL, Hatsukami TS. What will noninvasive carotid atherosclerosis imaging show us about high-risk coronary plaques? J. Am. Coll. Cardiol.58(4), 423–425 (2011).
  • O’Leary DH, Polak JF, Kronmal RA, Manolio TA, Burke GL, Wolfson SK Jr. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group. N. Engl. J. Med.340(1), 14–22 (1999).
  • Polak JF, Pencina MJ, Pencina KM, O’Donnell CJ, Wolf PA, D’Agostino RB. Carotid-wall intima–media thickness and cardiovascular events. N. Engl. J. Med.365(3), 213–221 (2011).
  • Pankow JS, Heiss G, Evans GW et al. Familial aggregation and genome-wide linkage analysis of carotid artery plaque: the NHLBI family heart study. Hum. Hered.57(2), 80–89 (2004).
  • Pankow JS, Folsom AR, Province MA et al. Family history of coronary heart disease and hemostatic variables in middle-aged adults. Atherosclerosis Risk in Communities Investigators and Family Heart Study Research Group. Thromb. Haemost.77(1), 87–93 (1997).
  • Paternoster L, Martinez-Gonzalez NA, Charleton R, Chung M, Lewis S, Sudlow CLM. Genetic effects on carotid intima–media thickness: systematic assessment and meta-analyses of candidate gene polymorphisms studied in more than 5000 subjects. Circ. Cardiovasc. Genet.3(1), 15–21 (2009).
  • Chen Q, Reis SE, Kammerer CM et al.APOE polymorphism and angiographic coronary artery disease severity in the Women’s Ischemia Syndrome Evaluation (WISE) study. Atherosclerosis169(1), 159–167 (2003).
  • Fox CS, Cupples LA, Chazaro I et al. Genomewide linkage analysis for internal carotid artery intimal medial thickness: evidence for linkage to chromosome 12. Am J. Hum. Genet.74(5), 253–261 (2004); Erratum in 74(5), 1080 (2004).
  • Wang D, Yang H, Quinones MJ et al. A genome-wide scan for carotid artery intima-media thickness: the Mexican–American Coronary Artery Disease family study. Stroke36(3), 540–545 (2005).
  • Shrestha S, Irvin MR, Taylor KD et al. A genome-wide association study of carotid atherosclerosis in HIV-infected men. AIDS24(4), 583–592 (2010).
  • Dong C, Beecham A, Slifer S et al. Genomewide linkage and peakwide association analyses of carotid plaque in Caribbean Hispanics. Stroke41(12), 2750–2756 (2010).
  • Bis JC, Kavousi M, Franceschini N et al. Meta-analysis of genome-wide association studies from the CHARGE consortium identifies common variants associated with carotid intima media thickness and plaque. Nat. Genet.43(10), 940–947 (2011).
  • Sun J, Zhang Z, Lu B et al. Identification and quantification of coronary atherosclerotic plaques: a comparison of 64-MDCT and intravascular ultrasound. AJR Am. J. Roentgenol.190(3), 748–754 (2008).
  • Petranovic M, Soni A, Bezzera H et al. Assessment of nonstenotic coronary lesions by 64-slice multidetector computed tomography in comparison to intravascular ultrasound: evaluation of nonculprit coronary lesions. J. Cardiovasc. Comput. Tomogr.3(1), 24–31 (2009).
  • Leber AW, Knez A, Becker A et al. Accuracy of multidetector spiral computed tomography in identifying and differentiating the composition of coronary atherosclerotic plaques: a comparative study with intracoronary ultrasound. J. Am. Coll. Cardiol.43(7), 1241–1247 (2004).
  • Gottlieb I, Miller JM, Arbab-Zadeh A et al. The absence of coronary calcification does not exclude obstructive coronary artery disease or the need for revascularization in patients referred for conventional coronary angiography. J. Am. Coll. Cardiol.55(7), 627–634 (2010).
  • Choi BW, Hur J, Kim YJ et al. Quantification and characterization of obstructive coronary plaques using 64-slice computed tomography: a comparison with intravascular ultrasound. J. Comput. Assist. Tomo.33(2), 186–192 (2009).
  • Sarwar A, Rieber J, Mooyaart EA et al. Calcified plaque: measurement of area at thin-section flat-panel CT and 64-section multidetector CT and comparison with histopathologic findings. Radiology249(1), 301–306 (2008).
  • Hoffmann U, Kwait DC, Handwerker J, Chan R, Lamuraglia G, Brady TJ. Vascular calcification in ex vivo carotid specimens: precision and accuracy of measurements with multi-detector row CT. Radiology229(2), 375–381 (2003).
  • Poon M. Technology insight: cardiac CT angiography. Nat. Clin. Pract. Cardiovasc. Med.3(5), 265–275 (2006).
  • Roberts WT, Bax JJ, Davies LC. Cardiac CT and CT coronary angiography: technology and application. Heart94(6), 781–792 (2008).
  • de Feyter PJ, Nieman K, Oudkerk M et al. Coronary angiography with multi-slice computed tomography. Lancet357(9256), 599–603 (2001).
  • Schoepf UJ, Zwerner PL, Savino G, Herzog C, Kerl JM, Costello P. Coronary CT angiography. Radiology244(1), 48–63 (2007).
  • Achenbach S, Moselewski F, Ropers D et al. Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced, submillimeter multidetector spiral computed tomography – a segment-based comparison with intravascular ultrasound. Circulation109(1), 14–17 (2004).
  • Nieman K, Cademartiri F, Lemos PA, Raaijmakers R, Pattynama PMT, de Feyter PJ. Reliable noninvasive coronary angiography with fast submillimeter multislice spiral computed tomography. Circulation106(16), 2051–2054 (2002).
  • Hsiao EM, Rybicki FJ, Steigner M. CT coronary angiography: 256-slice and 320-detector row scanners. Curr. Cardiol. Rep.12(1), 68–75 (2010).
  • Cordeiro MA, Lima JA. Atherosclerotic plaque characterization by multidetector row computed tomography angiography. J. Am. Coll. Cardiol.47(8 Suppl.), C40–C47 (2006).
  • Moselewski F, Ropers D, Pohle K et al. Comparison of measurement of cross-sectional coronary atherosclerotic plaque and vessel areas by 16-slice multidetector computed tomography versus intravascular ultrasound. Am. J. Cardiol.94(10), 1294–1297 (2004).
  • Achenbach S, Ropers D, Hoffmann U et al. Assessment of coronary remodeling in stenotic and nonstenotic coronary atherosclerotic lesions by multidetector spiral computed tomography. J. Am. Coll. Cardiol.43(5), 842–847 (2004).
  • Virmani R, Burke AP, Kolodgie FD, Farb A. Vulnerable plaque: the pathology of unstable coronary lesions. J. Interv. Cardiol.15(6), 439–446 (2002).
  • Husmann L, Valenta I, Gaemperli O et al. Feasibility of low-dose coronary CT angiography: first experience with prospective ECG-gating. Eur. Heart J.29(2), 191–197 (2008).
  • Achenbach S, Marwan M, Ropers D et al. Coronary computed tomography angiography with a consistent dose below 1 mSv using prospectively electrocardiogram-triggered high-pitch spiral acquisition. Eur. Heart J.31(3), 340–346 (2010).
  • Mettler FA Jr., Huda W, Yoshizumi TT, Mahesh M. Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology248(1), 254–263 (2008).
  • Blackmon KN, Streck J, Thilo C, Bastarrika G, Costello P, Schoepf UJ. Reproducibility of automated noncalcified coronary artery plaque burden assessment at coronary CT angiography. J. Thorac. Imaging24(2), 96–102 (2009).
  • Noguchi T, Yamada N, Higashi M, Goto Y, Naito H. High-intensity signals in carotid plaques on T1-weighted magnetic resonance imaging predict coronary events in patients with coronary artery disease. J. Am. Coll. Cardiol.58(4), 416–422 (2011).
  • Cai J, Hatsukami TS, Ferguson MS et al.In vivo quantitative measurement of intact fibrous cap and lipid-rich necrotic core size in atherosclerotic carotid plaque: comparison of high-resolution, contrast-enhanced magnetic resonance imaging and histology. Circulation112(22), 3437–3444 (2005).
  • Kang X, Polissar NL, Han C, Lin E, Yuan C. Analysis of the measurement precision of arterial lumen and wall areas using high-resolution MRI. Magn. Reson. Med.44(6), 968–972 (2000).
  • Vidal A, Bureau Y, Wade T et al. Scan–rescan and intra-observer variability of magnetic resonance imaging of carotid atherosclerosis at 1.5 T and 3.0 T. Phys. Med. Biol.53(23), 6821–6835 (2008).
  • Zhang S, Cai J, Luo Y et al. Measurement of carotid wall volume and maximum area with contrast-enhanced 3D MR imaging: initial observations. Radiology228(1), 200–205 (2003).
  • Shinnar M, Fallon JT, Wehrli S et al. The diagnostic accuracy of ex vivo MRI for human atherosclerotic plaque characterization. Arterioscler. Thromb. Vasc. Biol.19(11), 2756–2761 (1999).
  • Coombs BD, Rapp JH, Ursell PC, Reilly LM, Saloner D. Structure of plaque at carotid bifurcation: high-resolution MRI with histological correlation. Stroke32(11), 2516–2521 (2001).
  • Cappendijk VC, Cleutjens KB, Heeneman S et al.In vivo detection of hemorrhage in human atherosclerotic plaques with magnetic resonance imaging. J. Magn. Reson. Imaging20(1), 105–110 (2004).
  • Moody AR, Murphy RE, Morgan PS et al. Characterization of complicated carotid plaque with magnetic resonance direct thrombus imaging in patients with cerebral ischemia. Circulation107(24), 3047–3052 (2003).
  • Corti R, Osende JI, Fayad ZA et al.In vivo noninvasive detection and age definition of arterial thrombus by MRI. J. Am. Coll. Cardiol.39(8), 1366–1373 (2002).
  • Hatsukami TS, Ross R, Polissar NL, Yuan C. Visualization of fibrous cap thickness and rupture in human atherosclerotic carotid plaque in vivo with high-resolution magnetic resonance imaging. Circulation102(9), 959–964 (2000).
  • Yuan C, Mitsumori LM, Beach KW, Maravilla KR. Carotid atherosclerotic plaque: noninvasive MR characterization and identification of vulnerable lesions. Radiology221(2), 285–299 (2001).
  • Zhu DC, Ferguson MS, DeMarco JK. An optimized 3D inversion recovery prepared fast spoiled gradient recalled sequence for carotid plaque hemorrhage imaging at 3.0 T. Magn. Reson. Med.26(10), 1360–1366 (2008).
  • Cai JM, Hatsukami TS, Ferguson MS, Small R, Polissar NL, Yuan C. Classification of human carotid atherosclerotic lesions with in vivo multicontrast magnetic resonance imaging. Circulation106(11), 1368–1373 (2002).
  • Kerwin W, Hooker A, Spilker M et al. Quantitative magnetic resonance imaging analysis of neovasculature volume in carotid atherosclerotic plaque. Circulation107(6), 851–856 (2003).
  • Kerwin WS, O’Brien KD, Ferguson MS, Polissar N, Hatsukami TS, Yuan C. Inflammation in carotid atherosclerotic plaque: a dynamic contrast-enhanced MR imaging study. Radiology241(2), 459–468 (2006).
  • Qiao Y, Ronen I, Viereck J, Ruberg FL, Hamilton JA. Identification of atherosclerotic lipid deposits by diffusion-weighted imaging. Arterioscl. Thromb. Vasc.28(2), E10–E10 (2008).
  • Du J, Bydder M, Takahashi AM, Chung CB. Two-dimensional ultrashort echo time imaging using a spiral trajectory. Magn. Reson. Med.26(3), 304–312 (2008).
  • Miao C, Chen S, Macedo R et al. Positive remodeling of the coronary arteries detected by magnetic resonance imaging in an asymptomatic population: MESA (Multi-Ethnic Study of Atherosclerosis). J. Am. Coll. Cardiol.53(18), 1708–1715 (2009).
  • Sakuma H, Ichikawa Y, Chino S, Hirano T, Makino K, Takeda K. Detection of coronary artery stenosis with whole-heart coronary magnetic resonance angiography. J. Am. Coll. Cardiol.48(10), 1946–1950 (2006).
  • Dobrucki LW, Sinusas AJ. PET and SPECT in cardiovascular molecular imaging. Nat. Rev. Cardiol.7(1), 38–47 (2009).
  • Dobrucki LW, Sinusas AJ. PET and SPECT in cardiovascular molecular imaging. Nat. Rev. Cardiol.7(1), 38–47 (2010).
  • Wahl RL, Quint LE, Cieslak RD, Aisen AM, Koeppe RA, Meyer CR. ‘Anatometabolic’ tumor imaging: fusion of FDG PET with CT or MRI to localize foci of increased activity. J. Nucl. Med.34(7), 1190–1197 (1993).
  • Mazzone A, Mazzucchelli I, Vezzoli M et al. Increased expression of peripheral benzodiazepine receptors on leukocytes in silent myocardial ischemia. J. Am. Coll. Cardiol.36(3), 746–750 (2000).
  • Gildersleeve DL, Van Dort ME, Johnson JW, Sherman PS, Wieland DM. Synthesis and evaluation of [123I]-iodo-PK11195 for mapping peripheral-type benzodiazepine receptors (omega 3) in heart. Nucl. Med. Biol.23(1), 23–28 (1996).
  • Flotats A, Carrio I. Cardiac neurotransmission SPECT imaging. J. Nucl. Cardiol.11(5), 587–602 (2004).
  • Henneman MM, Bengel FM, van der Wall EE, Knuuti J, Bax JJ. Cardiac neuronal imaging: application in the evaluation of cardiac disease. J. Nucl. Cardiol.15(3), 442–455 (2008).
  • Lu E, Wagner WR, Schellenberger U et al. Targeted in vivo labeling of receptors for vascular endothelial growth factor: approach to identification of ischemic tissue. Circulation108(1), 97–103 (2003).
  • Meoli DF, Sadeghi MM, Krassilnikova S et al. Noninvasive imaging of myocardial angiogenesis following experimental myocardial infarction. J. Clin. Invest.113(12), 1684–1691 (2004).
  • van den Borne SW, Isobe S, Verjans JW et al. Molecular imaging of interstitial alterations in remodeling myocardium after myocardial infarction. J. Am. Coll. Cardiol.52(24), 2017–2028 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.